首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian ferritins are predominantly heteropolymeric species consisting of 24 structurally similar, but functionally different subunit types, named H and L, that co-assemble in different proportions. Despite their discovery more than 8 decades ago, recombinant human heteropolymer ferritins have never been synthesized, owing to the lack of a good expression system. Here, we describe for the first time a unique approach that uses a novel plasmid design that enables the synthesis of these complex ferritin nanostructures. Our study reveals an original system that can be easily tuned by altering the concentrations of two inducers, allowing the synthesis of a full spectrum of heteropolymer ferritins, from H-rich to L-rich ferritins and any combinations in-between (isoferritins). The H to L subunit composition of purified ferritin heteropolymers was analyzed by SDS-PAGE and capillary gel electrophoresis, and their iron handling properties characterized by light absorption spectroscopy. Our novel approach allows future investigations of the structural and functional differences of isoferritin populations, which remain largely obscure. This is particularly exciting since a change in the ferritin H- to L-subunit ratio could potentially lead to new iron core morphologies for various applications in bio-nanotechnologies.  相似文献   

2.
Plant ferritin is a naturally occurring heteropolymer in plastids, where Fe(2+) is oxidatively deposited into the protein. However, the effect of this process on the coexistence of DNA and plant ferritin in the plastids is unknown. To investigate this effect, we built a system in which various plant ferritins and DNA coexist, followed by treatment with ferrous ions under aerobic conditions. Interestingly, naturally occurring soybean seed ferritin (SSF), a heteropolymer with an H-1/H-2 ratio of 1 to 1 in the apo form, completely protected DNA from oxidative damage during iron oxidative deposition into protein, and a similar result was obtained with its recombinant form, but not with its homopolymeric counterparts, apo rH-1 and apo rH-2. We demonstrate that the difference in DNA protection between heteropolymeric and homopolymeric plant ferritins stems from their different strategies to control iron chemistry during the above oxidative process. For example, the detoxification reaction occurs only in the presence of apo heteropolymeric SSF (hSSF), thereby preventing the production of hydroxyl radicals. In contrast, hydroxyl radicals are apparently generated via the Fenton reaction when apo rH-1 or rH-2 is used instead of apo hSSF. Thus, a combination of H-1 and H-2 subunits in hSSF seems to impart a unique DNA-protective function to the protein, which was previously unrecognized. This new finding advances our understanding of the structure and function of ferritin and of the widespread occurrence of heteropolymeric plant ferritin in nature.  相似文献   

3.
The primary cultures of canine lens epithelial cells were transiently transfected with cDNAs for dog ferritin H- or L-chains in order to study differential expression of these chains. By using chain-specific antibodies, we determined that at 48 h after transfection overexpression of L-chain was much higher (9-fold over control) than that of H-chain (1.7-fold). We discovered that differentially transfected cells secrete overexpressed chains as homopolymeric ferritin into the media. Forty-eight hours after transfection accumulation of H-ferritin in the media was much higher (3-fold) than that of L-ferritin. This resulted in lowering of the concentration of H-chain in the cytosol. Co-transfection of cells with both H- and L-chain cDNAs increased the intracellular levels of H-chain and eliminated secretion of H-ferritin to the media. We concluded that lens epithelial cells differentially regulate concentration of both ferritin chains in the cytosol. The overexpressed L-chain accumulated in the cytosol as predominantly homopolymeric L-ferritin. This is in contrast to H-chain, which is removed to the media unless there is an L-chain available to form heteropolymeric ferritin. These data indicate that the inability of cells to more strictly control cytosolic levels of L-chain may augment its accumulation in lenses of humans with hereditary hyperferritinemia cataract syndrome, which is caused by overexpression of L-chain due to mutation in the regulatory element in the untranslated region of the mRNA of the chain.  相似文献   

4.
Mammalian ferritins are predominantly heteropolymeric species consisting of 2 structurally similar, but functionally and genetically distinct subunit types, called H (Heavy) and L (Light). The two subunits co-assemble in different H and L ratios to form 24-mer shell-like protein nanocages where thousands of iron atoms can be mineralized inside a hollow cavity. Here, we use differential scanning calorimetry (DSC) to study ferritin stability and understand how various combinations of H and L subunits confer aspects of protein structure–function relationships. Using a recently engineered plasmid design that enables the synthesis of complex ferritin nanostructures with specific H to L subunit ratios, we show that homopolymer L and heteropolymer L-rich ferritins have a remarkable hyperthermostability (Tm = 115 ± 1°C) compared to their H-ferritin homologues (Tm = 93 ± 1°C). Our data reveal a significant linear correlation between protein thermal stability and the number of L subunits present on the ferritin shell. A strong and unexpected iron-induced protein thermal destabilization effect (ΔTm up to 20°C) is observed. To our knowledge, this is the first report of recombinant human homo- and hetero-polymer ferritins that exhibit surprisingly high dissociation temperatures, the highest among all known ferritin species, including many known hyperthermophilic proteins and enzymes. This extreme thermostability of our L and L-rich ferritins may have great potential for biotechnological applications.  相似文献   

5.
Mitochondrial ferritin (MtF) is a newly identified ferritin encoded by an intronless gene on chromosome 5q23.1. The mature recombinant MtF has a ferroxidase center and binds iron in vitro similarly to H-ferritin. To explore the structural and functional aspects of MtF, we expressed the following forms in HeLa cells: the MtF precursor (approximately 28 kDa), a mutant MtF precursor with a mutated ferroxidase center, a truncated MtF lacking the approximately 6-kDa mitochondrial leader sequence, and a chimeric H-ferritin with this leader sequence. The experiments show that all constructs with the leader sequence were processed into approximately 22-kDa subunits that assembled into multimeric shells electrophoretically distinct from the cytosolic ferritins. Mature MtF was found in the matrix of mitochondria, where it is a homopolymer. The wild type MtF and the mitochondrially targeted H-ferritin both incorporated the (55)Fe label in vivo. The mutant MtF with an inactivated ferroxidase center did not take up iron, nor did the truncated MtF expressed transiently in cytoplasm. Increased levels of MtF both in transient and in stable transfectants resulted in a greater retention of iron as MtF in mitochondria, a decrease in the levels of cytosolic ferritins, and up-regulation of transferrin receptor. Neither effect occurred with the mutant MtF with the inactivated ferroxidase center. Our results indicate that exogenous iron is as available to mitochondrial ferritin as it is to cytosolic ferritins and that the level of MtF expression may have profound consequences for cellular iron homeostasis.  相似文献   

6.
The redox reactivities of air-oxidized apo horse spleen ferritin (HoSF) and apo rat liver ferritin (RaF) were examined by microcoulometry and reductive optical titrations. Microcoulometry on several independent lots of commercial HoSF revealed two distinct types of redox activity: one requiring 3-4 electrons and one requiring 6-7 electrons for full reduction of the protein shell. ApoRaF required 8-9 electrons to fully reduce the oxidized form. Reductive optical titrations confirmed the microcoulometric reduction stoichiometry and, in addition, showed that the spectra of both oxidized and reduced apoHoSF were distinct and possessed absorbances tailing into the visible region. The redox reactivity of both apoRaF and apoHoSF correlated with their H-subunit composition. Identical microcoulometric and optical experiments were conducted with recombinant apo human liver heavy (rHuHF) and light (rHuLF) ferritins, but neither was redox-active. These results suggest that the redox reactivity of native ferritins is due to their heteropolymeric nature. This was confirmed by mixing various proportions of rHuHF and rHuLF, dissociating the 24-mers into individual subunits with guanidine hydrochloride at pH 3.5, and renaturing to form heteropolymeric 24-mers. Microcoulometric measurements of these apoheteropolymers reassembled in vitro showed that they were redox-active like their native apoheteropolymer counterparts. The redox activity of these apoheteropolymers increased with H-subunit composition, reached a maximum near 12 H- and 12 L-subunits, and then declined to zero with increasing L-subunit composition. The decline in redox reactivity at high L-subunit concentrations indicates that both H- and L-subunits are involved in forming the observed redox centers. Apoheteropolymers formed from rHuLF and W93F (an H-chain mutant) were redox-inactive, suggesting that the conserved tryptophan is necessary for redox center formation.  相似文献   

7.
Enhanced expression of the human ferritin H- and L-chain genes (hfH and hfL) was achieved in Saccharomyces cerevisiae by modifying the N-terminal region of the structural genes. The yeast episomal vector YEp352 with the galactokinase1 (GAL1) promoter was used to construct expression plasmids. The expression of each gene was examined using SDS-PAGE and Western blot analysis. Iron uptake was examined and the cellular iron concentration was increased in S. cerevisiae expressing hfH. When cultured cells were incubated with 14.3 mM Fe(2+), the recombinant yeast expressing hfH had a cellular iron concentration 1.5 times greater than that of the control strain. The relationship between the iron taken up by the cells and the expressed proteins was examined. Iron-binding H-chain ferritin (H-ferritin) was seen in the recombinant S. cerevisiae incubated with iron, while small amounts of iron-binding L-chain ferritin (L-ferritin) were observed. Combined, these observations demonstrate that human H-ferritin has a function in iron storage in S. cerevisiae, while L-ferritin does not.  相似文献   

8.
Murine monoclonal antibodies were elicited by the recombinant human H-ferritin overexpressed in Escherichia coli. They had a specificity analogous to that of the antibodies elicited by natural human H-chain, and all of them showed low additivity in binding the recombinant ferritin. Four antibodies of each group were challenged with four H-ferritin mutants overexpressed in E. coli, altered in different accessible areas of the molecule. They consisted of deletions of the first 13 and last 22 amino acids, a duplication of an 18 amino acid sequence in the loop region, and a substitution of a 5 amino acid stretch in the three-fold symmetry axis region. Double diffusion, immunodot analyses and inhibition plots indicated that: (1) all the mutants were recognized by at least one antibody; (2) the deletion of the N-terminus and the duplication in the loop region had the strongest effect on antibody binding; and (3) epitope boundaries of the various antibodies could not be recognized. The antibodies were tested with H-containing ferritins from rat and hen hearts, and showed low or absent reactivities despite their high structural homology with human ferritin. Comparison of the amino acid sequences of human, mouse, rat and hen H-chains, together with mutational data, suggested that; (i) ferritin epitopes are large, probably encompassing a large portion of the subunit surface and (ii) Thr-5 and Cys-90 have a role in H-ferritin immunogenicity.  相似文献   

9.
Sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) was used to characterize the H- and L-subunit ratios of several mammalian ferritins and one bacterioferritin. Traditionally, SDS-PAGE has been used to characterize the H- and L-subunit ratios in ferritin; however, this technique is relatively slow and requires staining, destaining, and scanning before the data can be processed. In addition, the H- and L-subunits of ferritin are fairly close in molecular weight (approximately 21,000 and approximately 20,000, respectively) and are often difficult to resolve in SDS-PAGE slab gels. In contrast, SDS-CGE requires no staining or destaining procedures and the peak quantitation is superior to SDS-PAGE. SDS-CGE is effective in quickly resolving the H- and L-subunits of ferritins from horse spleen, human liver, recombinant human H and L homopolymers, and mixtures of the two- and the single-subunit of a bacterioferritin from Escherichia coli. The technique has also proven useful in assaying the quality of the protein sample from both commercial and recombinant sources. Significant amounts of low-molecular-weight degradation products were detected in all commercial sources of horse spleen ferritin. Most commercial horse spleen ferritins lacked intact H-subunits under denaturing conditions.  相似文献   

10.
Ferritin receptors are present on the membranes of many normal and malignant cells. The binding specificity of these receptors for H and L subunits was examined using recombinant human ferritin homopolymers. At least two different types of ferritin receptors were found, one derived from normal rat, pig, and human liver which shows similar binding of H- and L-ferritin. The second receptor type, specific for the H-chain ferritin, has been identified on membranes of hepatic and other transformed cells, and of normal lymphoblasts and erythroid precursors. These two receptor types may have different metabolic functions: the hepatic receptor acting as a scavenger for circulating ferritin and possibly for iron exchange between hepatocytes and macrophages; the H-ferritin receptor having a regulatory role which is not directly related to iron metabolism. The expression of the H-ferritin receptor is closely related to the activation and proliferation state of the cells. Addition of H-ferritin to the culture medium of cells expressing the H-ferritin receptor resulted in inhibition of cell proliferation and of colony formation.  相似文献   

11.
12.
Soybean seed ferritin is essential for human iron supplementation and iron deficiency anemia prevention because it contains abundant bioavailable iron and is frequently consumed in the human diet. However, it is poorly understood in regards its several properties, such as iron mineralization, subunit assembly, and protein folding. To address these issues, we decided to prepare the soybean seed ferritin complex via a recombinant DNA approach. In this paper, we report a rapid and simple Escherichia coli expression system to produce the soybean seed ferritin complex. In this system, two subunits of soybean seed ferritin, H-2 and H-1, were encoded in a single plasmid, and optimal expression was achieved by additionally coexpressing a team of molecular chaperones, trigger factor and GroEL-GroES. The His-tagged ferritin complex was purified by Ni2+ affinity chromatography, and an intact ferritin complex was obtained following His-tagged enterokinase (His-EK) digestion. The purified ferritin complex synthesized in E. coli demonstrated some reported features of its native counterpart from soybean seed, including an apparent molecular weight, multimeric assembly, and iron uptake activity. We believe that the strategy described in this paper may be of general utility in producing other recombinant plant ferritins built up from two types of subunits.  相似文献   

13.
Ferritin is an iron storage protein found in most living organisms as a natural assembled macromolecule. For studying the functional ability of the ferritin assembly, human H- and L-ferritins were expressed and purified from Pichia pastoris strain GS115. The recombinant H- and L-ferritins showed a globular form with transmission electron microscopy. The rate of iron uptake for H-ferritin was significantly faster than that for the L-ferritin in vitro. By gel permeation chromatography analysis, recombinant ferritins were confirmed as multimeric subunits with high molecular weight and it was indicated that assembled subunits were able to store iron in vivo.  相似文献   

14.
Ferritins: a family of molecules for iron storage, antioxidation and more   总被引:1,自引:0,他引:1  
Ferritins are characterized by highly conserved three-dimensional structures similar to spherical shells, designed to accommodate large amounts of iron in a safe, soluble and bioavailable form. They can have different architectures with 12 or 24 equivalent or non-equivalent subunits, all surrounding a large cavity. All ferritins readily interact with Fe(II) to induce its oxidation and deposition in the cavity in a mineral form, in a reaction that is catalyzed by a ferroxidase center. This is an anti-oxidant activity that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction. The mechanism of ferritin iron incorporation has been characterized in detail, while that of iron release and recycling has been less thoroughly studied. Generally ferritin expression is regulated by iron and by oxidative damage, and in vertebrates it has a central role in the control of cellular iron homeostasis. Ferritin is mostly cytosolic but is found also in mammalian mitochondria and nuclei, in plant plastids and is secreted in insects. In vertebrates the cytosolic ferritins are composed of H and L subunit types and their assembly in a tissues specific ratio that permits flexibility to adapt to cell needs. The H-ferritin can translocate to the nuclei in some cell types to protect DNA from iron toxicity, or can be actively secreted, accomplishing various functions. The mitochondrial ferritin is found in mammals, it has a restricted tissue distribution and it seems to protect the mitochondria from iron toxicity and oxidative damage. The various functions attributed to the cytosolic, nuclear, secretory and mitochondrial ferritins are discussed.  相似文献   

15.
Transfectant HeLa cells were generated that expressed human ferritin H-chain wild type and an H-chain mutant with inactivated ferroxidase activity under the control of the tetracycline-responsive promoter (Tet-off). The clones accumulated exogenous ferritins up to levels 14-16-fold over background, half of which were as H-chain homopolymers. This had no evident effect in the mutant ferritin clone, whereas it induced an iron-deficient phenotype in the H-ferritin wild type clone, manifested by approximately 5-fold increase of IRPs activity, approximately 2.5-fold increase of transferrin receptor, approximately 1.8-fold increase in iron-transferrin iron uptake, and approximately 50% reduction of labile iron pool. Overexpression of the H-ferritin, but not of the mutant ferritin, strongly reduced cell growth and increased resistance to H(2)O(2) toxicity, effects that were reverted by prolonged incubation in iron-supplemented medium. The results show that in HeLa cells H-ferritin regulates the metabolic iron pool with a mechanism dependent on the functionality of the ferroxidase centers, and this affects, in opposite directions, cellular growth and resistance to oxidative damage. This, and the finding that also in vivo H-chain homopolymers are much less efficient than the H/L heteropolymers in taking up iron, indicate that functional activity of H-ferritin in HeLa cells is that predicted from the in vitro data.  相似文献   

16.
We investigated the remodeling of iron metabolism during megakaryocytic development of K562 cells. Differentiation was successfully verified by increase of the megakaryocytic marker CD61 and concomitant decrease of the erythroid marker γ-globin. The reduction of erythroid properties was accompanied by changes in the cellular iron content and in the expression of proteins regulating cellular iron homeostasis. Independent of available inorganic or transferrin-bound extracellular iron, total intracellular iron increases while the iron-to-protein ratio decreases. The iron exporter ferroportin is downregulated within 1-6 h, followed by downregulation of transferrin receptor-1 (TfR1) and ferritin heavy chain (H-ferritin) mainly after 24-48 h. The hemochromatosis protein-1, a ligand of TfR1, peaked after 24 h. All effects were independent of iron supply with the exception of H-ferritin, which was restored by excess iron. While alterations of CD61, TfR1 and ferritin expression were revoked by a protein kinase C inhibitor, downregulation of ferroportin remained unaffected.  相似文献   

17.
18.
Ferritin,iron homeostasis,and oxidative damage   总被引:17,自引:0,他引:17  
Ferritin is one of the major proteins of iron metabolism. It is almost ubiquitous and tightly regulated by the metal. Biochemical and structural properties of the ferritins are largely conserved from bacteria to man, although the role in the regulation of iron trafficking varies in the different organisms. Recent studies have clarified some of the major aspects of the reaction between iron and ferritin, which results in the formation of the iron core and production of hydrogen peroxide. The characterization of cellular models in which ferritin expression is modulated has shown that the ferroxidase catalytic site on the H-chain has a central role in regulating iron availability. In turn, this has secondary effects on a number of cellular activities, which include proliferation and resistance to oxidative damage. Moreover, the response to apoptotic stimuli is affected by H-ferritin expression. Altered ferritin L-chain expression has been found in at least two types of genetic disorders, although its role in the determination of the pathology has not been fully clarified. The recent discovery of a new ferritin specific for the mitochondria, which is functionally similar to the H-ferritin, opens new perspectives in the study of the relationships between iron, oxidative damage and free radicals.  相似文献   

19.
The binding characteristics and specificity of the rat hepatic ferritin receptor were investigated using ferritins prepared from rat liver, heart, spleen, kidney and serum, human liver and serum, guinea pig liver and horse spleen as well as ferritins enriched with respect to either H- or L-type subunit composition, prepared by chromatofocusing of rat liver ferritin on Mono-P or by reverse-phase chromatography of ferritin subunits on ProRPC 5/10. No significant difference was apparent in the binding of any of the tissue ferritins, or of ferritins of predominantly acidic or basic subunit composition. However, serum ferritin bound with a lower affinity. The effect of carbohydrate on the ferritin-receptor binding was examined by glycosidase treatment of tissue and serum ferritins. Tissue ferritin binding was unaffected, while serum ferritin binding affinity was increased to that of the tissue ferritins. Inhibition of ferritin binding by lactoferrin was not due to common carbohydrate moieties as previously suggested but was due to direct binding of lactoferrin to ferritin. Therefore, carbohydrate residues do not appear to facilitate receptor-ferritin binding, and sialic acid residues present on serum ferritin may in fact interfere with binding. The results indicate that the hepatic ferritin receptor acts preferentially to remove tissue ferritins from the circulation. The lower binding affinity of serum ferritin for the ferritin receptor explains its slower in vivo clearance relative to tissue ferritins.  相似文献   

20.
The binding characteristics and specificity of the rat hepatic ferritin receptor were investigated using ferritins prepared from rat liver, heart, spleen, kidney and serum, human liver and serum, guinea pig liver and horse spleen as well as ferritins enriched with respect to either H- or L-type subunit composition, prepared by chromatofocusing of rat liver ferritin on Mono-P or by reverse-phase chromatography of ferritin subunits on ProRPC 5/10. No significant difference was apparent in the binding of any of the tissue ferritins, or of ferritins of predominantly acidic or basic subunit composition. However, serum ferritin bound with a lower affinity. The effect of carbohydrate on the ferritin-receptor binding was examined by glycosidase treatment of tissue and serum ferritins. Tissue ferritin binding was unaffected, while serum ferritin binding affinity was increased to that of the tissue ferritins. Inhibition of ferritin binding by lactoferrin was not due to common carbohydrate moieties as previously suggested but was due to direct binding of lactoferrin to ferritin. Therefore, carbohydrate residues do not appear to facilitate receptor-ferritin binding, and sialic acid residues present on serum ferritin may in fact interfere with binding. The results indicate that the hepatic ferritin receptor acts preferentially to remove tissue ferritins from the circulation. The lower binding affinity of serum ferritin for the ferritin receptor explains its slower in vivo clearance relative to tissue ferritins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号