首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avian influenza has emerged as a devastating disease and may cross species barrier and adapt to a new host, causing enormous economic loss and great public health threats, and non-structural protein 1 (NS1) is a multifunctional non-structural protein of avian influenza virus (AIV) that counters cellular antiviral activities and is a virulence factor. RNA interference (RNAi) provides a powerful promising approach to inhibit viral infection specifically. To explore the possibility of using RNAi as a strategy against AIV infection, after the fusion protein expression plasmids pNS1-enhanced green fluorescent protein (EGFP), which contain the EGFP reporter gene and AIV NS1 as silencing target, were constructed and NS1-EGFP fusion protein expressing HEK293 cell lines were established, four small interfering RNAs (siRNAs) targeting NS1 gene were designed, synthesized, and used to transfect the stable cell lines. Flow cytometry, real-time quantitative polymerase chain reaction, and Western blot were performed to assess the expression level of NS1. The results suggested that sequence-dependent specific siRNAs effectively inhibited mRNA accumulation and protein expression of AIV NS1 in vitro. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for AIV infection.  相似文献   

2.
Ge J  Deng G  Wen Z  Tian G  Wang Y  Shi J  Wang X  Li Y  Hu S  Jiang Y  Yang C  Yu K  Bu Z  Chen H 《Journal of virology》2007,81(1):150-158
H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza.  相似文献   

3.
利用反向遗传技术获得表达H5亚型禽流感病毒(AIV)血凝素(HA)的新城疫病毒(NDV)。克隆NDV clone 30的全长基因,通过在NDV的融合蛋白基因和血凝素-神经氨酸酶(HN)基因之间插入编码高致病性AIV分离株A/chicken/italy/8/98(H5N2)的血凝素基因开放阅读框从而获得两株重组新城疫病毒NDVH5和NDVH5m。NDVH5感染的细胞可以检测到两种HA转录产物。对于重组病毒NDVH5m,NDV位于HA ORF的转录终止信号序列被沉默突变消除,产生2.7个全长HA转录产物的折叠,从而使修饰过的HA得到稳定地高表达。1日龄小鸡的脑内接种证实了两种重组病毒均无致病性。鸡群在NDVH5m诱导产生的NDV和H5亚型AIV HA特异性抗体的免疫力下能够免于致死剂量的NDV与高致病性AIV的感染。血清学研究结果表明NDVH5m免疫鸡群产生的抗体可结合NP蛋白抗体的检测从而用于区分免疫和感染AIV的动物。因此,NDVH5m重组病毒可作为抗NDV和AIV的"二联疫苗",也可成为控制AJ的标记疫苗。  相似文献   

4.
将禽流感病毒M2基因克隆于真核表达质粒pIRES-EGFP中,使其位于pCMV启动子的调控下,并与绿色荧光蛋白基因(EGFP)串联后,将上述串联基因插入到含MDV CVI988的非必需区US基因的重组质粒pUS2中,构建带标记的重组质粒,然后将此重组质粒转染感染了MDV CVI988的鸡胚成纤维细胞,利用同源重组的方法,筛选了表达禽流感病毒M2基因的重组病毒MDV1。经PCR、Dot-blotting,Western-blotting等实验的结果表明,禽流感病毒M2基因的确插入到MDV1(CVI988)基因组中并获得表达。重组MDV1免疫1日龄SPF鸡21天后,用ELISA可检测到M2蛋白的特异性抗体。接种了重组病毒rMDV的鸡体内针对H9N2疫苗血凝素的抗体滴度(p<0.05)明显提高,以禽流感病毒AIV A/Chicken/Guangdong/00(H9N2)攻毒后进行病毒重分离试验的结果发现,重组病毒能有效地降低病毒的排出量(p<0.01),说明该重组病毒可以用于防制禽流感的免疫。  相似文献   

5.
抗禽流感病毒多表位DNA疫苗的构建及其免疫效力研究   总被引:18,自引:1,他引:17  
多表位DNA疫苗是建立在常规DNA疫苗基础上的一种新型疫苗。它是用表位作免疫原,这样就比较容易在一个表达载体上克隆病原体的多个抗原基因中具有免疫活性的部分。本试验以H5N1亚型禽流感病毒的HA和NP基因及其表位为基础构建了4个重组质粒:1 pIRES/HA(表达全长的HA基因);2 pIRES/tHA(只表达HA基因的主要抗原表位区);3 pIRES/tHANpep(融合表达HA基因的抗原表位区和NP基因的3个CTL表位);4 pIRES/tHANpep-IFN-γ(用鸡的IFN-γ基因取代质粒pIRES/tHANpep中的neo基因)。分别用这4个重组质粒和空载体质粒pIRES1neo肌注免疫30日龄SPF鸡。免疫3次,间隔为2周,每次每只鸡的剂量为200μg。第3次免疫后两周以高致病性禽流感病毒H5N1强毒攻击,免疫及攻毒前后均采血检测HI抗体效价和外周血CD4+、CD8+T细胞的变化。结果发现,攻毒前各质粒免疫组均检测不到HI抗体,攻毒后1周存活鸡HI抗体效价迅速升高到64~256。流式细胞仪检测显示外周血CD4+、CD8+T细胞在疫苗免疫后都有不同程度的升高。空载体质粒对照组鸡(10只)在攻毒后3~8 d内全部死亡,其他各重组质粒免疫组鸡都获得了部分保护,保护率分别是:pIRES/HA组为545%(6/11),pIRES/tHA组为30%(3/10),pIRES/tHANPep组为36.3%(4/11), pIRES/tHANPepIFNγ组为50%(5/10)。这些结果表明我们构建的多表位DNA疫苗能够诱导机体产生特异性免疫应答,并在同型禽流感强毒攻击时对鸡只提供了一定的保护。  相似文献   

6.
In early 2004, an H5N2 avian influenza virus (AIV) that met the molecular criteria for classification as a highly pathogenic AIV was isolated from chickens in the state of Texas in the United States. However, clinical manifestations in the affected flock were consistent with avian influenza caused by a low-pathogenicity AIV and the representative virus (A/chicken/Texas/298313/04 [TX/04]) was not virulent for experimentally inoculated chickens. The hemagglutinin (HA) gene of the TX/04 isolate was similar in sequence to A/chicken/Texas/167280-4/02 (TX/02), a low-pathogenicity AIV isolate recovered from chickens in Texas in 2002. However, the TX/04 isolate had one additional basic amino acid at the HA cleavage site, which could be attributed to a single point mutation. The TX/04 isolate was similar in sequence to TX/02 isolate in several internal genes (NP, M, and NS), but some genes (PA, PB1, and PB2) had sequence of a clearly different origin. The TX/04 isolate also had a stalk deletion in the NA gene, characteristic of a chicken-adapted AIV. By analyzing viruses constructed by in vitro mutagenesis followed by reverse genetics, we found that the pathogenicity of the TX/04 virus could be increased in vitro and in vivo by the insertion of an additional basic amino acid at the HA cleavage site and not by the loss of a glycosylation site near the cleavage site. Our study provides the genetic and biologic characteristics of the TX/04 isolate, which highlight the complexity of the polygenic nature of the virulence of influenza viruses.  相似文献   

7.
8.
郑维豪  林志强  卓敏  杜红丽  王小宁 《遗传》2012,34(5):526-532
流行性感冒是一类由流感病毒引起的呼吸道传染病, 通过季节性流行或全球性爆发严重威胁着人类健康。目前防治流感的主要方法是疫苗和药物, 但存在神经毒性、肠胃副作用、易耐药等诸多限制因素。新的技术特别是小RNAs介导的RNA干扰(RNAi)技术, 因其具有高效、特异、快速等特点, 已成为抗病毒治疗的候选方法之一。随着近年来流感病毒的流行, 应用小RNAs抗流感病毒的报导越来越多, 其中靶向PA、NP和M2的PA-2087, NP-1496和M-950是目前报道的抑制流感病毒效果最好的siRNA。靶向不同流感病毒基因保守区域的siRNA具有更广泛的病毒毒株抑制效果, 靶向不同基因的siRNAs联合使用可取得更好的病毒抑制效果。文章就目前siRNAs和miRNAs在抗流感病毒方面的研究进展及RNAi治疗的前景和问题进行了综述。  相似文献   

9.
Zheng WH  Lin ZQ  Zhuo M  Du HL  Wang XN 《遗传》2012,34(5):526-532
流行性感冒是一类由流感病毒引起的呼吸道传染病,通过季节性流行或全球性爆发严重威胁着人类健康。目前防治流感的主要方法是疫苗和药物,但存在神经毒性、肠胃副作用、易耐药等诸多限制因素。新的技术特别是小RNAs介导的RNA干扰(RNAi)技术,因其具有高效、特异、快速等特点,已成为抗病毒治疗的候选方法之一。随着近年来流感病毒的流行,应用小RNAs抗流感病毒的报导越来越多,其中靶向PA、NP和M2的PA-2087,NP-1496和M-950是目前报道的抑制流感病毒效果最好的siRNA。靶向不同流感病毒基因保守区域的siRNA具有更广泛的病毒毒株抑制效果,靶向不同基因的siRNAs联合使用可取得更好的病毒抑制效果。文章就目前siRNAs和miRNAs在抗流感病毒方面的研究进展及RNAi治疗的前景和问题进行了综述。  相似文献   

10.
In this report, a novel H5N2 avian influenza virus (AIV) was isolated from chickens in Tibet in 2010, western China. Phylogenetic analysis demonstrated that it was a natural reassortant between H9N2 and H5N1 subtypes. It is of note that this virus has an HP genotype with HA, PB2, M, and NS genes homologous to those of A/peregrine falcon/Hong Kong/2142/2008(H5N1)-like HPAIV isolated from dead wild birds. Publishing this genome information will contribute to the investigation of avian influenza epidemiology and to further research of AIV''s biological properties.  相似文献   

11.
Liu  Kaituo  Ding  Pingyun  Pei  Yuru  Gao  Ruyi  Han  Wenwen  Zheng  Huafen  Ji  Zhuxing  Cai  Miao  Gu  Jinyuan  Li  Xiuli  Gu  Min  Hu  Jiao  Liu  Xiaowen  Hu  Shunlin  Zhang  Pinghu  Wang  Xiaobo  Wang  Xiaoquan  Liu  Xiufan 《中国科学:生命科学英文版》2022,65(5):1024-1035
Science China Life Sciences - Decades have passed since the first discovery of H10-subtype avian influenza virus (AIV) in chickens in 1949, and it has been detected in many species including...  相似文献   

12.
H5N1 avian influenza virus (AIV) has caused widespread infections in poultry and wild birds, and has the potential to emerge as a pandemic threat to human. In order to explore novel approaches to inhibiting highly pathogenic H5N1 influenza virus infection, we have developed short RNA oligonucleotides, specific for conserved regions of the non-structural protein gene (NS1) of AIV. In vitro the hemagglutination (HA) titers in RNA oligonucleotide-treated cells were at least 5-fold lower than that of the control. In vivo, the treatment with three doses of RNA oligonucleotides protected the infected chickens from H5N1 virus-induced death at a rate of up to 87.5%. Plaque assay and real-time PCR analysis showed a significant reduction of the PFU and viral RNA level in the lung tissues of the infected animals treated with the mixed RNA oligonucleotides targeting the NS1 gene. Together, our findings revealed that the RNA oligonucleotides targeting at the AIV NS1 gene could potently inhibit avian H5N1 influenza virus reproduction and present a rationale for the further development of the RNA oligonucleotides as prophylaxis and therapy for highly pathogenic H5N1 influenza virus infection in humans.  相似文献   

13.
14.
对流感病毒14个血凝素亚型的基因芯片检测技术进行了初步研究。通过RT-PCR克隆禽流感病毒血凝素基因片段,获得重组质粒。从重组质粒扩增大约500bp的DNA片段,浓缩后点到氨基化玻璃载体上,制成芯片。待检病毒样品用TRIzolLS提取RNA,反转录过程中用Cy5标记样品cDNAs。将标记样品与芯片杂交,扫描芯片上待检样品与芯片上捕捉探针的结合位点,杂交信号与预期设想一致。结果显示,DNA芯片技术可以提供一种有效的AIV血凝素亚型鉴别诊断方法。  相似文献   

15.
Bao Y  Guo Y  Zhang L  Zhao Z  Li N 《Molecular biology reports》2012,39(3):2515-2522
With the ultimate aim of producing an RNA interference-mediated transgenic pig that is resistant to porcine reproductive and respiratory syndrome virus (PRRSV), we have investigated the effect of RNA interference (RNAi) on silencing the expression of viral genes in the MARC-145 cell line. Twenty small interfering RNAs (siRNAs) were designed and screened for their ability to suppress the expression of the genes ORF1b, 5, 6, and 7 from the highly virulent isolate, PRRSV-JXwn06. Of these siRNAs, the four most effective were selected and four short hairpin RNA (shRNA) expression vectors (pGenesil-1-1b-135, pGenesil-1-1b-372, pGenesil-1-6-135, and pGenesil-1-6-169) targeting ORF1b and ORF6 were constructed and delivered into MARC-145 cells. These cells were then infected with JXwn06. All four vectors inhibited the PRRSV-specific cytopathic effect (CPE). The virus titers in cells transfected with pGenesil-1-1b-135, pGenesil-1-1b-372, pGenesil-1-6-135, and pGenesil-1-6-169 were lower than that of control cells by approximately 150-, 600-, 2.3- and 1.7-fold, respectively. In addition, the expression levels of ORF1 and ORF6 were reduced compared with controls. The unglycosylated membrane protein M, encoded by ORF6, was not detectable in cells transfected with shRNA expression vectors. These results verified that RNAi can effectively inhibit PRRSV-JXwn06 replication in cultured cells in vitro. The four shRNA expression vectors are an initial step in the production of transgenic pigs with PRRSV resistance.  相似文献   

16.
Infection of poultry with highly pathogenic avian influenza virus (AIV) can be devastating in terms of flock morbidity and mortality, economic loss, and social disruption. The causative agent is confined to certain isolates of influenza A virus subtypes H5 and H7. Due to the potential of direct transfer of avian influenza to humans, continued research into rapid diagnostic tests for influenza is therefore necessary. A nucleic acid sequence-based amplification (NASBA) method was developed to detect a portion of the haemagglutinin gene of avian influenza A virus subtypes H5 and H7 irrespective of lineage. A further NASBA assay, based on the matrix gene, was able to detect examples of all known subtypes (H1-H15) of avian influenza virus. The entire nucleic acid isolation, amplification, and detection procedure was completed within 6h. The dynamic range of the three AIV assays was five to seven orders of magnitude. The assays were sensitive and highly specific, with no cross-reactivity to phylogenetically or clinically relevant viruses. The results of the three AIV NASBA assays correlated with those obtained by viral culture in embryonated fowl's eggs.  相似文献   

17.
RNA interference (RNAi) provides a powerful new means to inhibit viral infection specifically. However, the selection of siRNA-resistant viruses is a major concern in the use of RNAi as antiviral therapeutics. In this study, we conducted a lentiviral vector with a H1-short hairpin RNA (shRNA) expression cassette to deliver small interfering RNAs (siRNAs) into mammalian cells. Using this vector that also expresses enhanced green fluorescence protein (EGFP) as surrogate marker, stable shRNA-expressing cell lines were successfully established and the inhibition efficiencies of rationally designed siRNAs targeting to conserved regions of influenza A virus genome were assessed. The results showed that a siRNA targeting influenza M2 gene (siM2) potently inhibited viral replication. The siM2 was not only effective for H1N1 virus but also for highly pathogenic avian influenza virus H5N1. In addition to its M2 inhibition, the siM2 also inhibited NP mRNA accumulation and protein expression. A long term inhibition effect of the siM2 was demonstrated and the emergence of siRNA-resistant mutants in influenza quasispecies was not observed. Taken together, our study suggested that M2 gene might be an optimal RNAi target for antiviral therapy. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for human influenza virus infection.  相似文献   

18.
The hemagglutinin (HA) and neuraminidase (NA) genes of H7 avian influenza virus (AIV) isolated between 1994 and 2002 from live-bird markets (LBMs) in the northeastern United States and from three outbreaks in commercial poultry have been characterized. Phylogenetic analysis of the HA and NA genes demonstrates that the isolates from commercial poultry were closely related to the viruses circulating in the LBMs. Also, since 1994, two distinguishing genetic features have appeared in this AIV lineage: a deletion of 17 amino acids in the NA protein stalk region and a deletion of 8 amino acids in the HA1 protein which is putatively in part of the receptor binding site. Furthermore, analysis of the HA cleavage site amino acid sequence, a marker for pathogenicity in chickens and turkeys, shows a progression toward a cleavage site sequence that fulfills the molecular criteria for highly pathogenic AIV.  相似文献   

19.
禽流感特异性转移因子的制备及其免疫作用   总被引:3,自引:0,他引:3  
目的制备禽流感病毒特异性转移因子并探讨其对禽流感灭活疫苗的免疫增效作用。方法用禽流感病毒H5N1血清亚型灭活疫苗免疫鸡,用国标血凝抑制方法检测病毒特异性血凝抑制抗体效价。当抗体效价达到高峰时,翅静脉采取外周血,分离淋巴细胞并制备细胞单层、传代后获得禽流感病毒H5N1血清亚型特异性转移因子。用所获得的特异性转移因子进行疫苗免疫增效试验。结果采用本法可获得禽流感病毒特异性转移因子。免疫增效试验表明,在进行禽流感病毒灭活疫苗免疫的同时使用禽流感病毒特异性转移因子,可在一定幅度内提高禽流感病毒抗体水平并能延长抗体维持时间。不同给药途径比较试验表明,口服途径给药的疫苗增效作用优于注射途径给药。结论通过淋巴细胞体外培养可以制备禽流感病毒特异性转移因子。禽流感病毒H5N1血清亚型特异性转移因子对禽流感病毒灭活疫苗具有明显的增效作用,且口服途径给药的疫苗免疫增效作用优于注射途径给药。  相似文献   

20.
An H7N3 avian influenza virus (AIV) was isolated from a Cinnamon Teal (Anas cyanoptera) (A/CinnamonTeal/Bolivia/4537/01) during a survey of wild waterfowl in Bolivia in 2001. The NA and M genes had the greatest identity with North American wild bird isolates, the NS was most closely related to an equine virus, and the remaining genes were most closely related to isolates from an outbreak of H7N3 in commercial poultry in Chile in 2002. The HA protein cleavage site and the results of pathogenesis studies in chickens were consistent with a low-pathogenicity virus, and the infective dose was 10(5) times higher for chickens than turkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号