首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were -470 mV for the 13-cis configuration of the retinal Shiff base in bR and -757 mV for the all-trans configuration in H(2)O, and -433 mV for the 13-cis configuration and -742 mV for the all-trans configuration in D(2)O. The solvent isotope effect (DeltaV=V(D(2)O)-V(H(2)O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated C=N part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were -507 mV for the 13-cis configuration and -788 mV for the all-trans configuration; and for the E204Q mutant they were -491 mV for the 13-cis configuration and -769 mV for the all-trans configuration. Replacement of the Glu(194) or Glu(204) residues by Gln weakened the electron withdrawing interaction to the protonated C=N bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were -471 mV for the 13-cis configuration and -760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the C=N part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

2.
B Roux  M Nina  R Pomès    J C Smith 《Biophysical journal》1996,71(2):670-681
The proton transfer activity of the light-driven proton pump, bacteriorhodopsin (bR) in the photochemical cycle might imply internal water molecules. The free energy of inserting water molecules in specific sites along the bR transmembrane channel has been calculated using molecular dynamics simulations based on a microscopic model. The existence of internal hydration is related to the free energy change on transfer of a water molecule from bulk solvent into a specific binding site. Thermodynamic integration and perturbation methods were used to calculate free energies of hydration for each hydrated model from molecular dynamics simulations of the creation of water molecules into specific protein-binding sites. A rigorous statistical mechanical formulation allowing the calculation of the free energy of transfer of water molecules from the bulk to a protein cavity is used to estimate the probabilities of occupancy in the putative bR proton channel. The channel contains a region lined primarily by nonpolar side-chains. Nevertheless, the results indicate that the transfer of four water molecules from bulk water to this apparently hydrophobic region is thermodynamically permitted. The column forms a continuous hydrogen-bonded chain over 12 A between a proton donor, Asp 96, and the retinal Schiff base acceptor. The presence of two water molecules in direct hydrogen-bonding association with the Schiff base is found to be strongly favorable thermodynamically. The implications of these results for the mechanism of proton transfer in bR are discussed.  相似文献   

3.
M Nina  B Roux    J C Smith 《Biophysical journal》1995,68(1):25-39
The light-driven proton pump, bacteriorhodopsin (bR) contains a retinal molecule with a Schiff base moiety that can participate in hydrogen-bonding interactions in an internal, water-containing channel. Here we combine quantum chemistry and molecular mechanics techniques to determine the geometries and energetics of retinal Schiff base-water interactions. Ab initio molecular orbital calculations are used to determine potential surfaces for water-Schiff base hydrogen-bonding and to characterize the energetics of rotation of the C-C single bond distal and adjacent to the Schiff base NH group. The ab initio results are combined with semiempirical quantum chemistry calculations to produce a data set used for the parameterization of a molecular mechanics energy function for retinal. Using the molecular mechanics force field the hydrated retinal and associated bR protein environment are energy-minimized and the resulting geometries examined. Two distinct sites are found in which water molecules can have hydrogen-bonding interactions with the Schiff base: one near the NH group of the Schiff base in a polar region directed towards the extracellular side, and the other near a retinal CH group in a relatively nonpolar region, directed towards the cytoplasmic side.  相似文献   

4.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pK(a) of the Schiff base (the primary proton donor) and the low pK(a) of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

5.
BACKGROUND: Bacteriorhodopsin (bR) from Halobacterium salinarum is a proton pump that converts the energy of light into a proton gradient that drives ATP synthesis. The protein comprises seven transmembrane helices and in vivo is organized into purple patches, in which bR and lipids form a crystalline two-dimensional array. Upon absorption of a photon, retinal, which is covalently bound to Lys216 via a Schiff base, is isomerized to a 13-cis,15-anti configuration. This initiates a sequence of events - the photocycle - during which a proton is transferred from the Schiff base to Asp85, followed by proton release into the extracellular medium and reprotonation from the cytoplasmic side. RESULTS: The structure of bR in the ground state was solved to 1.9 A resolution from non-twinned crystals grown in a lipidic cubic phase. The structure reveals eight well-ordered water molecules in the extracellular half of the putative proton translocation pathway. The water molecules form a continuous hydrogen-bond network from the Schiff-base nitrogen (Lys216) to Glu194 and Glu204 and includes residues Asp85, Asp212 and Arg82. This network is involved both in proton translocation occurring during the photocycle, as well as in stabilizing the structure of the ground state. Nine lipid phytanyl moieties could be modeled into the electron-density maps. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of single crystals demonstrated the presence of four different charged lipid species. CONCLUSIONS: The structure of protein, lipid and water molecules in the crystals represents the functional entity of bR in the purple membrane of the bacteria at atomic resolution. Proton translocation from the Schiff base to the extracellular medium is mediated by a hydrogen-bond network that involves charged residues and water molecules.  相似文献   

6.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pKa of the Schiff base (the primary proton donor) and the low pKa of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

7.
The contribution of proton release from the so-called proton release group to the microsecond B2 photocurrent from bacteriorhodopsin (bR) oriented in polyacrylamide gels was determined. The fraction of the B2 current due to proton release was resolved by titration of the proton release group in M. At pH values below the pKa of the proton release group in M, the proton release group cannot release its proton during the first half of the bacteriorhodopsin photocycle. At these pH values, the B2 photocurrent is due primarily to translocation of the Schiff base proton to Asp85. The B2 photocurrent was measured in wild-type bR gels at pH 4.5-7.5, in 100 mM KCl/50 mM phosphate. The B2 photocurrent area (proportional to the amount of charge moved) exhibits a pH dependence with a pKa of 6.1. This is suggested to be the pKa of the proton release group in M; the value obtained is in good agreement with previous results obtained by examining photocycle kinetics and pH-sensitive dye signals. In the mutant Glu204Gln, the B2 photocurrent of the mutant membranes was pH independent between pH 4 and 7. Because the proton release group is incapacitated, and early proton release is eliminated in the Glu204Gln mutant, this supports the idea that the pH dependence of the B2 photocurrent in the wild type reflects the titration of the proton release group. In wild-type bacteriorhodopsin, proton release contributes approximately half of the B2 area at pH 7.5. The B2 area in the Glu204Gln mutant is similar to that in the wild type at pH 4.5; in both cases, the B2 current is likely due only to movement of the Schiff base proton to Asp85.  相似文献   

8.
Kandt C  Gerwert K  Schlitter J 《Proteins》2005,58(3):528-537
The proton transfer pathway in a heptahelical membrane protein, the light-driven proton pump bacteriorhodopsin (BR), is probed by a combined approach of structural analysis of recent X-ray models and molecular dynamics (MD) simulations that provide the diffusion pathways of internal and external water molecules. Analyzing the hydrogen-bond contact frequencies of the water molecules with protein groups, the complete proton pathway through the protein is probed. Beside the well-known proton binding sites in the protein interior-the protonated Schiff base, Asp85 and Asp96, and the H(5)O(2) (+) complex stabilized by Glu204 and Glu194-the proton release and uptake pathways to the protein surfaces are described in great detail. Further residues were identified, by mutation of which the proposed pathways can be verified. In addition the diffusion pathway of water 502 from Lys216 to Asp96 is shown to cover the positions of the intruding waters 503 and 504 in the N-intermediate. The transiently established water chain in the N-state provides a proton pathway from Asp96 to the Schiff base in the M- to N-transition in a Grotthus-like mechanism, as concluded earlier from time-resolved Fourier transform infrared experiments [le Coutre et al., Proc Nat Acad Sci USA 1995;92:4962-4966].  相似文献   

9.
The first step of the bacteriorhodopsin (bR) photocycle involves the formation of a red-shifted product, K. Fourier transform infrared difference spectra of the bR570 to K630 transition at 81 K has been measured for bR containing different isotopic substitutions at the retinal Schiff base. In the case of bacteriorhodopsin containing a deuterium substitution at the Schiff base nitrogen, carbon 15, or both, we find spectral changes in the 1600-1610- and 1570-1580-cm-1 region consistent with the hypothesis that the K630 C=N stretching mode of a protonated Schiff base is located near 1609 cm-1. A similar set of Schiff base deuterium substitutions for retinal containing a 13C at the carbon 10 position strongly supports this conclusion. This assignment of the K630 C=N stretching vibration provides evidence that the bR Schiff base proton undergoes a substantial environmental change most likely due to separation from a counterion. In addition, a correlation is found between the C=N stretching frequency and the maximum wavelength of visible absorption, suggesting that movement of a counterion relative to the Schiff base proton is the main source of absorption changes in the early stages of the photocycle. Such a movement is a key prediction of several models of proton transport and energy transduction. Evidence is also presented that one or more COOH groups are involved in the formation of the K intermediate.  相似文献   

10.
Song Y  Mao J  Gunner MR 《Biochemistry》2003,42(33):9875-9888
Residue ionization states were calculated in nine crystal structures of bacteriorhodopsin trapped in bR, early M, and late M states by multiconformation continuum electrostatics. This combines continuum electrostatics and molecular mechanics, deriving equilibrium distributions of ionization states and polar residue and water positions. The three central cluster groups [retinal Schiff base (SB), Asp 85 and Asp 212] are ionized in bR structures while a proton has transferred from SB(+) to Asp 85(-) in late M structures matching experimental results. The proton shift in M is due to weaker SB(+)-ionized acid and more favorable SB(0)-ionized acid interactions following retinal isomerization. The proton release cluster (Glu 194 and Glu 204) binds one proton in bR, which is lost to water by pH 8 in late M. In bR the half-ionized state is stabilized by charge-dipole interactions while full ionization is disallowed by charge-charge repulsion between the closely spaced acids. In M the acids move apart, permitting full ionization. Arg 82 movement connects the proton shifts in the central and proton release clusters. Changes in total charge of the two clusters are coupled by direct long-range interactions. Separate calculations consider continuum or explicit water in internal cavities. The explicit waters and nearby polar residues can reorient to stabilize different charge distributions. Proton release to the low-pH, extracellular side of the protein occurs in these calculations where residue ionization remains at equilibrium with the medium. Thus, the key changes distinguishing the intermediates are indeed trapped in the structures.  相似文献   

11.
D Xu  M Sheves    K Schulten 《Biophysical journal》1995,69(6):2745-2760
Molecular dynamics simulations have been carried out to study the M412 intermediate of bacteriorhodopsin's (bR) photocycle. The simulations start from two simulated structures for the L550 intermediate of the photocycle, one involving a 13-cis retinal with strong torsions, the other a 13,14-dicis retinal, from which the M412 intermediate is initiated through proton transfer to Asp-85. The simulations are based on a refined structure of bR568 obtained through all-atom molecular dynamics simulations and placement of 16 waters inside the protein. The structures of the L550 intermediates were obtained through simulated photoisomerization and subsequent molecular dynamics, and simulated annealing. Our simulations reveal that the M412 intermediate actually comprises a series of conformations involving 1) a motion of retinal; 2) protein conformational changes; and 3) diffusion and reconfiguration of water in the space between the retinal Schiff base nitrogen and the Asp-96 side group. (1) turns the retinal Schiff base nitrogen from an early orientation toward Asp-85 to a late orientation toward Asp-96; (2) disconnects the hydrogen bond network between retinal and Asp-85 and tilts the helix F of bR, enlarging bR's cytoplasmic channel; (3) adds two water molecules to the three water molecules existing in the cytoplasmic channel at the bR568 stage and forms a proton conduction pathway. The conformational change (2) of the protein involves a 60 degrees bent of the cytoplasmic side of helix F and is induced through a break of a hydrogen bond between Tyr-185 and a water-side group complex in the counterion region.  相似文献   

12.
Bacteriorhodopsin (bR) and halorhodopsin (hR) are light-induced ion pumps in the cell membrane of Halobacterium salinarium. Under normal conditions bR is an outward proton transporter, whereas hR is an inward Cl- transporter. There is strong evidence that at very low pH and in the presence of Cl-, bR transports Cl- ions into the cell, similarly to hR. The chloride pumping activity of bR is connected to the so-called acid purple state. To account for the observed effects in bR a tentative complex counterion was suggested for the protonated Schiff base of the retinal chromophore. It would consist of three charged residues: Asp-85, Asp-212, and Arg-82. This quadruplet (including the Schiff base) would also serve as a Cl- binding site at low pH. We used Fourier transform infrared difference spectroscopy to study the structural changes during the transitions between the normal, acid blue, and acid purple states. Asp-85 and Asp-212 were shown to participate in the transitions. During the normal-to-acid blue transition, Asp-85 protonates. When the pH is further lowered in the presence of Cl-, Cl- binds and Asp-212 also protonates. The binding of Cl- and the protonation of Asp-212 occur simultaneously, but take place only when Asp-85 is already protonated. It is suggested that HCl is taken up in undissociated form in exchange for a neutral water molecule.  相似文献   

13.
Zadok U  Asato AE  Sheves M 《Biochemistry》2005,44(23):8479-8485
The retinal protein protonated Schiff base linkage plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment, the Schiff base (SB) is titrated with a pK(a) of approximately 13, but following light absorption, it experiences a decrease in the pK(a) and undergoes several alterations, including a deprotonation process. We have studied the SB titration using retinal analogues which have intrinsically lower pK(a)'s which allow for SB titrations over a much lower pH range. We found that above pH 9 the channel for the SB titration is perturbed, and the titration rate is considerably reduced. On the basis of studies with several mutants, it is suggested that the protonation state of residue Glu204 is responsible for the channel perturbation. We suggest that above pH 12 a channel for the SB titration is restored probably due to titration of an additional protein residue. The observations may imply that during the bR photocycle and M photointermediate formation the rate of Schiff base protonation from the bulk is decreased. This rate decrease may be due to the deprotonation process of the "proton-releasing complex" which includes Glu204. In contrast, during the lifetime of the O intermediate, the protonated SB is exposed to the bulk. Possible implications for the switch mechanism, and the directionality of the proton movement, are discussed.  相似文献   

14.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were −470 mV for the 13-cis configuration of the retinal Shiff base in bR and −757 mV for the all-trans configuration in H2O, and −433 mV for the 13-cis configuration and −742 mV for the all-trans configuration in D2O. The solvent isotope effect (ΔV=V(D2O)−V(H2O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated CN part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were −507 mV for the 13-cis configuration and −788 mV for the all-trans configuration; and for the E204Q mutant they were −491 mV for the 13-cis configuration and −769 mV for the all-trans configuration. Replacement of the Glu194 or Glu204 residues by Gln weakened the electron withdrawing interaction to the protonated CN bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were −471 mV for the 13-cis configuration and −760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the CN part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

15.
Bacteriorhodopsin, a light-driven proton pump found in the purple membrane of Halobacterium salinarum, exhibits purple at neutral pH but its color is sensitive to pH. Here, structures are reported for an acid blue form and an alkaline purple form of wild-type bacteriorhodopsin. When the P622 crystal prepared at pH 5.2 was acidified with sulfuric acid, its color turned to blue with a pKa of 3.5 and a Hill coefficient of 2. Diffraction data at pH 2-5 indicated that the purple-to-blue transition accompanies a large structural change in the proton release channel; i.e. the extracellular half of helix C moves towards helix G, narrowing the proton release channel and expelling a water molecule from a micro-cavity in the vicinity of the retinal Schiff base. In this respect, the acid-induced structural change resembles the structural change observed upon formation of the M intermediate. But, the acid blue form contains a sulfate ion in a site(s) near Arg82 that is created by re-orientations of the carboxyl groups of Glu194 and Glu204, residues comprising the proton release complex. This result suggests that proton uptake by the proton release complex evokes the anion binding, which in turn induces protonation of Asp85, a key residue regulating the absorption spectrum of the chromophore. Interestingly, a pronounced structural change in the proton release complex was also observed at high pH; i.e. re-orientation of Glu194 towards Tyr83 was found to take place at around pH 10. This alkaline transition is suggested to be accompanied by proton release from the proton release complex and responsible for rapid formation of the M intermediate at high pH.  相似文献   

16.
The effect of lipid-protein interaction on the photodynamics of bacteriorhodopsin (bR) was investigated by using partially delipidated purple membrane (pm). When pm was incubated with a mild detergent, Tween 20, the two major lipid components of pm, phospholipids and glycolipids, were released in different ways: the amount of phospholipids released was proportional to the logarithm of the incubation time; the release of glycolipids became noticeable after the release of approximately 2 phospholipids/bR, but soon leveled off at approximately 50% of the initial content. It was found that the thermal decay of the photocycle intermediate N560 was inhibited by the removal of less than 2 phospholipids per bR. This inhibition was partly explained by an increase in the local pH near the membrane surface. More significant changes in the bR photoreactions were observed when greater than 2 phospholipids/bR were removed: (1) the extent of light adaptation became much smaller, and this reduction correlated with the release of glycolipids; (2) N560 became difficult to detect; (3) the M412 intermediate, which is characterized by a pH-insensitive lifetime, was replaced by a long-lived M-like photoproduct with a pH-sensitive lifetime. The heavy delipidation apparently altered the mechanism by which the deprotonated Schiff base receives a proton. An important conformational change in the protein moiety is suggested to take place during the M412 state, this conformational change being inhibited in the rigid lipid environment.  相似文献   

17.
Calculations of protonation states and pK(a) values for the ionizable groups in the resting state of bacteriorhodopsin have been carried out using the recently available 1.55 A resolution X-ray crystallographic structure. The calculations are in reasonable agreement with the available experimental data for groups on or near the ion transport chain (the retinal Schiff base; Asp85, 96, 115, 212, and Arg82). In contrast to earlier studies using lower-resolution structural data, this agreement is achieved without manipulations of the crystallographically determined heavy-atom positions or ad hoc adjustments of the intrinsic pK(a) of the Schiff base. Thus, the theoretical methods used provide increased reliability as the input structural data are improved. Only minor effects on the agreement with experiment are found with respect to methodological variations, such as single versus multi-conformational treatment of hydrogen atom placements, or retaining the crystallographically determined internal water molecules versus treating them as high-dielectric cavities. The long-standing question of the identity of the group that releases a proton to the extracellular side of the membrane during the L-to-M transition of the photocycle is addressed by including as pH-titratable sites not only Glu204 and Glu194, residues near the extracellular side that have been proposed as the release group, but also an H(5)O(2)(+) molecule in a nearby cavity. The latter represents the recently proposed storage of the release proton in an hydrogen-bonded water network. In all calculations where this possibility is included, the proton is stored in the H(5)O(2)(+) rather than on either of the glutamic acids, thus establishing the plausibility on theoretical grounds of the storage of the release proton in bacteriorhodopsin in a hydrogen-bonded water network. The methods used here may also be applicable to other proteins that may store a proton in this way, such as the photosynthetic reaction center and cytochrome c oxidase.  相似文献   

18.
Sasaki T  Demura M  Kato N  Mukai Y 《Biochemistry》2011,50(12):2283-2290
A light-driven proton pump bacteriorhodopsin (bR) forms a two-dimensional hexagonal lattice with about 10 archaeal lipids per monomer bR on purple membrane (PM) of Halobacterium salinarum. In this study, we found that the weakening of the bR-lipid interaction on PM by addition of alcohol can be detected as the significant increase of protein solubility in a nonionic detergent, dodecyl β-D-maltoside (DDM). The protein solubility in DDM was also increased by bR-lipid interaction change accompanied by structural change of the apoprotein after retinal removal and was about 7 times higher in the case of completely bleached membrane than that of intact PM. Interestingly, the cyclic and milliseconds order of structural change of bR under light irradiation also led to increasing the protein solubility and had a characteristic light intensity dependence with a phase transition. These results indicate that there is a photointermediate in which bR-lipid interaction has been changed by its dynamic structural change. Because partial delipidation of PM by CHAPS gave minor influence for the change of the protein solubility compared to intact PM in both dark and light conditions, it is suggested that specific interactions of bR with some lipids which remain on PM even after delipidation treatment have a key role for the change of solubility in DDM induced by alcohol binding, ligand release, and photon absorption on bR.  相似文献   

19.
Arg(82) is one of the four buried charged residues in the retinal binding pocket of bacteriorhodopsin (bR). Previous studies show that Arg(82) controls the pK(a)s of Asp(85) and the proton release group and is essential for fast light-induced proton release. To further investigate the role of Arg(82) in light-induced proton pumping, we replaced Arg(82) with histidine and studied the resulting pigment and its photochemical properties. The main pK(a) of the purple-to-blue transition (pK(a) of Asp(85)) is unusually low in R82H: 1.0 versus 2.6 in wild type (WT). At pH 3, the pigment is purple and shows light and dark adaptation, but almost no light-induced Schiff base deprotonation (formation of the M intermediate) is observed. As the pH is increased from 3 to 7 the M yield increases with pK(a) 4.5 to a value approximately 40% of that in the WT. A transition with a similar pK(a) is observed in the pH dependence of the rate constant of dark adaptation, k(da). These data can be explained, assuming that some group deprotonates with pK(a) 4.5, causing an increase in the pK(a) of Asp(85) and thus affecting k(da) and the yield of M. As the pH is increased from 7 to 10.5 there is a further 2.5-fold increase in the yield of M and a decrease in its rise time from 200 &mgr;s to 75 &mgr;s with pK(a) 9. 4. The chromophore absorption band undergoes a 4-nm red shift with a similar pK(a). We assume that at high pH, the proton release group deprotonates in the unphotolyzed pigment, causing a transformation of the pigment into a red-shifted "alkaline" form which has a faster rate of light-induced Schiff base deprotonation. The pH dependence of proton release shows that coupling between Asp(85) and the proton release group is weakened in R82H. The pK(a) of the proton release group in M is 7.2 (versus 5.8 in the WT). At pH < 7, most of the proton release occurs during O --> bR transition with tau approximately 45 ms. This transition is slowed in R82H, indicating that Arg(82) is important for the proton transfer from Asp(85) to the proton release group. A model describing the interaction of Asp(85) with two ionizable residues is proposed to describe the pH dependence of light-induced Schiff base deprotonation and proton release.  相似文献   

20.
Purple membrane: color, crystallinity, and the effect of dimethyl sulfoxide   总被引:2,自引:0,他引:2  
C Pande  R Callender  R Henderson  A Pande 《Biochemistry》1989,28(14):5971-5978
In an effort to understand the nature of chromophore-protein interactions in bacteriorhodopsin (bR), we have reinvestigated dimethyl sulfoxide (DMSO)-induced changes in bR [Oesterhelt et al. (1973) Eur. J. Biochem. 40, 453-463]. We observe that dark-adapted bR (bR560) in aqueous DMSO undergoes reversible transformation to a species absorbing maximally at 480 nm (bR480). Beginning at 40% DMSO, this change results in complete conversion to bR480 at 60% DMSO. The kinetics of the reaction reveal that this transformation takes place predominantly through the all-trans isomeric form of the pigment. Thermal isomerization of the 13-cis chromophore to the all-trans form is, therefore, the rate-limiting step in the formation of bR480 from the dark-adapted bR. As in native bR, the chromophore in bR480 is linked to the protein via a protonated Schiff base, and its isomeric composition is predominantly all-trans. The formation of bR480 is associated with minor changes in the protein secondary structure, and the membrane retains crystallinity. These changes in the protein structure result in a diminished chromophore-protein interaction near the Schiff base region in bR480. Thus, we attribute the observed spectroscopic changes in bR in DMSO to structural alteration of the protein. The 13-cis chromophoric pigment appears to be resistant to this solvent-induced change. The changes in the protein structure need not be very large; displacement of the protein counterion(s) to the Schiff base, resulting from minor changes in the protein structure, can produce the observed spectral shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号