首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Life-history theory predicts that hosts should reproduce when first infected by parasites if hosts are capable and if parasites have a lower cost on current than on future reproduction of hosts. We constructed an empirical model to explore fitness of females of the intertidal amphipod Corophium volutator that reproduced soon versus long after infection by the trematode Gynaecotyla adunca. For uninfected females, the optimal time to reproduce was at their maximum body length. However, for females infected by low or high intensities of trematode metacercariae, reproductive potential (realized fecundity) was highest for females that mated immediately after becoming infected. Even after removing a high cost of delaying reproduction for infected amphipods (high likelihood of depredation by sandpipers, which are final hosts of G. adunca), realized fecundity remained highest if reproduction occurred immediately following infection by trematodes. Results from our model support the view that early reproduction of female amphipods following infection by G. adunca is an adaptive life-history response to parasitism.  相似文献   

2.
Plant viruses often harm their hosts, which have developed mechanisms to prevent or minimize the effects of virus infection. Resistance and tolerance are the two main plant defences to pathogens. Although resistance to plant viruses has been studied extensively, tolerance has received much less attention. Theory predicts that tolerance to low‐virulent parasites would be achieved through resource reallocation from growth to reproduction, whereas tolerance to high‐virulent parasites would be attained through shortening of the pre‐reproductive period. We have shown previously that the tolerance of Arabidopsis thaliana to Cucumber mosaic virus (CMV), a relatively low‐virulent virus in this host, accords to these predictions. However, whether other viruses trigger the same response, and how A. thaliana copes with highly virulent virus infections remains unexplored. To address these questions, we challenged six A. thaliana wild genotypes with five viruses with different genomic structures, life histories and transmission modes. In these plants, we quantified virus multiplication, virulence, and the effects of infection on plant growth and reproduction, and on the developmental schedule. Our results indicate that virus multiplication varies according to the virus × host genotype interaction. Conversely, effective tolerance is observed only on CMV infection, and is associated with resource reallocation from growth to reproduction. Tolerance to the other viruses is observed only in specific host–virus combinations and, at odds with theoretical predictions, is linked to longer pre‐reproductive periods. These findings only partially agree with theoretical predictions, and contribute to a better understanding of pathogenic processes in plant–virus interactions.  相似文献   

3.
Life-history theory centres around trade-offs between current and future reproduction, but we have little understanding of how such trade-offs are mediated. We supplementary fed Ural owls (Strix uralensis) during the nestling period and quantified parents' current and future life-history components as well as their physiological health by monitoring haematocrit, leucocyte profile, intra- and extracellular blood parasites. Feeding led to reduced parental effort but did not improve offspring viability, male parasite defence, or parental survival. Intracellular leucocytozoan infection was reduced in fed females which lasted to the following year's reproductive season (carry-over effect), when fed females also laid larger and earlier clutches. Leucocytozoon infection therefore may mediate the life-history trade-off between current and residual reproduction in this species.  相似文献   

4.
Maternally inherited bacterial endosymbionts can kill male embryos of their arthropod hosts to enhance the transmission efficiency of the endosymbionts. The resources from killed male eggs can be reallocated to infected female hatchlings as additional maternal investment. As a result, the number of offspring per patch and the maternal investment per offspring are expected to differ from the original optimal values for the host mother. Thus, in response to infection, these trait values should be adjusted to maximize the lifetime reproductive success of host females and the fitness of inherited endosymbionts as well. Here, we examined clutch size, egg size, and the proportion of trophic eggs (i.e., production of unhatched eggs, a maternal phenotype) per clutch of host mothers infected with male-killing bacteria. First, we developed a mathematical model to predict the optimal clutch size and trophic egg proportion in uninfected and infected females. Next, we experimentally compared these life-history traits in a ladybird, Harmonia yedoensis, between females infected or uninfected with male-killing Spiroplasma bacteria. Consistent with our predictions, clutch size was larger, egg size was smaller, and trophic egg proportion was lower in infected H. yedoensis females, compared with uninfected females. To our knowledge, this is the first empirical demonstration of variation in these life-history traits depending on infection with bacterial endosymbionts.  相似文献   

5.
Maturation time is a pivotal life-history trait of parasitic nematodes, determining adult body size, as well as daily and total fecundity. Recent theoretical work has emphasized the influence of prematurational mortality on the optimal values of age and size at maturity in nematodes. Eosinophils are a family of white blood cells often associated with infections by parasitic nematodes. Although the role of eosinophils in nematode resistance is controversial, recent work has suggested that the action of these immune effectors might be limited to the larval stages of the parasite. If eosinophils act on larval survival, one might predict, in line with theoretical models, that nematode species living in hosts with large eosinophil numbers should show reduced age and size at maturity. We tested this prediction using the association between the pinworms (Oxyuridae, Nematoda) and their primate hosts. Pinworms are highly host specific and are expected to be involved in a coevolutionary process with their hosts. We found that the body size of female parasites was negatively correlated with eosinophil concentration, whereas the concentration of two other leucocyte families-neutrophils and lymphocytes-was unrelated to female body size. Egg size of parasites also decreased with host eosinophil concentration, independently of female size. Male body size was unrelated to host immune parameters. Primates with the highest immune defence, therefore, harbour small female pinworms laying small eggs. These results are in agreement with theoretical expectations and suggest that life histories of oxyurid parasites covary with the immune defence of their hosts. Our findings illustrate the potential for host immune defence as a factor driving parasite life-history evolution.  相似文献   

6.
Abstract  1. In two different treatments, groups of healthy hosts ( Ephestia kuehniella ) or hosts parasitised by Venturia canescens competed for a limited amount of food. The larva to adult survival in each group, as a function of the initial number of hosts and treatment, was fitted to the generalised Beverton and Holt and generalised Ricker survival functions, and a number of life-history traits of the parasitoids was measured.
2. Intraspecific competition was scramble-like, and the parasitised hosts were less susceptible to competition than were their healthy counterparts.
3. For both the healthy and the parasitised hosts, the number of larvae surviving to adulthood gave a good fit to both the generalised Beverton and Holt and generalised Ricker models, but the values of all the parameters differed between the two treatments.
4. Parasitoid size, egg load, and adult survival time decreased significantly with the initial host number.
5. Previous theoretical work suggests that both lower susceptibility to competition by parasitised hosts and scramble competition contribute to the dynamical instability of host–parasitoid systems. Changes registered in life-history traits may also affect host–parasitoid dynamics. These changes have not yet been incorporated into host–parasitoid models.  相似文献   

7.
An outline for an organismic theory of reproductive tacticsis presented to develop the demographic theory of optimal reproductivetactics into a more realistic theory of life-history evolution.Reproductive effort—denned as the proportion of resourcesinvested in reproduction—and the costs in somatic investmentdo not automatically result in survival costs. Both the conditionswhere survival costs are produced and the conditions where reproductioncan take place without survival costs are specified. Compensationand threshold hypotheses are put forward to allow weaker correlationsbetween reproduction and survival than the trade-off hypothesis,which assumes direct impacts by reproductive effort on survival.Furthermore, reproductive tactics are unlikely to be mouldedby the demographic forces of selection only. An empirical exampleis shown where residual reproductive value played no significantrole in the evolution of reproductive tactics. Selection probablyoperates not on separate life-history traits but on whole organismsthrough their entire life-history. The structural and physiologicalintercouplings between separate traits can result in phenotypicopportunity sets where selection can mould life-history traitsonly within the constraints of the opportunity sets. Optimizationtheory has provided an efficient technique for modelling andmaking predictions. However, organismic selection does not necessarilyoptimize adaptive strategies but eliminates unfit strategies.Life-history theory, and evolutionary theory in general, canbe developed along alternative logical lines when differenthypotheses are generated on how selection operates.  相似文献   

8.
We studied the effect of maternal ectoparasite load (measured at parturition) on the life-history traits of the offspring of the host Lacerta vivipara, the European common lizard. The ectoparasite, a mite belonging to the family Laelapidae, had a detrimental effect on its host: parasite load was associated with increased host mortality, and was negatively correlated with host body mass. Parasite load was persistent over time, suggesting that parasite load can be predictable. Offspring of highly parasitised mothers had higher values of several fitness components early in life than offspring of parasite-free mothers or lightly infested mothers. This was expressed in terms of increased F1 yearling growth rate, and reproductive investment at first reproduction (measured as F2 hatchling mass). These results are interpreted as a host adaptation to attenuate the impact of parasites. Indeed, if high parasite loads arise from long exposure time to a constant population of parasites, and if the negative effects of parasites are additive over time, hosts could reduce the impact of parasites simply by investing more during the earlier stages of life. Naturally, having better performance early in life should lead to higher mortality rates and/or lower fecundity later in life.  相似文献   

9.
Island and mainland populations of animal species often differ strikingly in life-history traits such as clutch size, egg size, total reproductive effort and body size. However, despite widespread recognition of insular shifts in these life-history traits in birds, mammals and reptiles, there have been no reports of such life-history shifts in amphibians. Furthermore, most studies have focused on one specific life-history trait without explicit consideration of coordinated evolution among these intimately linked life-history traits, and thus the relationships among these traits are poorly studied. Here we provide the first evidence of insular shifts and trade-offs in a coordinated suite of life-history traits for an amphibian species, the pond frog Rana nigromaculata . Life-history data were collected from eight islands in the Zhoushan Archipelago and neighboring mainland China. We found consistent, significant shifts in all life-history traits between mainland and island populations. Island populations had smaller clutch sizes, larger egg sizes, larger female body size and invested less in total reproductive effort than mainland populations. Significant negative relationships were found between egg size and clutch size and between egg size and total reproductive effort among frog populations after controlling for the effects of body size. Therefore, decreased reproductive effort and clutch size, larger egg size and body size in pond frogs on islands were selected through trade-offs as an overall life-history strategy. Our findings contribute to the formation of a broad, repeatable ecological generality for insular shifts in life-history traits across a range of terrestrial vertebrate taxa.  相似文献   

10.
Parasitic nematodes show levels of genetic diversity comparable to other taxa, but the functional consequences of this are not understood. Thus, a large body of theoretical work highlights the potential consequences of parasite genetic diversity for the epidemiology of parasite infections and its possible implications for the evolution of host and parasite populations. However, few relevant empirical data are available from parasites in general and none from parasitic nematodes in particular. Here, we test two hypotheses. First, that different parasitic nematode genotypes vary in life-history traits, such as survivorship and fecundity, which may cause variation in infection dynamics. Second, that different parasitic nematode genotypes interact within the host (either directly or via the host immune system) to increase the mean reproductive output of mixed-genotype infections compared with single-genotype infections. We test these hypotheses in laboratory infections using genetically homogeneous lines of Strongyloides ratti. We find that nematode genotypes do vary in their survivorship and fecundity and, consequently, in their dynamics of infection. However, we find little evidence of interactions between genotypes within hosts under a variety of trickle- and single-infected infection regimes.  相似文献   

11.
Several parasite species have the ability to modify their host's phenotype to their own advantage thereby increasing the probability of transmission from one host to another. This phenomenon of host manipulation is interpreted as the expression of a parasite extended phenotype. Manipulative parasites generally affect multiple phenotypic traits in their hosts, although both the extent and adaptive significance of such multidimensionality in host manipulation is still poorly documented. To review the multidimensionality and magnitude of host manipulation, and to understand the causes of variation in trait value alteration, we performed a phylogenetically corrected meta‐analysis, focusing on a model taxon: acanthocephalan parasites. Acanthocephala is a phylum of helminth parasites that use vertebrates as final hosts and invertebrates as intermediate hosts, and is one of the few parasite groups for which manipulation is predicted to be ancestral. We compiled 279 estimates of parasite‐induced alterations in phenotypic trait value, from 81 studies and 13 acanthocephalan species, allocating a sign to effect size estimates according to the direction of alteration favouring parasite transmission, and grouped traits by category. Phylogenetic inertia accounted for a low proportion of variation in effect sizes. The overall average alteration of trait value was moderate and positive when considering the expected effect of alterations on trophic transmission success (signed effect sizes, after the onset of parasite infectivity to the final host). Variation in the alteration of trait value was affected by the category of phenotypic trait, with the largest alterations being reversed taxis/phobia and responses to stimuli, and increased vulnerability to predation, changes to reproductive traits (behavioural or physiological castration) and immunosuppression. Parasite transmission would thereby be facilitated mainly by changing mainly the choice of micro‐habitat and the anti‐predation behaviour of infected hosts, and by promoting energy‐saving strategies in the host. In addition, infection with larval stages not yet infective to definitive hosts (acanthella) tends to induce opposite effects of comparable magnitude to infection with the infective stage (cystacanth), although this result should be considered with caution due to the low number of estimates with acanthella. This analysis raises important issues that should be considered in future studies investigating the adaptive significance of host manipulation, not only in acanthocephalans but also in other taxa. Specifically, the contribution of phenotypic traits to parasite transmission and the range of taxonomic diversity covered deserve thorough attention. In addition, the relationship between behaviour and immunity across parasite developmental stages and host–parasite systems (the neuropsychoimmune hypothesis of host manipulation), still awaits experimental evidence. Most of these issues apply more broadly to reported cases of host manipulation by other groups of parasites.  相似文献   

12.
The distribution of parasites among hosts is often characterised by a high degree of heterogeneity with a small number of hosts harbouring the majority of parasites. Such patterns of aggregation have been linked to variation in host exposure and susceptibility as well as parasite traits and environmental factors. Host exposure and susceptibility may differ with sexes, reproductive effort and group size. Furthermore, environmental factors may affect both the host and parasite directly and contribute to temporal heterogeneities in parasite loads. We investigated the contributions of host and parasite traits as well as season on parasite loads in highveld mole-rats (Cryptomys hottentotus pretoriae). This cooperative breeder exhibits a reproductive division of labour and animals live in colonies of varying sizes that procreate seasonally. Mole-rats were parasitised by lice, mites, cestodes and nematodes with mites (Androlaelaps sp.) and cestodes (Mathevotaenia sp.) being the dominant ecto- and endoparasites, respectively. Sex and reproductive status contributed little to the observed parasite prevalence and abundances possibly as a result of the shared burrow system. Clear seasonal patterns of parasite prevalence and abundance emerged with peaks in summer for mites and in winter for cestodes. Group size correlated negatively with mite abundance while it had no effect on cestode burdens and group membership affected infestation with both parasites. We propose that the mode of transmission as well as social factors constrain parasite propagation generating parasite patterns deviating from those commonly predicted.  相似文献   

13.
There are a number of ways in which a host can respond in evolutionary time to reductions in survival and reproduction due to a virulent parasite. These include evolving physiological morphological, or behavioural mechanisms of resistance to infection (or to proliferation, once infection has occurred). But a more unexpected tactic is also possible. This is for hosts to reproduce (slightly) sooner when in the presence of a virulent parasite as compared to when the parasite is less virulent or absent. As such, hosts which reproduce younger may be at a selective advantage, since they can both evade parasitism in time and, even when parasitised, can reduce the likely impact of the parasite on survival and reproductive success. We employ a simple mathematical model to propose that parasites and pathogens can act as important agents in the evolution of the timing of reproduction and associated life-history characters (e.g. body size). Once established in a semelparous host population, evolutionary increases in parasite virulence should result in the evolution of shorter lived hosts; whereas the evolution of less virulent forms of the parasite should be accompanied by the evolution of longer lived hosts. We argue that in the presence of a sufficiently virulent parasite the evolution of longer pre-reproductive life-spans should require the previous or concomitant evolution of morphological, behavioural or physiological resistance to parasitic infection and proliferation.  相似文献   

14.
Several studies demonstrate that natural enemies (e.g. parasites) have profound negative effects on the life-history traits of their hosts. If the host can compensate for the negative effects of parasitic infection by altering its life history, these modifications may partly form the basis of resistance or tolerance against parasites. Thus, parasites may be of considerable importance in shaping the evolution of life-history traits of their hosts. To examine if previous parasitism is associated with differences in life-history traits of the host, I conducted a common garden experiment with Urtica dioica plants originating from eight populations of which four were unparasitized, and four parasitized by the holoparasitic plant, Cuscuta europaea. A field survey indicated no differences between unparasitized and parasitized populations in, for example, the number of plant species and nutrient levels in the soil. Thus, it seems reasonable to assume that differences in life-history traits between the two population types in the common garden would reflect the effects of previous selection by the parasite. In the common garden, plants from parasitized populations started to flower later and allocated less biomass to asexual reproduction (measured as the production of stolons, i.e. clonal propagation) compared to plants from unparasitized populations. These results thus indicate that selection by the parasite may have favoured later onset of flowering, and may have selected against asexual reproduction.  相似文献   

15.
Arising from annual variation in parasitic plant population densities, substantial yearly changes may occur in the parasitic load of an individual perennial host. We conducted two two-year greenhouse pot experiments to examine the effects of varying intensities and duration of infection by an annual root hemiparasitic plant. Rhinanthus serotinus, on the growth and reproduction of its perennial host grass. Agrostis capillaris. In the first experiment, one host plant was growing either alone or under a load of 1 or 3 root hemiparasitic plants for one growing season, and during the next season all hosts continued their life free of hemiparasites. In the second experiment, the host plants either grew alone or were parasitised by 1 or 2 root hemiparasitic plants either during the first growing season only or during two successive seasons (the parasitic load being the same in the two seasons). In both experiments, the root hemiparasites markedly reduced the growth and reproduction of their perennial hosts. In the first experiment, the negative effects of parasites on host performance increased with the increase in intensity of parasitic infection from one to three parasites. The harmful effects of hemiparasitim were carried over to the following season; hosts parasitised during the previous season with one or three parasites produced significantly less biomass than those without parasites. In addition, hosts parasitised by three parasites during the first season produced significantly less panicles in the second season than those parasitised by one parasite and those without parasites. The second experiment showed that the production of biomass of A. capillaris during the second season was, but the production of panicles was not affected by the duration of parasitic infection. In addition, in this experiment, the second season biomass of A. capillaris depended on the intensity of infection (1 vs 2 parasites), but the production of panicles was unaffected by the number of parasites.  相似文献   

16.
Most of the evidence for a key role of parasites in structuring communities is based on the idea of a differential susceptibility of host species to infection and its consequences. Recent advances in community ecology suggest that life-history traits of free-living species can be an important determinant of their co-existence within communities. On the other hand, parasites have the potential to indirectly alter the life-history traits of their hosts, such as developmental time or dispersal. We discuss the idea that these indirect effects could influence the structure of free-living and parasite communities. We explore this idea in relation to related concepts including 'parasitic arbitration' and engineering processes.  相似文献   

17.
The genetic basis of plant tolerance to parasites is poorly understood. We have previously shown that tolerance of Arabidopsis thaliana to its pathogen cucumber mosaic virus is achieved through changes in host life-history traits on infection that result in delaying flowering and reallocating resources from vegetative growth to reproduction. In this system we analyse here genetic determinants of tolerance using a recombinant inbred line family derived from a cross of two accessions with extreme phenotypes. Three major quantitative trait loci for tolerance were identified, which co-located with three flowering repressor genes, FLC, FRI, and HUA2. The role of these genes in tolerance was further examined in genotypes carrying functional or nonfunctional alleles. Functional alleles of FLC together with FRI and/or HUA2 were required for both tolerance and resource reallocation from growth to reproduction. Analyses of FLC alleles from wild accessions that differentially modulate flowering time showed that they ranked differently for their effects on tolerance and flowering. These results pinpoint a role of FLC in A. thaliana tolerance to cucmber mosaic virus, which is a novel major finding, as FLC has not been recognized previously to be involved in plant defence. Although tolerance is associated with a delay in flowering that allows resource reallocation, our results indicate that FLC regulates tolerance and flowering initiation by different mechanisms. Thus, we open a new avenue of research on the interplay between defence and development in plants.  相似文献   

18.
Spatially structured environments may impact evolution by restricting population sizes, limiting opportunities for genetic mixis, or weakening selection against deleterious genotypes. When habitat structure impedes dispersal, low-productivity (less virulent) infectious parasites may benefit from their prudent exploitation of local hosts. Here we explored the combined ability for habitat structure and host density to dictate the relative reproductive success of differentially productive parasites. To do so, we allowed two RNA bacteriophage Phi6 genotypes to compete in structured and unstructured (semi-solid versus liquid) habitats while manipulating the density of Pseudomonas hosts. In the unstructured habitats, the more-productive phage strain experienced a relatively constant fitness advantage regardless of starting host density. By contrast, in structured habitats, restricted phage dispersal may have magnified the importance of local productivity, thus allowing the relative fitness of the less-productive virus to improve as host density increased. Further data suggested that latent period (duration of cellular infection) and especially burst size (viral progeny produced per cell) were the phage "life-history" traits most responsible for our results. We discuss the relevance of our findings for selection occurring in natural phage populations and for the general evolutionary epidemiology of infectious parasites.  相似文献   

19.
Population density and costs of parasite infection may condition the capacity of organisms to grow, survive and reproduce, i.e. their competitive ability. In host–parasite systems there are different competitive interactions: among uninfected hosts, among infected hosts, and between uninfected and infected hosts. Consequently, parasite infection results in a direct cost, due to parasitism itself, and in an indirect cost, due to modification of the competitive ability of the infected host. Theory predicts that host fitness reduction will be higher under the combined effects of costs of parasitism and competition than under each factor separately. However, experimental support for this prediction is scarce, and derives mostly from animal–parasite systems. We have analysed the interaction between parasite infection and plant density using the plant-parasite system of Arabidopsis thaliana and the generalist virus Cucumber mosaic virus (CMV). Plants of three wild genotypes grown at different densities were infected by CMV at various prevalences, and the effects of infection on plant growth and reproduction were quantified. Results demonstrate that the combined effects of host density and parasite infection may result either in a reduction or in an increase of the competitive ability of the host. The two genotypes investing a higher proportion of resources to reproduction showed tolerance to the direct cost of infection, while the genotype investing a higher proportion of resources to growth showed tolerance to the indirect cost of infection. Our findings show that the outcome of the interaction between host density and parasitism depends on the host genotype, which determines the plasticity of life-history traits and consequently, the host capacity to develop different tolerance mechanisms to the direct or indirect costs of parasitism. These results indicate the high relevance of host density and parasitism in determining the competitive ability of a plant, and stress the need to simultaneously consider both factors to understand the selective pressures that drive host–parasite co-evolution.  相似文献   

20.
The Hamilton and Zuk hypothesis on haemoparasite-mediated sexual selection and certain studies of reproductive costs are based on the assumption that avian blood parasite infections are detrimental to their hosts. However, there is no experimental evidence demonstrating harmful effects of blood parasites on fitness in wild populations, it even having been suggested that they may be non-pathogenic. Only an experimental manipulation of natural blood parasite loads may reveal their harmful effects. In this field experiment we reduced through medication the intensity of infection by Haemoproteus majoris and the prevalence of infection by Leucocytoazoon majoris in blue tits (Parus caeruleus), and demonstrated detrimental effects of natural levels of infection by these common parasite species on host reproductive success and condition. The fact that some of the costs of infection were paid by offspring indicates that blood parasites reduce parental working capacity while feeding nestlings. Medicated females may be able to devote more resources to parental care through being released from the drain imposed upon them by parasites and/or through a reduced allocation to an immune response. Therefore, this work adds support to previous findings relating hosts' life-history traits and haematozoan infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号