首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Alzheimer's disease is characterized by the deposition of aggregates of the β-amyloid peptide (Aβ) in the brain. A potential therapeutic strategy for Alzheimer's disease is the use of synthetic β-sheet breaker peptides, which are capable of binding Aβ but unable to become part of a β-sheet structure, thus inhibiting the peptide aggregation. Many studies suggest that membranes play a key role in the Aβ aggregation; consequently, it is strategic to investigate the interplay between β-sheet breaker peptides and Aβ in the presence of lipid bilayers. In this work, we focused on the effect of the β-sheet breaker peptide acetyl-LPFFD-amide, iAβ5p, on the interaction of the Aβ(25-35) fragment with lipid membranes, studied by Electron Spin Resonance spectroscopy, using spin-labeled membrane components (either phospholipids or cholesterol). The ESR results show that iAβ5p influences the Aβ(25-35) interaction with the bilayer through a cholesterol-mediated mechanism: iAβ5p withholds cholesterol in the inner hydrophobic core of the bilayer, making the interfacial region more fluid and capable to accommodate Aβ(25-35). As a consequence, iAβ5p prevents the Aβ(25-35) release from the lipid membrane, which is the first step of the β-amyloid aggregation process.  相似文献   

2.
Abeta(1-42) peptide, found as aggregated species in Alzheimer's disease brain, is linked to the onset of Alzheimer's disease. Many reports have linked metals to inducing Abeta aggregation and amyloid plaque formation. Abeta(25-35), a fragment from the C-terminal end of Abeta(1-42), lacks the metal coordinating sites found in the full-length peptide and is neurotoxic to cortical cortex cell cultures. We report solid-state NMR studies of Abeta(25-35) in model lipid membrane systems of anionic phospholipids and cholesterol, and compare structural changes to those of Abeta(1-42). When added after vesicle formation, Abeta(25-35) was found to interact with the lipid headgroups and slightly perturb the lipid acyl-chain region; when Abeta(25-35) was included during vesicle formation, it inserted deeper into the bilayer. While Abeta(25-35) retained the same beta-sheet structure irrespective of the mode of addition, the longer Abeta(1-42) appeared to have an increase in beta-sheet structure at the C-terminus when added to phospholipid liposomes after vesicle formation. Since the Abeta(25-35) fragment is also neurotoxic, the full-length peptide may have more than one pathway for toxicity.  相似文献   

3.
Several groups have observed that phosphorylation causes the MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) protein to move off cell membranes and phospholipid vesicles. Our working hypothesis is that significant membrane binding of MARCKS requires both hydrophobic insertion of the N-terminal myristate into the bilayer and electrostatic association of the single cluster of basic residues in the protein with acidic lipids and that phosphorylation reverses this electrostatic association. Membrane binding measurements with myristoylated peptides and phospholipid vesicles show this hydrophobic moiety could, at best, barely attach proteins to plasma membranes. We report here membrane binding measurements with basic peptides that correspond to the phosphorylation domains of MARCKS and neuromodulin. Binding of these peptides increases sigmoidally with the percent acidic lipid in the phospholipid vesicle and can be described by a Gouy-Chapman/mass action theory that explains how electrostatics and reduction of dimensionality produce apparent cooperativity. The electrostatic affinity of the MARCKS peptide for membranes containing 10% acidic phospholipids (10(4) M-1 = chi/[P], where chi is the mole ratio of peptide bound to the outer monolayer of the vesicles and [P] is the concentration of peptide in the aqueous phase) is the same as the hydrophobic affinity of the myristate moiety for bilayer membranes. Phosphorylation decreases the affinity of the MARCKS peptide for membranes containing 15% acidic lipid about 1000-fold and produces a rapid (t1/2 < 30 s) dissociation of the peptide from phospholipid vesicles.  相似文献   

4.
Aggregation of β‐amyloid peptides into senile plaques has been identified as one of the hallmarks of Alzheimer's disease. An attractive therapeutic strategy for Alzheimer's disease is the inhibition of the soluble β‐amyloid aggregation using synthetic β‐sheet breaker peptides that are capable of binding Aβ but are unable to become part of a β‐sheet structure. As the early stages of the Aβ aggregation process are supposed to occur close to the neuronal membrane, it is strategic to define the β‐sheet breaker peptide positioning with respect to lipid bilayers. In this work, we have focused on the interaction between the β‐sheet breaker peptide acetyl‐LPFFD‐amide, iAβ5p, and lipid membranes, studied by ESR spectroscopy, using either peptides alternatively labeled at the C‐ and at the N‐terminus or phospholipids spin‐labeled in different positions of the acyl chain. Our results show that iAβ5p interacts directly with membranes formed by the zwitterionic phospholipid dioleoyl phosphatidylcholine and this interaction is modulated by inclusion of cholesterol in the lipid bilayer formulation, in terms of both peptide partition coefficient and the solubilization site. In particular, cholesterol decreases the peptide partition coefficient between the membrane and the aqueous medium. Moreover, in the absence of cholesterol, iAβ5p is located between the outer part of the hydrophobic core and the external hydrophilic layer of the membrane, while in the presence of cholesterol it penetrates more deeply into the lipid bilayer. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The 1,024-amino-acid acylated hemolysin of Escherichia coli subverts host cell functions and causes cell lysis. Both activities require insertion of the toxin into target mammalian cell membranes. To identify directly the principal toxin sequences dictating membrane binding and insertion, we assayed the lipid bilayer interaction of native protoxin, stably active toxin, and recombinant peptides. Binding was assessed by flotation of protein-liposome mixtures through density gradients, and insertion was assessed by labeling with a photoactivatable probe incorporated into the target lipid bilayer. Both the active acylated hemolysin and the inactive unacylated protoxin were able to bind and also insert. Ca(2+) binding, which is required for toxin activity, did not influence the in vitro interaction with liposomes. Three overlapping large peptides were expressed separately. A C-terminal peptide including residues 601 to 1024 did not interact in either assay. An internal peptide spanning residues 496 to 831, including the two acylation sites, bound to phospholipid vesicles and showed a low level of insertion-dependent labeling. In vitro acylation had no effect on the bilayer interaction of either this peptide or the full-length protoxin. An N-terminal peptide comprising residues 1 to 520 also bound to phospholipid vesicles and showed strong insertion-dependent labeling, ca. 5- to 25-fold that of the internal peptide. Generation of five smaller peptides from the N-terminal region identified the principal determinant of lipid insertion as the hydrophobic sequence encompassing residues 177 to 411, which is conserved among hemolysin-related toxins.  相似文献   

6.
Beta-amyloid peptide (Abeta), which is cleaved from the larger trans-membrane amyloid precursor protein, is found deposited in the brain of patients suffering from Alzheimer's disease and is linked with neurotoxicity. We report the results of studies of Abeta1-42 and the effect of metal ions (Cu2+ and Zn2+) on model membranes using 31P and 2H solid-state NMR, fluorescence and Langmuir Blodgett monolayer methods. Both the peptide and metal ions interact with the phospholipid headgroups and the effects on the lipid bilayer and the peptide structure were different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induced formation of smaller vesicles but when Abeta1-42 was associated with the bilayer membrane copper did not have this effect. Circular dichroism spectroscopy indicated that Abeta1-42 adopted more beta-sheet structure when incorporated in a lipid bilayer in comparison to the associated peptide, which was largely unstructured. Incorporated peptides appear to disrupt the membrane more severely than associated peptides, which may have implications for the role of Abeta in disease states.  相似文献   

7.
The beta-sheet plaques that are the most obvious pathological feature of Alzheimer's disease are composed of amyloid-beta peptides and are highly enriched in the metal ions Zn, Fe and Cu. The interaction of the full-length amyloid peptide, A beta(1-42), with phospholipid lipid bilayers was studied in the presence of the metal-chelating drug, Clioquinol (CQ). The effect of cholesterol and metal ions was also determined using solid-state 31P and 2H NMR. CQ modulated the effect of metal ions on the integrity of the bilayer and although CQ perturbed the phospholipid membrane, the bilayer integrity was maintained. Model membranes enriched in cholesterol were studied under conditions of peptide association and incorporation. Solid-state NMR showed that the bilayer integrity was preserved in cholesterol-enriched membranes in comparison to phosphatidylcholine-phosphatidylserine bilayers. Changes in peptide structure, consistent with an increase in beta-sheet, were observed using specifically 13C-labelled A beta(1-42) by magic angle spinning NMR. Results using aligned phosphatidylcholine bilayers and completely 15N-labelled peptide indicated that the peptide aggregated. The results are consistent with oligomeric beta-sheet structured peptides only partially penetrating the bilayer and cholesterol reducing the membrane disruption.  相似文献   

8.
Novel cationic antimicrobial peptides typified by structures such as KKKKKKAAXAAWAAXAA-NH2, where X = Phe/Trp, and several of their analogues display high activity against a variety of bacteria but exhibit no hemolytic activity even at high dose levels in mammalian erythrocytes. To elucidate their mechanism of action and source of selectivity for bacterial membranes, phospholipid mixtures mimicking the compositions of natural bacterial membranes (containing anionic lipids) and mammalian membranes (containing zwitterionic lipids + cholesterol) were challenged with the peptides. We found that peptides readily inserted into bacterial lipid mixtures, although no insertion was detected in model "mammalian" membranes. The depth of peptide insertion into model bacterial membranes was estimated by Trp fluorescence quenching using doxyl groups variably positioned along the phospholipid acyl chains. Peptide antimicrobial activity generally increased with increasing depth of peptide insertion. The overall results, in conjunction with molecular modeling, support an initial electrostatic interaction step in which bacterial membranes attract and bind peptide dimers onto the bacterial surface, followed by the "sinking" of the hydrophobic core segment to a peptide sequence-dependent depth of approximately 2.5-8 A into the membrane, largely parallel to the membrane surface. Antimicrobial activity was likely enhanced by the fact that the peptide sequences contain AXXXA sequence motifs, which promote their dimerization, and possibly higher oligomerization, as assessed by SDS-polyacrylamide gel analysis and fluorescence resonance energy transfer experiments. The high selectivity of these peptides for nonmammalian membranes, combined with their activity toward a wide spectrum of Gram-negative and Gram-positive bacteria and yeast, while retaining water solubility, represent significant advantages of this class of peptides.  相似文献   

9.
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable alpha-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.  相似文献   

10.
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable α-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.  相似文献   

11.
Aβ(1–42) peptide, found as aggregated species in Alzheimer’s disease brain, is linked to the onset of dementia. We detail results of 31P and 2H solid-state NMR studies of model membranes with Aβ peptides and the effect of metal ions (Cu2+ and Zn2+), which are found concentrated in amyloid plaques. The effects on the lipid bilayer and the peptide structure are different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induce formation of smaller vesicles, but not when Aβ(1–42) is associated with the bilayer membrane. Aβ(25–35), a fragment from the C-terminal end of Aβ(1–42), which lacks the metal coordinating sites found in the full length peptide, is neurotoxic to cortical cortex cell cultures. Addition of metal ions has little effect on membrane bilayers with Aβ(25–35) peptides. 31P magic angle spinning NMR data show that Aβ(1–42) and Aβ(1–42)-Cu2+ complexes interact at the surface of anionic phospholipid membranes. Incorporated peptides, however, appear to disrupt the membrane more severely than associated peptides. Solid-state 13C NMR was used to compare structural changes of Aβ(1–42) to those of Aβ(25–35) in model membrane systems of anionic phospholipids and cholesterol. The Aβ peptides appeared to have an increase in β-strand structure at the C-terminus when added to phospholipid liposomes. The inclusion of Cu2+ also influenced the observed chemical shift of residues from the C-terminal half, providing structural clues for the lipid-associated Aβ/metal complex. The results point to the complex pathway(s) for toxicity of the full-length peptide. Australian Society for Biophysics Special Issue: Metals and Membranes in Neuroscience.  相似文献   

12.
Positively charged amino acid residues in the N-terminal domain of the signal peptides of secreted proteins are thought to interact with negatively charged anionic phospholipids during the initiation of secretion. To test this hypothesis, substitutions of the uncharged Ala or the negatively charged Glu residue for the positively charged Lys-20 of the N-terminus of the signal peptide of Escherichia coli alkaline phosphatase were introduced using a modified method of oligonucleotide-directed mutagenesis. We found that Lys-20 is involved in the interaction of the signal peptide with anionic phospholipids in vivo and effects the efficiency of insertion of the signal peptide of isolated precursor into model phospholipid membranes in vitro. We also show that the efficiency of signal peptide insertion into the lipid bilayer depends on the fluidity of the bilayer.  相似文献   

13.
The β-sheet plaques that are the most obvious pathological feature of Alzheimer's disease are composed of amyloid-β peptides and are highly enriched in the metal ions Zn, Fe and Cu. The interaction of the full-length amyloid peptide, Aβ(1-42), with phospholipid lipid bilayers was studied in the presence of the metal-chelating drug, Clioquinol (CQ). The effect of cholesterol and metal ions was also determined using solid-state 31P and 2H NMR. CQ modulated the effect of metal ions on the integrity of the bilayer and although CQ perturbed the phospholipid membrane, the bilayer integrity was maintained. Model membranes enriched in cholesterol were studied under conditions of peptide association and incorporation. Solid-state NMR showed that the bilayer integrity was preserved in cholesterol-enriched membranes in comparison to phosphatidylcholine-phosphatidylserine bilayers. Changes in peptide structure, consistent with an increase in β-sheet, were observed using specifically 13C-labelled Aβ(1-42) by magic angle spinning NMR. Results using aligned phosphatidylcholine bilayers and completely 15N-labelled peptide indicated that the peptide aggregated. The results are consistent with oligomeric β-sheet structured peptides only partially penetrating the bilayer and cholesterol reducing the membrane disruption.  相似文献   

14.
Bechinger B 《FEBS letters》2001,504(3):161-165
Helical peptides reconstituted into oriented phospholipid bilayers were studied by proton-decoupled 15N solid-state NMR spectroscopy. Whereas hydrophobic channel peptides, such as the N-terminal region of Vpu of HIV-1, adopt transmembrane orientations, amphipathic peptide antibiotics are oriented parallel to the bilayer surface. The interaction contributions that determine the alignment of helical peptides in lipid membranes were analysed using model sequences, and peptides that change their topology in a pH-dependent manner have been designed. The energy contributions of histidines, lysines, leucines and alanines as well as the alignment of peptides and phospholipids under conditions of hydrophobic mismatch have been investigated in considerable detail.  相似文献   

15.
The F protein of canine distemper virus (CDV) is a classic type I glycoprotein formed by two polypeptides, F1 and F2. The N-terminal regions of the F1 polypeptides of CDV, measles virus and other paramyxoviruses present moderate to high homology, supporting the existence of a high conservation within these structures, which emphasises its role in viral-host cell membrane fusion. This N-terminal polypeptide is usually termed the fusion peptide. The fusion peptides of most viral fusion-mediating glycoproteins contain a high proportion of hydrophobic amino acids, which facilitates its insertion into target membranes during fusion. In this work we report on the interaction of a 31-residue synthetic peptide (FP31) corresponding to the N terminus of CDV F1 protein with phospholipid membranes composed of various phospholipids, as studied by means of various biophysical techniques. FTIR investigation of FP31 secondary structure in aqueous medium and in membranes resulted in a major proportion of alpha-helical structure which increased upon membrane insertion. Differential scanning calorimetry (DSC) showed that the presence of concentrations of FP31 as low as 0.1 mol%, in mixtures with L-alpha-dimyristoylphosphatidylcholine (DMPC), L-alpha-dipalmitoylphosphatidylcholine (DPPC) and L-alpha-distearoylphosphatidylcholine (DSPC), already affected the thermotropic properties of the gel to liquid-crystalline phase transition. In mixtures with the three lipids, increasing the concentration of peptide made the pretransition to disappear, and lowered and broadened the main transition. This effect was slightly stronger as the acyl chain length of the phospholipid grew larger. In the corresponding partial phase diagrams, no immiscibilities or critical points were observed. FTIR showed that incorporation of 1 mol% of peptide in DPPC shifted the antisymmetric and symmetric CH2 stretching bands to higher values, indicating the existence of an additional disordering of the acyl chain region of the fluid bilayer. FTIR studies of the Cz=O stretching band indicated that incorporation of FP31 into phosphatidylcholine membranes produced a strong dehydration of the polar part of the bilayer. In mixtures with L-alpha-dielaidoylphosphatidylethanolamine (DEPE), increasing FP31 concentrations broadened and shifted to lower temperatures the lamellar to hexagonal-HII phase transition, indicating that this peptide destabilized the bilayer and promoted formation of the hexagonal-HII phase. The results are discussed in terms of lipid-peptide hydrophobic mismatch and its influence on the role of the N-terminal polypeptide of CDV F1 protein in viral membrane fusion.  相似文献   

16.
Shorter analogues of a continuous epitope of hepatitis A virus, VP3(110-121) peptide, failed to react with convalescent sera, indicating the importance of the entire peptide in the epitope structure. To better understand the influence of the structural properties of this 12-mer peptide epitope on its biological activity, the interaction of smaller peptide analogues with phospholipid biomembrane models was investigated by a combination of spectroscopic and biophysical techniques. In this article we describe our findings concerning the surface activity and the interaction of peptides with simple mono- and bilayer membranes composed of a zwitterionic phospholipid (dipalmitoyl phosphatidylcholine, DPPC), an anionic phospholipid (dipalmitoyl phosphatidylglicerol, DPPG), or a DPPC/DPPG mixture. The results indicate that the net negative charge of the peptide is in some way responsible of the specific interactions between VP3(110-121) and membrane phospholipids, and necessary to induce beta-type conformations upon vesicle interaction.  相似文献   

17.
The mechanism of the interaction between the cell-penetrating peptide transportan 10 (tp10) and phospholipid membranes was investigated. Tp10 induces graded release of the contents of phospholipid vesicles. The kinetics of peptide association with vesicles and peptide-induced dye efflux from the vesicle lumen were examined experimentally by stopped-flow fluorescence. The experimental kinetics were analyzed by directly fitting to the data the numerical solution of mathematical kinetic models. A very good global fit was obtained using a model in which tp10 binds to the membrane surface and perturbs it because of the mass imbalance thus created across the bilayer. The perturbed bilayer state allows peptide monomers to insert transiently into its hydrophobic core and cross the membrane, until the peptide mass imbalance is dissipated. In that transient state tp10 "catalyzes" dye efflux from the vesicle lumen. These conclusions are consistent with recent reports that used molecular dynamics simulations to study the interactions between peptide antimicrobials and phospholipid bilayers. A thermodynamic analysis of tp10 binding and insertion in the bilayer using water-membrane transfer hydrophobicity scales is entirely consistent with the model proposed. A small bilayer perturbation is both necessary and sufficient to achieve very good agreement with the model, indicating that the role of the lipids must be included to understand the mechanism of cell-penetrating and antimicrobial peptides.  相似文献   

18.
We have investigated the influence of the neurotoxic Alzheimer's disease peptide amyloid-β (25-35) on the dynamics of phospholipid membranes by means of quasi-elastic neutron scattering in the picosecond time-scale. Samples of pure phospholipids (DMPC/DMPS) and samples with amyloid-β (25-35) peptide included have been compared. With two different orientations of the samples the directional dependence of the dynamics was probed. The sample temperature was varied between 290 K and 320 K to cover both the gel phase and the liquid-crystalline phase of the lipid membranes. The model for describing the dynamics combines a long-range translational diffusion of the lipid molecules and a spatially restricted diffusive motion. Amyloid-β (25-35) peptide affects significantly the ps-dynamics of oriented lipid membranes in different ways. It accelerates the lateral diffusion especially in the liquid-crystalline phase. This is very important for all kinds of protein-protein interactions which are enabled and strongly influenced by the lateral diffusion such as signal and energy transducing cascades. Amyloid-β (25-35) peptide also increases the local lipid mobility as probed by variations of the vibrational motions with a larger effect in the out-of-plane direction. Thus, the insertion of amyloid-β (25-35) peptide changes not only the structure of phospholipid membranes as previously demonstrated by us employing neutron diffraction (disordering effect on the mosaicity of the lipid bilayer system) but also the dynamics inside the membranes. The amyloid-β (25-35) peptide induced membrane alteration even at only 3 mol% might be involved in the pathology of Alzheimer's disease as well as be a clue in early diagnosis and therapy.  相似文献   

19.
Sterol carrier protein-2 (SCP2) is a small, 123 amino acid, protein postulated to play a role in intracellular transport and metabolism of lipids such as cholesterol, phospholipids, and branched chain fatty acids. While it is thought that interaction of SCP2 with membranes is necessary for lipid transfer, evidence for this possibility and identification of a membrane interaction domain within SCP2 has remained elusive. As shown herein with circular dichroism and a direct binding assay, SCP2 bound to small unilamellar vesicle (SUV) membranes to undergo significant alteration in secondary structure. The SCP2 amphipathic N-terminal 32 amino acids, comprised of two alpha-helical segments, were postulated to represent a putative phospholipid interaction site. This hypothesis was tested with a series of SCP2 N-terminal peptides, circular dichroism, and direct binding studies. The SCP2 N-terminal peptide (1-32)SCP2, primarily random coil in aqueous buffer, adopted alpha-helical structure upon interaction with membranes. The induction of alpha-helical structure in the peptide was maximal when the membranes contained a high mole percent of negatively charged phospholipid and of cholesterol. While deletion of the second alpha-helical segment within this peptide had no effect on formation of the first alpha-helix, it significantly weakened the peptide interaction with membranes. Substitution of Leu(20) with Glu(20) in the N-terminal peptide disrupted the alpha-helix structure and greatly weakened the peptide interaction with membranes. Finally, deletion of the first nine nonhelical amino acids had no effect either on formation of alpha-helix or on peptide binding to membranes. N-Terminal peptide (1-32)SCP2 competed with SCP2 for binding to SUV. These data were consistent with the N-terminus of SCP2 providing a membrane interaction domain that preferentially bound to membranes rich in anionic phospholipid and cholesterol.  相似文献   

20.
SecA protein, a principal component of the protein export machinery of Escherichia coli, is found both in the cytoplasm and inner membrane of cells. Previous in vitro and in vivo studies demonstrated that the interaction of SecA with the inner membrane requires the presence of physiological levels of anionic (acidic) phospholipids. In this report the degree of SecA insertion into model membranes and the conformational changes associated with this event have been examined. The extent of association of SecA with model membranes was determined by photolabeling with a hydrophobic reagent, and the depth of insertion of the protein into the phospholipid bilayer was determined by the amount of quenching of SecA fluorescence by both brominated and spin-labeled phospholipids. These methods demonstrated that SecA penetrates deep within the acyl chain region of the phospholipid bilayer. It was also found that SecA penetration into vesicles was associated with a major conformational change in the protein. This change can be induced by higher temperatures and involves a partial unfolding event as judged by differential scanning calorimetry, SecA fluorescence and increased sensitivity to proteolysis. These properties suggest the induction of a molten-globule-like conformation in a portion of the SecA polypeptide. This change was also induced at lower temperatures by the presence of membranes containing a physiological amount of the anionic phospholipid, phosphatidylglycerol. The partial unfolding and concomitant deep insertion of SecA into membranes may aid in the insertion of precursor proteins into the inner membrane and may influence possible interactions between SecA and the integral membrane export machinery components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号