首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The samples of water and bottom sediments of the East Siberian and Chukchi Seas collected during the second Russian-American RUSALCA expedition were used to analyze patterns of the isotopic composition of carbon in the organic matter (OM) of suspended material (SOM) and bottom sediments (BOM). Similar to other marine environments, the SOM isotopic composition depended on the ratio between the terrigenous and planktonic OM, both in the water body as a whole and in its parts. Thus, in the East Siberian Sea the carbon of SOM was poorer in 13C (??13C = ?24.51??) than the open part of the more productive Chukchi Sea (??13C = ?22.16??). In the less productive coastal waters of the Chukchi Sea, the ratio of terrigenous OM increased, resulting in a ??13C shift to lower values (?23.40??). Due to the influx of reduced products of anaerobic diagenesis of the sediments, elevated total number of microorganisms and dark CO2 fixation were found in the near-bottom water at the water-sediment biogeochemical barrier. The newly formed biomass of autotrophic microorganisms shifted the carbon isotopic composition of the near-bottom suspended material to more positive ??13C values, with the average values of ?23.39 and ?20.37?? for the East Siberian and Chukchi Sea, respectively. Changes in the carbon isotopic composition of OM resulting from microbial activity continued in the upper sediment layers. When the rate of biomass synthesis increased that of biomass consumption, the 13C content increased further. At higher rates of OM mineralization, 12C accumulated in its remaining part.  相似文献   

2.
The Upper Cretaceous Coon Creek Lagerstätte of Tennessee, USA, is known for its extremely well‐preserved mollusks and decapod crustaceans. However, the depositional environment of this unit, particularly its distance to the shoreline, has long been equivocal. To better constrain the coastal proximity of the Coon Creek Formation, we carried out a multiproxy geochemical analysis of fossil decapod (crab, mud shrimp) cuticle and associated sediment from the type section. Elemental analysis and Raman spectroscopy confirmed the presence of kerogenized carbon in the crabs and mud shrimp; carbon isotope (δ13C) analysis of bulk decapod cuticle yielded similar mean δ13C values for both taxa (?25.1‰ and ?26‰, respectively). Sedimentary biomarkers were composed of n‐alkanes from C16 to C36, with the short‐chain n‐alkanes dominating, as well as other biomarkers (pristane, phytane, hopanes). Raman spectra and biomarker thermal maturity indices suggest that the Coon Creek Formation sediments are immature, which supports retention of unaltered, biogenic isotopic signals in the fossil organic carbon remains. Using our isotopic results and published calcium carbonate δ13C values, we modeled carbon isotope values of carbon sources in the Coon Creek Formation, including potential marine (phytoplankton) and terrestrial (plant) dietary sources. Coon Creek Formation decapod δ13C values fall closer to those estimated for terrigenous plants than marine phytoplankton, indicating that these organisms were feeding primarily on terrigenous organic matter. From this model, we infer that the Coon Creek Formation experienced significant terrigenous organic matter input via a freshwater source and thus was deposited in a shallow, nearshore marine environment proximal to the shoreline. This study helps refine the paleoecology of nearshore settings in the Mississippi Embayment during the global climatic shift in the late Campanian–early Maastrichtian and demonstrates for the first time that organic δ13C signatures in exceptionally preserved fossil marine arthropods are a viable proxy for use in paleoenvironmental reconstructions.  相似文献   

3.
At ten stations of the meridian profile in the eastern Kara Sea from the Yenisei estuary through the shallow shelf and further through the St. Anna trough, total microbial numbers (TMN) determined by direct counting, total activity of the microbial community determined by dark CO2 assimilation (DCA), and the carbon isotopic composition of organic matter in suspension and upper sediment horizons (δ13C, ‰) were investigated. Three horizons were studied in detail: (1) the near-bottom water layer (20–30 cm above the sediment); (2) the uppermost, strongly hydrated sediment horizon, further termed fluffy layer (5–10 mm); and (3) the upper sediment horizon (1–5 cm). Due to a decrease in the amount of isotopically light carbon of terrigenous origin with increasing distance from the Yenisei estuary, the TMN and DCA values decreased, and the δ13C changed gradually from ?29.7 to ?23.9‰. At most stations, a noticeable decrease in TMN and DCA values with depth was observed in the water column, while the carbon isotopic composition of suspended organic matter did not change significantly. Considerable changes of all parameters were detected in the interface zone: TMN and DCA increased in the sediments compared to their values in near-bottom water, while the 13C content increased significantly, with δ13C of organic matter in the sediments being at some stations 3.5–4.0‰ higher than in the near-bottom water. Due to insufficient illumination in the near-bottom zone, newly formed isotopically heavy organic matter (δ13C ~ ?20‰) could not be formed by photosynthesis; active growth of chemoautotrophic microorganisms in this zone is suggested, which may use reduced sulfur, nitrogen, and carbon compounds diffusing from anaerobic sediments. High DCA values for the interface zone samples confirm this hypothesis. Moreover, neutrophilic sulfur-oxidizing bacteria were retrieved from the samples of this zone.  相似文献   

4.
Most studies on Arctic food webs have neglected microphytobenthos as a potential food source because we currently lack robust measurements of δ13C values for microphytobenthos from this environment. As a result, the role of microphytobenthos in high latitude marine food webs is not well understood. We combined field measurements of the concentration of aqueous carbon dioxide and the stable carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) from bottom water in the Beaufort and Chukchi seas with a set of stable carbon isotopic fractionation factors reflecting differences in algal taxonomy and physiology to estimate the stable carbon isotope composition of microphytobenthos-derived total organic carbon (δ13Cp). The δ13Cp for Phaeodactylum tricornutum, a pennate diatom likely to be a dominant microphytobenthos taxon, was estimated to be ?23.9 ± 0.4 ‰ as compared to a centric diatom (Porosira glacialis, δ13Cp = ?20.0 ± 1.6 ‰) and a marine haptophyte (Emiliana huxleyi, δ13Cp = ?22.7 ± 0.5 ‰) at a growth rate (µ) of 0.1 divisions per day (d?1). δ13Cp values increased by ~2.5 ‰ when µ increased from 0.1 to a maximum growth rate of 1.4 d?1. We compared our estimates of δ13Cp values for microphytobenthos with published measurements for other carbon sources in the Arctic and sub-Arctic. We found that microphytobenthos values overlapped with pelagic sources, yet differed from riverine and ice-derived carbon sources. These model results provide valuable insight into the range of possible isotopic values for microphytobenthos from this region, but we remain cautious in regard to the conclusiveness of these findings given the paucity of field measurements currently available for model validation.  相似文献   

5.

Stable carbon (C) and nitrogen (N) isotope ratios of sedimentary organic matter (OM) can reflect the biogeochemical history of aquatic ecosystems. However, diagenetic processes in sediments may alter isotope records of OM via microbial activity and preferential degradation of isotopically distinct organic components. This study investigated the isotope alteration caused by preferential degradation in surface sediments sampled from a eutrophic reservoir in Germany. Sediments were treated sequentially with hot water extraction, hydrochloric acid hydrolysis, hydrogen peroxide oxidation and di-sodium peroxodisulfate oxidation to chemically simulate preferential degradation pathways of sedimentary OM. Residue and extracts from each extraction step were analyzed using elemental analyzer-isotope ratio mass spectrometry and solid-state 13C nuclear magnetic resonance spectroscopy. Our results show that stable C and N isotope ratios reacted differently to changes in the biochemical composition of sedimentary OM. Preferential degradation of proteins and carbohydrates resulted in a 1.2‰ depletion of 13C, while the isotope composition of 15N remained nearly the same. Sedimentary δ15N values were notably altered when lignins and lipids were oxidized from residual sediments. Throughout the sequential fractionation procedure, δ13C was linearly correlated with the C:N of residual sediments. This finding demonstrates that changes in biochemical composition caused by preferential degradation altered δ13C values of sedimentary OM, while this trend was not observed for δ15N values. Our study identifies the influence of preferential degradation on stable C isotope ratios and provide additional insight into the isotope alteration caused by post-depositional processes.

  相似文献   

6.
A common assumption in paleoenvironmental reconstructions using soils is that the carbon isotope composition of soil-respired CO2 is equivalent to the carbon isotope composition of bulk soil organic matter (SOM). However, the occurrence of a non-zero per mil carbon isotope enrichment factor between CO2 and SOM (\(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\)) during soil respiration is the most widely accepted explanation for the down-profile increase in SOM δ13C values commonly observed in well-drained soils. In order to shed light on this apparent discrepancy, we incubated soil samples collected from the top 2 cm of soils with pure C3 vegetation and compared the δ13C values of soil-respired CO2 to the δ13C values of bulk SOM. Our results show near-zero \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values (?0.3 to 0.4 ‰), supporting the use of paleosol organic matter as a proxy for paleo soil-respired CO2. Significantly more negative \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values are required to explain the typical δ13C profiles of SOM in well-drained soils. Therefore our results also suggest that typical SOM δ13C profiles result from either (1) a process other than carbon isotope fractionation between CO2 and SOM during soil respiration or (2) \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values that become increasingly negative as SOM matures.  相似文献   

7.
Geochemical, biogeochemical, and molecular genetic investigation of the upper (0–5 cm) bottom sediments of the Yamal sector of the Kara Sea was carried out. The Yamal sector is well-protected from the massive inflow of river water. The sediments were oxidized at the surface and weakly reduced in the 3?5-cm layer. Corg content varied from 0.1 to 1.3%, while the level of dissolved СН4 was 1.9 to 20.3 μmol L–1. The isotopic composition of organic matter (OM) carbon, δ13Corg, varied from–27.5 to–22.2‰ (–25.4‰ on average). The share of terrigenous OM was 13.3 to 72.2% (48.9% on average). The rate of methane production, methane oxidation, and sulfate reduction varied from 0.8 to 9.0 (2.7 on average) nmol СН4 dm–3 day–1, from 9.9 to 103 (31.6 on average) nmol СН4 dm–3 day–1, and from 0.49 to 2.2 (1.1 on average) μmol S dm–3 day–1, respectively. High-throughput sequencing of the amplicons of the 16S rRNA genes was used to reveal the physiological groups of microorganisms responsible for the processes of methane production and oxidation, sulfate reduction, and oxidation of reduced sulfur compounds. Members of the phylum Woesearchaeota were predominant among archaea. Methanogenic archaea belonged to the families Methanobacteriaceae, Methanococcaceae, and Methanosarcinaceae (Euryarchaeota). Methanotrophs of the family Methylococcaceae were revealed among the Gammaproteobacteria, with their share in the sediments ~1%. In the class Deltaproteobacteria (15.4%), three orders of sulfate reducers were predominant: Desulfobacterales, Desulfovibrionales, and Desulfuromonadales. Oxidation of reduced sulfur compounds was carried out by chemolithoautotrophic bacteria of the genera Sulfurovum, Sulfurimonas, and Arcobacter of the class Epsilonproteobacteria (1.1% of the total microbial number).  相似文献   

8.
Marine sediments of the Ross Sea, Antarctica, harbor microbial communities that play a significant role in the decomposition, mineralization, and recycling of organic carbon (OC). In this study, the cell densities within a 153‐cm sediment core from the Ross Sea were estimated based on microbial phospholipid fatty acid (PLFA) concentrations and acridine orange direct cell counts. The resulting densities were as high as 1.7 × 107 cells mL?1 in the top ten centimeters of sediments. These densities are lower than those calculated for most near‐shore sites but consistent with deep‐sea locations with comparable sedimentation rates. The δ13C measurements of PLFAs and sedimentary and dissolved carbon sources, in combination with ribosomal RNA (SSU rRNA) gene pyrosequencing, were used to infer microbial metabolic pathways. The δ13C values of dissolved inorganic carbon (DIC) in porewaters ranged downcore from ?2.5‰ to ?3.7‰, while δ13C values for the corresponding sedimentary particulate OC (POC) varied from ?26.2‰ to ?23.1‰. The δ13C values of PLFAs ranged between ?29‰ and ?35‰ throughout the sediment core, consistent with a microbial community dominated by heterotrophs. The SSU rRNA gene pyrosequencing revealed that members of this microbial community were dominated by β‐, δ‐, and γ‐Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Among the sequenced organisms, many appear to be related to known heterotrophs that utilize OC sources such as amino acids, oligosaccharides, and lactose, consistent with our interpretation from δ13CPLFA analysis. Integrating phospholipids analyses with porewater chemistry, δ13CDIC and δ13CPOC values and SSU rRNA gene sequences provides a more comprehensive understanding of microbial communities and carbon cycling in marine sediments, including those of this unique ice shelf environment.  相似文献   

9.
Archived soils can provide valuable information about changes in the carbon and carbon isotope content of soils during the past century. We characterized soil carbon dynamics in a Russian steppe preserve using a 100‐year‐old‐soil archive and modern samples collected from the same site. The site has been protected since 1885 to the present, during which time the region has experienced widespread conversion to cultivation, a decrease in fire frequency, and a trend of increasing precipitation. In the preserve, the amount of organic carbon did not change appreciably between the 1900 and 1997 sampling dates, with 32 kg C/m2 in the top meter and a third of that in the top 20 cm. Carbon and nitrogen stocks varied by less than 6% between two replicate modern soil pits or between the modern sites and the archive. Radiocarbon content decreased with depth in all sites and the modern SOM had positive Δ values near the surface due to nuclear weapons testing in the early 1960s. In the upper 10 cm, most of the SOM had a turnover time of 6–10 years, according to a model fit to the radiocarbon content. Below about 10 cm, the organic matter was almost all passive material with long (millennial) turnover times. Soil respiration Δ14CO2 on a summer day was 106–109‰, an isotopic disequilibrium of about 9‰ relative to atmospheric 14CO2. In both the modern and archive soil, the relative abundance of 13C in organic matter increased with depth by 2‰ in the upper meter from δ13C = ‐‐26‰ at 5 cm to ‐‐24‰ below a meter. In addition, the slope of δ13C vs. depth below 5 cm was the same for both soils. Given the age of the soil archive, these results give clear evidence that the depth gradients are not due to depletion of atmospheric 13CO2 by fossil fuel emissions but must instead be caused by isotopic fractionation between plant litter inputs and preservation of SOM. Overall, the data show that these soils have a large reservoir of recalcitrant C and stocks had not changed between sampling dates 100 years apart.  相似文献   

10.
Photosynthetic activity in carbonate‐rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ13CDIC values up to +6.0‰ above predicted carbon dioxide (CO2) equilibrium values, representing a biosignature of photosynthesis. Mat‐associated δ13Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ13C values reflected the balance between photosynthetic 13C‐enrichment and heterotrophic inputs of 13C‐depleted DIC. Mat microelectrode profiles identified oxic zones where δ13Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ13Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of 13C‐depleted DIC. δ13C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ13Corg values ranged from ?18.7 ± 0.1 to ?25.3 ± 1.0‰ with mean Δ13Cinorg‐org values ranging from 21.1 to 24.2‰, consistent with non‐CO2‐limited photosynthesis, suggesting that Precambrian δ13Corg values of ~?26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non‐limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic‐rich and hot spring microbial mats.  相似文献   

11.
Like many other coastal systems across the world, the Coorong lagoonal ecosystem (South Australia) has degraded over the last 100 years; in this case as a result of extensive regulation and diversions of water across the Murray-Darling Basin following European settlement. To evaluate whether the sources of organic matter (OM) supporting its food-web have changed since the inception of water management and barrage construction, sedimentary OM was characterised in cores spanning the Coorong’s salinity gradient at depths representative of the last 100 years over which the management alterations to river and estuarine flow were most marked. Detailed 210Pb, 137Cs and Pu dating in conjunction with palaeolimnological data (Pinus pollen) allowed for the reconstruction of the timing of substantial changes observed in the composition of the OM, most of which occur during the early 1950s, concurrent with management-related variations in water flow and salinity. Negative shifts in δ13C of up to 8.3‰ in the 2–10 and <2 μm fractions after the 1950s suggest a pronounced alteration in biogeochemical cycling or in the origin of OM. Elemental ratios and δ13C values of potential sources are inconclusive as to the cause of these biogeochemical changes. However, 13C-NMR spectra of the sediments suggest that degraded phytoplankton constitutes a large proportion of today’s OM and also reveal that an OM source rich in lignin was present prior to the 1950s. The high δ13C (?18.3‰) and low C/N (7.5) signatures of the lignin-bearing sediments are inconsistent with a C3 terrestrial OM source and instead suggest that the lignin-bearing seagrass Ruppia megacarpa13C of ?13‰) contributed to a large degree to the sediment of the North Lagoon. R. megacarpa once was abundant in the North Lagoon but today has all but vanished from the system. Thus, only through a combination of isotopic and spectroscopic techniques was it possible to effectively decipher the changes in the composition of OM deposited throughout the Coorong over space and time. These results have important implications for research in estuarine OM dynamics in other geographic locations. Specifically, utilising complementary analytical techniques may sometimes be essential in reliably determining OM sources and processes in estuaries and lagoons.  相似文献   

12.
Large magnitude (>10‰) carbon‐isotope (δ13C) excursions recorded in carbonate‐bearing sediments are increasingly used to monitor environmental change and constrain the chronology of the critical interval in the Neoproterozoic stratigraphic record that is timed with the first appearance and radiation of metazoan life. The ~10‰ Bitter Springs Anomaly preserved in Tonian‐aged (1000–720 Ma) carbonate rocks in the Amadeus Basin of central Australia has been offered as one of the best preserved examples of a primary marine δ13C excursion because it is regionally reproducible and δ13C values covary in organic and carbonate carbon arguing against diagenetic exchange. However, here we show that δ13C values defining the excursion coincide with abrupt lithofacies changes between regularly cyclic grainstone and microbial carbonates, and desiccated red bed mudstones with interbedded evaporite and dolomite deposits, recording local environmental shifts from restricted marine conditions to alkaline lacustrine and playa settings that preserve negative (?4‰) and positive (+6‰) δ13C values, respectively. The stratigraphic δ13C pattern in both organic and carbonate carbon recurs within the basin in a similar way to associated sedimentary facies, reflecting the linkage of local paleoenvironmental conditions and δ13C values. These local excursions may be time transgressive or record a relative sea‐level influence manifest through exposure of sub‐basins isolated by sea‐level fall below shallow sills, but are independent of secular seawater variation. As the shallow intracratonic setting of the Bitter Springs Formation is typical of other Neoproterozoic carbonate successions used to construct the present δ13C seawater record, it identifies the potential for local influences on δ13C excursions that are neither diagenetic nor representative of the global exogenic cycle.  相似文献   

13.
Microbial mats that inhabit gypsum deposits in ponds at Guerrero Negro, Baja California Sur, Mexico, developed distinct pigmented horizons that provided an opportunity to examine the fixation and flow of carbon through a trophic structure and, in conjunction with previous phylogenetic analyses, to assess the diagenetic fates of molecular δ13C biosignatures. The δ13C values of individual biomarker lipids, total carbon, and total organic carbon (TOC) were determined for each of the following horizons: tan‐orange (TO) at the surface, green (G), purple (P), and olive‐black (OB) at the bottom. δ13C of individual fatty acids from intact polar lipids (IPFA) in TO were similar to δ13C of dissolved inorganic carbon (DIC) in the overlying water column, indicating limited discrimination by cyanobacteria during CO2 fixation. δ13CTOC of the underlying G was 3‰ greater than that of TO. The most δ13C‐depleted acetogenic lipids in the upper horizons were the cyanobacterial biomarkers C17 n‐alkanes and polyunsaturated fatty acids. Bishomohopanol was 4 to 7‰ enriched, relative to alkanes and intact polar fatty acids (IPFA), respectively. Acyclic C20 isoprenoids were depleted by 14‰ relative to bishomohopanol. Significantly, ?[δ13CTOC ? δ13C∑IPFA] increased from 6.9‰ in TO to 14.7‰ in OB. This major trend might indicate that 13C‐enriched residual organic matter accumulated at depth. The permanently anoxic P horizon was dominated by anoxygenic phototrophs and sulfate‐reducing bacteria. P hosted an active sulfur‐dependent microbial community. IPFA and bishomohopanol were 13C‐depleted relative to upper crust by 7 and 4‰, respectively, and C20 isoprenoids were somewhat 13C‐enriched. Synthesis of alkanes in P was evidenced only by 13C‐depleted n‐octadecane and 8‐methylhexadecane. In OB, the marked increase of total inorganic carbon δ13C (δ13CTIC) of >6‰ perhaps indicated terminal mineralization. This δ13CTIC increase is consistent with degradation of the osmolyte glycine betaine by methylotrophic methanogens and loss of 13C‐depleted methane from the mat.  相似文献   

14.
1. Methanogenic carbon can be incorporated by methane‐oxidising bacteria, leading to a 13C‐depleted stable carbon isotopic composition (δ13C) of chironomids that feed on these microorganisms. This has been shown for the chironomid tribe Chironomini, but very little information is available about the δ13C of other abundant chironomid groups and the relationship between chironomid δ13C and methane production in lakes. 2. Methane flux was measured at the water surface of seven lakes in Sweden. Furthermore, fluxes from the sediments to the water column were measured in transects in two of the lakes. Methane fluxes were then compared with δ13C of chitinous chironomid remains isolated from the lake surface sediments. Several different chironomid groups were examined (Chironomini, Orthocladiinae, Tanypodinae and Tanytarsini). 3. Remains of Orthocladiinae in the seven study lakes had the highest δ13C values (?31.3 to ?27.0‰), most likely reflecting δ13C of algae and other plant‐derived organic matter. Remains of Chironomini and Tanypodinae had lower δ13C values (?33.2 to ?27.6‰ and ?33.6 to ?28.0‰, respectively). A significant negative correlation was observed between methane fluxes at the lake surface and δ13C of Chironomini (r = ?0.90, P = 0.006). Methane release from the sediments was also negatively correlated with δ13C of Chironomini (r = ?0.67, P = 0.025) in the transect samples obtained from two of the lakes. The remains of other chironomid taxa were only weakly or not correlated with methane fluxes measured in our study lakes (P > 0.05). 4. Selective incorporation of methane‐derived carbon can explain the observed correlations between methane fluxes and δ13C values of Chironomini. Remains of this group might therefore have the potential to provide information about past changes in methane availability in lakes using sediment records. However, differences in productivity, algal δ13C composition and the importance of allochthonous organic matter input between the studied lakes may also have influenced Chironomini δ13C. More detailed studies with a higher number of analysed samples and detailed measurement of δ13C of different ecosystem components (e.g. methane, dissolved inorganic carbon) will be necessary to further resolve the relative contribution of different carbon sources to δ13C of chironomid remains.  相似文献   

15.
Dissolved and particulate organic matter (POM) of three Quebec boreal reservoirs of different ages (Laforge-1, 7 years; Robert-Bourassa, 25 years and Cabonga, 70 years at the time of sampling) and sets of lakes from the same watersheds was analyzed using organic carbon concentrations, C/N and C/P elemental composition, δ13C and δ15N isotopic values. The reservoirs are characterized by lower dissolved organic carbon concentrations with lower C/N ratios and by lower δ13C and higher δ15N in POM. They contain more autochthonous dissolved organic matter and less terrigenous organic matter than the lakes. Some of those characteristics are more pronounced in the younger than in the older reservoirs. The differences can be attributed to two causes: (1) more extended degradation of terrigenous organic matter, caused by an increase in residence time; and (2) differences in food web structure resulting from the phenomenon known as trophic upsurge, in newly flooded reservoirs. The results indicate that some effects of reservoir creation on the carbon cycle are short term perturbations, others however long term features of those reservoirs. The implications of these findings for CO2 emissions from reservoirs are discussed.  相似文献   

16.
Manifestations of profound perturbations in biogeochemical systems during the Paleocene-Eocene thermal maximum (PETM) include a prominent global negative δ13C and a pronounced increase in the relative abundance of dinoflagellate cysts (dinocysts) assigned to the genus Apectodinium. While motile representatives of Apectodinium were most likely thermophilic and heterotrophic, the underlying causes of this dinoflagellate response are not well understood. Here we provide new insight by examining the palynology, chemistry and calcareous nannoplankton across the PETM in a continental slope section at Tawanui, New Zealand. Across the PETM, marked changes in the relative abundance of Apectodinium vary antithetically with significant changes in the δ13C of carbonate and organic matter. In general, the high relative abundance of Apectodinium relates to enhanced concentrations of dinocysts, signifying a ‘bloom’ of Apectodinium in surface waters during the PETM. Changes in Apectodinium and δ13C records correspond to variations in many other parameters, including a smaller negative shift in bulk carbonate δ13C than expected, increased terrestrial palynomorphs, elevated TOC and C/N ratios, lower carbonate contents, higher SiO2 and Al2O3 contents, and lower Si/Al ratios. All of these variations can be explained by an increase in delivery of terrigenous material to the continental margin. A peak in the relative abundance of Glaphyrocysta dinocysts at the onset of the PETM may indicate greater down slope transport of neritic material. Changes in calcareous nannoplankton abundances suggest increased nutrient availability in surface waters during the PETM. The combined results show that Apectodinium-dominated assemblages, global perturbations in carbon isotopes and enhanced terrigenous delivery closely correspond in time at Tawanui. A sudden and massive carbon injection to the ocean-atmosphere system may have enhanced weathering and increased terrigenous inputs to continental margins during the PETM. We further suggest that these inputs caused the Apectodinium acme by elevating primary productivity in marginal seas.  相似文献   

17.
Carbon isotopic composition of predominantly marine kerogen in latest Oligocene mudstones of the Peru Margin ODP 682A Hole shows an about 3.5‰ increase with decreasing age. Py-GC and elemental (C/N ratio) analysis of the kerogen plus sulphur isotopic study together with earlier knowledge on geological setting and organic geochemistry results in a better understanding of depositionary environment and allows to separation of the influence of concentration of water dissolved carbon dioxide (ce) on kerogen δ13C from that of other factors (bacterial degradation, sea surface temperature, DIC δ13C, productivity, and admixture of land plant OM). Based on this analysis, the major part of the kerogen shift is considered as a result of the latest Oligocene decrease of marine photosynthetic carbon isotopic fractionation in the Peru Margin photic zone, which in turn possibly reflects a simultaneous drop in atmospheric CO2 level. Uncertainties in the evaluation of the factors affecting the marine photosynthetic carbon isotopic fractionation and the extent of ocean–atmosphere disequilibrium do not permit calculation of the decrease of the atmospheric CO2.  相似文献   

18.
The δ15N and δ13C signatures of major organic matter (OM) pools were measured across chemical and hydrologic gradients in a large (58,800 ha) subtropical wetland to evaluate whether stable isotopes were useful indicators of environmental change. Once a rainfall-driven wetland, the Loxahatchee National Wildlife Refuge in the Florida Everglades now receives agricultural and urban drainage that has increased phosphorus (P) and mineral loads around the wetland perimeter. Additionally, water impoundment at the southern end has produced a latitudinal hydrologic gradient, with extended hydroperiods in the south and overdrained conditions in the north.Detritus (?4.8‰ to 8.6‰), floc (?1.4‰ to 3.6‰), and metaphyton (?6.6‰ to +7.4‰) δ15N declined southward with changes in hydrology as indicated by water depth. This pattern was attributed to higher mineralization rates under shorter hydroperiods. These signatures were also strongly correlated with increased nutrient and mineral loading. Rooted macrophyte δ15N, by contrast, appeared more responsive to soil nutrient pools. Cattail (?8.9‰ to +7.7‰) was restricted to the wetland perimeter and had the widest δ15N range, which was positively correlated with soil P. Sawgrass (?5.3‰ to +7.7‰) occurred across most of the wetland, but its δ15N was not strongly correlated to any gradient. Patterns for δ13C were more strongly related to chemical gradients caused by canal intrusion than to latitude or hydrology. Again, metaphyton and detrital signatures were more sensitive to water chemistry changes than macrophytes. This pattern is consistent with their locations at the soil–water (detritus-floc), and air–water (metaphyton) interface. Metaphyton δ13C (?36.1‰ to ?21.5‰) which had the broadest range, was affected by DIC source and pool size. In contrast, cattail δ13C (?28.7‰ to ?26.4‰) was more closely related to soil P and sawgrass δ13C (?30.1‰ to ?24.5‰) was not related to any environmental gradient except latitude. There was no correlation between the two isotopes for any OM pool except cattail.These results indicate that isotopic signatures of microbial (metaphyton and detrital) pools are more responsive to changes in wetland hydrology and water chemistry while those of rooted macrophytes respond only to the extent that soil chemistry is altered. Rooted macrophytes also differ in the sensitivity of their isotopic signatures to environmental change. The selection of OM pools for isotopic analysis will, therefore, affect the sensitivity of the analysis and the resulting patterns. Furthermore, δ15N may be more robust and interpretable than δ13C as an indicator of ecosystem change in wetlands exposed to multiple or complex anthropogenic gradients.  相似文献   

19.
20.
Organic carbon rich rocks in the c. 2.0 Ga Zaonega Formation (ZF), Karelia, Russia, preserve isotopic characteristics of a Paleoproterozoic ecosystem and record some of the oldest known oil generation and migration. Isotopic data derived from drill core material from the ZF show a shift in δ13Corg from c. ?25‰ in the lower part of the succession to c. ?40‰ in the upper part. This stratigraphic shift is a primary feature and cannot be explained by oil migration, maturation effects, or metamorphic overprints. The shift toward 13C‐depleted organic matter (δ13Corg < ?25‰) broadly coincides with lithological evidence for the generation of oil and gas in the underlying sediments and seepage onto the sea floor. We propose that the availability of thermogenic CH4 triggered the activity of methanotrophic organisms, resulting in the production of anomalously 13C‐depleted biomass. The stratigraphic shift in δ13Corg records the change from CO2‐fixing autotrophic biomass to biomass containing a significant contribution from methanotrophy. It has been suggested recently that this shift in δ13Corg reflects global forcing and progressive oxidation of the Earth. However, the lithologic indication for local thermogenic CH4, sourced within the oil field, is consistent with basinal methanotrophy. This indicates that regional/basinal processes can also explain the δ13Corg negative isotopic shift observed in the ZF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号