首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymatic conversion of xanthoxin to abscisic acid by cell-free extracts of Phaseolus vulgaris L. leaves has been found to be a two-step reaction catalyzed by two different enzymes. Xanthoxin was first converted to abscisic aldehyde followed by conversion of the latter to abscisic acid. The enzyme activity catalyzing the synthesis of abscisic aldehyde from xanthoxin (xanthoxin oxidase) was present in cell-free leaf extracts from both wild type and the abscisic acid-deficient molybdopterin cofactor mutant, Az34 (nar2a) of Hordeum vulgare L. However, the enzyme activity catalyzing the synthesis of abscisic acid from abscisic aldehyde (abscisic aldehyde oxidase) was present only in extracts of the wild type and no activity could be detected in either turgid or water stressed leaf extracts of the Az34 mutant. Furthermore, the wilty tomato mutants, sitiens and flacca, which do not accumulate abscisic acid in response to water stress, have been shown to lack abscisic aldehyde oxidase activity. When this enzyme fraction was isolated from leaf extracts of P. vulgaris L. and added to extracts prepared from sitiens and flacca, xanthoxin was converted to abscisic acid. Abscisic aldehyde oxidase has been purified about 145-fold from P. vulgaris L. leaves. It exhibited optimum catalytic activity at pH 7.25 in potassium phosphate buffer.  相似文献   

2.
Abscisic acid production by Cercospora rosicola Passerini in liquid shake culture was measured with different amino acids in combination and singly as nitrogen sources and with different amounts of thiamine in the media. Production of abscisic acid was highest with aspartic acid-glutamic acid and aspartic acid-glutamic acid-serine mixtures as nitrogen sources. Single amino acids that supported the highest production of abscisic acid were asparagine and monosodium glutamate. Thiamine was important for abscisic acid production. Leucine inhibited abscisic acid production. C. rosicola produced abscisic acid in the dark, but production more than doubled in the presence of light.  相似文献   

3.
From previous work (Zeevaart 1980 Plant Physiol 66: 672-678) Xanthium leaves are known to contain a high level of alkali-hydrolyzable conjugated abscisic acid. This abscisic acid conjugate has been isolated and identified by mass spectrometry, nuclear magnetic resonance, and chemical and enzymic degradation techniques, as the glucosyl ester of abscisic acid, β-d-glucopyranosyl abscisate. The glucosyl ester of abscisic acid was the only abscisic acid conjugate found in Xanthium leaves. It was also isolated from spinach leaves.  相似文献   

4.
Abscisic Acid and stomatal regulation   总被引:20,自引:13,他引:7       下载免费PDF全文
The closure of stomata by abscisic acid was examined in several species of plants through measurements of CO2 and H2O exchange by the leaf. The onset of closure was very rapid, beginning at 3 minutes from the time of abscisic acid application to the cut base of the leaf of corn, or at 8 or 9 minutes for bean, Rumex and sugarbeet; rose leaves were relatively slow at 32 minutes. The timing and the concentration of abscisic acid needed to cause closure were related to the amounts of endogenous abscisic acid in the leaf. Closure was obtained in bean leaves with 8.9 picomoles/cm2. (+)-Abscisic acid had approximately twice the activity of the racemic material. The methyl ester of abscisic acid was inactive, and trans-abscisic acid was likewise inactive. The effects of stress on levels of endogenous abscisic acid, and the ability of very small amounts of abscisic acid to cause rapid closure suggests that stomatal control is a regulatory function of this hormone.  相似文献   

5.
Germination of cottonseed (Gossypium hirsutum L.) was inhibited by abscisic acid. Inhibition was greater when seeds were soaked in abscisic acid for 5 hours and dried prior to germination than when abscisic acid was applied in the germination medium. (2-Chloroethyl)phosphonic acid, gibberellic acid, and kinetin partially overcame the inhibitory action of abscisic acid. Combinations of (2-chloroethyl)phosphonic acid with gibberellic acid or kinetin were more effective than the individual substances. Germination also was partially restored by removal of seed coats. Fusicoccin completely restored germination of abscisic acidtreated seeds.  相似文献   

6.
(±)-5-(1,2-Epoxy-2,6,6-trimethylcyclohexyl) -3-methyl[2-14C]penta-cis-2-trans-4-dienoic acid is converted into abscisic acid by tomato fruit in 1.8% yield (or 3.6% of one enantiomer if only one is utilized) and 15% of the abscisic acid is derived from the precursor. The 2-trans-isomer is not converted. The amounts of [2-3H]mevalonate incorporated into abscisic acid have shown that the 40-times higher concentration of (+)-abscisic acid in wilted wheat leaves in comparison with unwilted ones reported by Wright & Hiron (1969) arises by synthesis. The conversion of (±)-5-(1,2-epoxy-2,6,6-trimethylcyclohexyl) -3-methyl-[2-14C]penta-cis-2-trans-4-dienoic acid into abscisic acid by wheat leaves is also affected in the same way by wilting and it is concluded from this that the epoxide or a closely related compound derived from it is on the biosynthetic pathway leading to abscisic acid. The oxygen of the epoxy group was shown, by 18O-labelling, to become the oxygen of the tertiary hydroxyl group of abscisic acid.  相似文献   

7.
Several radioactive analogues of abscisic acid have been tested for their growth-inhibitory effects and their metabolism in excised embryonic axes of Phaseolus vulgaris. The compounds tested were the methyl and ethyl esters of 2-14C-abscisic acid and the cis- and trans-1′,4′-diols of 2-14C-abscisic acid. All four compounds cause less growth inhibition than abscisic acid, and all four compounds are converted to abscisic acid in the axes at rates which are sufficient to account for most, if not all, of the observed growth-inhibitory activity. None of the four compounds is metabolized to the extent that abscisic acid is metabolized in the axes, suggesting that the structural requirements for growth-inhibitory activity and metabolism may be similar.  相似文献   

8.
Hormones which inhibit senescence in Rumex leaf tissue in the dark include gibberellic acid and the cytokinin zeatin. Abscisic acid accelerates senescence in this tissue. Other workers have proposed that cytokinins, but not gibberellins, interact with abscisic acid in senescing Rumex leaf tissue. The present study reinvestigates the question of interaction using measurements of chlorophyll degradation kinetics as parameters of senescence rate and draws the conclusion that neither zeatin nor gibberellic acid interact with abscisic acid in this system. In support of this conclusion are these results. Zeatin clearly cannot overcome the effects of abscisic acid when hormone solutions are replaced every other day. The kinetics of chlorophyll breakdown for tissue treated with unreplaced saturating zeatin solutions is different from that of tissue exposed to saturating zeatin plus abscisic acid. The observed rates of chlorophyll breakdown for tissue treated with abscisic acid and zeatin agree closely with predicted rates using a multiplicative model for independent action of the two hormones.  相似文献   

9.
A relationship between abscisic acid concentration and leaf water status is reported. Water potentials were measured in leaves of Ambrosia artemisiifolia L. and Ambrosia trifida L. throughout a period of dehydration of intact plants. Tissues from the same leaves were analyzed for abscisic acid. For both species, abscisic acid began to increase in a critical water potential range (−10 to −12 atmospheres). These data suggest a threshold water potential that stimulates abscisic acid synthesis. The data support the hypothesis that a small change in water potential could affect stomatal resistance to water loss by means of a very sensitive chemical feedback control mechanism.  相似文献   

10.
Excised embryonic bean axes (Phaseolus vulgaris, var. White Marrowfat) rapidly metabolize 2-14C-(±)-abscisic acid to two compounds, M-1 and M-2, which have very low growth-inhibitory activity. Chemical tests indicate the M-1 and M-2 are not previously described abscisic acid metabolites. M-2 accumulates in the axes and evidence is presented for the hypothesis that abscisic acid → M-1 → M-2. Zeatin, which partially reverses the abscisic acid-mediated growth inhibition of axes, neither decreases abscisic acid uptake nor causes any major changes in its metabolism. It was observed that axes transferred from abscisic acid-containing solutions to buffer resume control rates of fresh weight increase while still containing considerable quantities of abscisic acid.  相似文献   

11.
12.
Of nine plant growth regulators (indoleacetic acid, 1-naphthalene acetic acid, gibberellic acid, giberellin 4/7, 6-benzylaminopurine, 6-furfurylaminopurine, abscisic acid, and 1-aminocyclopropane carboxylic acid) tested, only 6-benzylaminopurine and abscisic acid affected 14C-photosynthate unloading from excised seed coats of Phaseolus vulgaris L. Unloading, in the presence of KCl, was stimulated by 25 to 40%. Stimulation occurred immediately for 6-benzylaminopurine and for abscisic acid within 10 to 12 minutes of application.  相似文献   

13.
Gibberellic acid-induced α-amylase synthesis in barley (Hordeum vulgare L.) aleurone layers was inhibited by abscisic acid, and the inhibition was partly removed by additional gibberellic acid alone and by ethylene alone. Together additional gibberellic acid and ethylene almost eliminated abscisic acid inhibition of amylase synthesis. Time course studies of these phenomena showed that the effect of abscisic acid, ethylene, and varying concentrations of gibberellic acid on the course of amylase synthesis were either to speed up or slow down the whole process and not to affect the lag phase or the linear phase separately. The data are discussed in relation to previous studies of abscisic acid-gibberellic acid interaction.  相似文献   

14.
The structure of a novel abscisic acid metabolite isolated from cell suspension cultures of Nigella damascena fed [2-14C]abscisic acid was iden  相似文献   

15.
The degree of stomatal sensitivity to CO2 was positively correlated with the content of abscisic acid of leaves of Xanthium strumarium grown in a greenhouse and then transferred for 24 hours or more to a cold (5/10 C, night/day) or a warm growth chamber (20/23 C). This correlation did not exist in plants kept in the greehouse continuously (high abscisic acid, no CO2 sensitivity), nor in plants transferred from the cold to the warm chamber (low abscisic acid, high CO2 sensitivity). The abscisic acid content of leaves was correlated with water content only within narrow limits, if at all. At equal water contents, prechilled leaves contained more abscisic acid than leaves of plants pretreated in the warm chamber. There appear to be at least two compartments for abscisic acid in the leaf.  相似文献   

16.
The investigations carried out to find the role of abscisic acid in the phenomena of abscission of flower buds and bolls of cotton (Gossypium hirsutum L. cv. ‘H-14’) have shown abscisic acid content to be low in retained bolls as compared to that in the abscising ones of the same age, suggesting that relatively higher endogenous abscisic acid content to be promotive of abscission. Abscisic acid applied exogenously either to intact flower buds/bolls or boll explants promoted their abscission. Naphthalene acetic acid not only reduced abscission but also could erase completely the promotive effect of abscisic acid on abscission. Gibberellic acid promoted abscission in intact buds and boll explants but applied to intact bolls it reduced their shedding even more than naphthalene acetic acid. Gibberellic acid could also counteract the promotive effect of abscisic acid in the case of intact bolls but enhanced that of boll explants. All the cytokinin-furfurylamino-purine treatments given other than at the abscission zone promoted abscission. Furfurylaminopurine applied in combination with abscisic acid showed some antagonistic effect in the case of intact bolls and boll explants abscission zone treatments. Ascorbic acid applied at a relatively lower dose (0.025 mM) reduced shedding but applied at a higher dose it showed promotion. Ascorbic acid could erase the promotive effect of abscisic acid on abscission to a significant extent.  相似文献   

17.
Quantification of abscisic Acid in a single maize root   总被引:1,自引:0,他引:1       下载免费PDF全文
Quantitative analyses of abscisic acid in the elongating zone of a single maize root (Zea mays L. cv LG 11) were performed by gas chromatography-mass spectrometry using negative chemical ion ionization. Data showed that the more abscisic acid, the slower the growth, but a large dispersion of individual values was observed. We assume that abscisic acid is perhaps not correlated only to the growth rate.  相似文献   

18.
《Phytochemistry》1986,25(5):1103-1105
Feeding of(±)-abscisic acid to leaves of Xanthium strumarium resulted in formation of a new metabolite. The compound was identified as 7′-hydroxy (−)-R-abscisic acid by high resolution mass spectrometry of its methyl ester and monoacetate, and by optical rotary dispersion. The numbering system for abscisic acid has been extended to include the exocyclic methyl groups. Feeding racemic [2-14C]abscisic acid to Xanthium leaves resulted in ca 20% conversion of the radiolabelled compound into the new metabolite. Evidence is presented that, in Xanthium, only the synthetic (−)-R-enantiomer of abscisic acid is hydroxylated at the 7′-position.  相似文献   

19.
Braun JW  Khan AA 《Plant physiology》1975,56(6):731-733
The concentrations of abscisic acid in Grand Rapids lettuce (Lactuca sativa L.) seeds imbibed under conditions which promote or inhibit germination were determined by electron capture-gas chromatography. The concentration of abscisic acid in dry seeds was 12 to 14 nanograms per 100 milligrams. During 24-hour imbibition, the abscisic acid content diminished more rapidly during conditions which allow germination (25 C in light) than in conditions which inhibited germination (35 C in light or darkness at 25 C). A decrease in endogenous levels of abscisic acid was not always correlated with germination.  相似文献   

20.
Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.

Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号