首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The regularities of biosynthesis of 6-aminopenicillanic acid (6-APA), benzylpenicillin (BP) and phenoxymethylpenicillin (PMP) by the strains under the investigation did not significantly differ. In the absence of the precursor both the strains mainly synthesized 6-APA. Phenylacetic acid (PAA) and phenoxyacetic acid (POAA) provided directed biosynthesis: the fungus synthesized BP or PMP depending on the precursor nature. When the amount of the precursors was not sufficient, 6-APA was synthesized along with the penicillins. PAA proved to be a more active precursor than POAA. When both precursors were present in the fermentation broth, only BR was synthesized. An important distinction of strain 316A was its increased sensitivity to PAA especially in the initial period. After an increase in the PAA concentration the growth rate of strain 316A lowered to a greater extent than that of strain 284A. This was likely to determine the higher levels of penicillin production by strain 316A in the presence of POAA, a nontoxic precursor. A procedure for supplying the precursors was developed. Under the laboratory conditions it provided high levels of the penicillin production.  相似文献   

2.
The synthesis of ampicillin catalyzed by Escherichia coli penicillin acylase was optimized in an aqueous system with partially dissolved antibiotic nucleus 6-aminopenicillanic acid (6-APA). The yields of both 6-APA and acyl donor could be improved by repetitively adding substrates to the reaction, allowing the concentration of 6-APA to remain saturated throughout. In this reaction concept, with four subsequent additions of substrates, 97% conversion of 6-APA and 72% of D-(-)-phenylglycine methyl ester (D-PGM) to ampicillin was achieved. The synthetic potential of this concept was estimated using a mathematical model which showed that by increasing the amount of added substrates a nearly quantitative conversion of 6-APA and 85% conversion of acyl donor into ampicillin could be achieved.  相似文献   

3.
Penicillin G (Pen-G) was hydrolyzed to 6-aminopenicillanic acid (6-APA) and phenylacetic acid (PAA) in a chromatographic reactor-separator using the mixture of immobilized Escherichia coli cells and a macroporous adsorbent as stationary phase and a phosphate buffer of pH 7.8 as eluant. Pen-G conversion of 98% was observed without adjustment of the eluant pH due to the effective separation of 6-APA from Pen-G and PAA. At a sample load of 600 mg Pen-G, the volume overload gave higher Pen-G conversion (86%) than the mass overload (68%), while their difference in product resolution (0.9 and 1.0, respectively) was insignificant.  相似文献   

4.
The equilibrium constant for penicillin amidase-catalyzed hydrolysis of benzylpenicillin(Keg =3.00 +/- 0.24 x 10(-3) M at pH 5.0) and the ionization constants for phenylacetic acid (PAA) and the amino groups of 6-aminopenicillanic acid (6-APA) were determined (4.20 and 4.60 under conditions of the kinetic experiments respectively). The experimental data at pH 6.0 satisfactorily correlated with the theoretical pH-dependence for Keg constructed according to the hypothesis that benzylpenicillin synthesis has a thermodynamic optimum at pH 4.4 equal to a half-sum of the pK values for the carboxylic and amino groups of the PAA and 6-APA respectively.  相似文献   

5.
In this paper, an integrated process involving the mixed ionic liquids/water two-phase system (MILWS) is proposed to improve the efficiency for enzymatic hydrolysis of penicillin G. First, hydrophilic [C4mim]BF4 (1-butyl-3-methylimidazolium tetrafluoraborate) and NaH2PO4 salt form an ionic liquids aqueous two-phase system (ILATPS), which could extract penicillin from its fermentation broth efficiently. Second, a hydrophobic [C4mim]PF6 (1-butyl-3-methylimidazolium hexafluoraphosphate) is introduced into the ionic liquids-rich phase of ILATPS containing penicillin and converses it into MILWS. Penicillin is hydrolyzed by penicillin acylase in the water phase of MILWS at pH 5. The byproduct phenylacetic acid (PAA) is partitioned into the ionic liquids mixture phase, while the intended product 6-aminopenicillanic acid (6-APA) is precipitated at this pH. In comparison with a similar butyl acetate/water system (BAWS) at pH 4, MILWS exhibits two advantages. (1) The selectivity between PAA and penicillin is greatly optimized at pH 5 by varying the mole ratio of [C4mim]PF6/[C4mim]BF4 in MILWS, whereas in BAWS the unalterable nature of the organic solvent restricts the optimized pH for maximum selectivity between PAA and penicillin at pH 4. (2) The pH for 6-APA precipitation in BAWS is 4, whereas it shifts to pH 5 in MILWS due to the complexation between negatively charged 6-APA and the cationic surface of the ionic liquids micelle. As a result, the removal of the two products from the enzyme sphere at relatively high pH is permitted in MILWS, which is beneficial for enzymatic activity and stability in comparison with the acidic pH 4 environment in BAWS.  相似文献   

6.
The kinetics of the enzymatic synthesis of benzylpenicillin catalysed by penicillin amidase (EC 3.5.1.11) from Escherichia coli have been studied. Both free phenylacetic acid (PAA) and its activated derivative, phenylacetylglycine (PAG), were used in the synthesis as acylating agents for 6-aminopenicillanic acid (6-APA). The catalytic rate constants for synthesis carried out at pH 6.0 were 11.2 and 25.2 s−1, respectively, i.e. they are close and have high absolute values. The main feature of the enzymatic synthesis of benzylpenicillin from phenylacetylglycine, compared with the synthesis from phenylacetic acid, is the shape of the progress curve of antibiotic accumulation. In the former case, benzylpenicillin gradually accumulates until equilibrium is reached. Thus, if the reaction is carried out at the thermodynamically optimum pH of synthesis (low pH), penicillin can be obtained in high yield. In the case of phenylacetylglycine, the kinetic curves are more complex and are characterized by a clear-cut maximum. The presence of the maximum, its value and position on the time axis depend on reagent concentration and on the pH used. A kinetic scheme is proposed which describes well the experimental dependencies. The possibility of using activated acid derivatives in synthesis and the advantages of using computer calculations for process optimization are discussed.  相似文献   

7.
Penicillin G acylase (PGA) catalyzes the synthesis/hydrolysis of acyl derivatives of phenylacetic acid through the formation of a covalent intermediate (the acyl–enzyme complex). When used for the kinetically controlled synthesis of β-lactam antibiotics, this enzyme promotes two undesired side reactions: the hydrolysis of the acyl side-chain precursor and of the antibiotic. Therefore, a high selectivity (synthesis/hydrolysis, S/H ratio) is very important for the process economics. Here, the enzymatic synthesis of ampicillin from d-phenylglycine methyl ester (PGME) and 6-aminopenicillic acid (6-APA), using PGA from Escherichia coli (EC 3.5.1.11) is studied. Kinetic assays provided S/H for high concentrations of substrates (up to 200 mM of 6-APA and 500 mM of PGME), using soluble PGA, at 25 °C, pH 6.5. S/H increased with 6-APA concentration, in accordance with the literature. However, when the concentration of 6-APA approached saturation, the rate of enzymatic hydrolysis tended towards zero (i.e., S/H tended to infinity). On the other hand, when the concentration of ester was augmented, S/H consistently decreased. This behavior, to the best of our knowledge still not reported, indicates that the acylation step may occur with 6-APA already positioned for the nucleophilic attack.  相似文献   

8.
两水相体系在发展中存在的关键问题是相体系回收困难.由于生产成本及降低污染的原因, 用过的相体系需要回收和重复使用.用环境敏感型溶解可逆聚合物形成可回用两水相体系是当前是为可行的回收方法。本文在光敏感可回用高聚物PNBC与pH敏感型可回用高聚物PADB形成的两水相体系中进行固定化青霉素酰化酶的相转移催化青霉素G产生6-APA的反应。在这个两水相体系中,通过优化,在1% NaCl 存在下,6-APA的分配系数可达5.78。催化动力学显示,达平衡的时间近7h,反应最高得率约85.3%(pH 7.8, 20℃)。较相近条件下的单水相反应得率提高近20%。在反应过程中,通过底物及产物的分配系数检测,发现底物分配系数变化不大,而产物6-APA及苯乙酸的分配系数发生很大变化,从而引起产物的得率变化。在两水相中,底物及产物主要分配在上相,固定化酶分配在下相,底物青霉素G进入下相经酶催化产生的6-APA及苯乙酸又转入上相,从而解除了青霉素酰化酶催化反应的底物及产物抑制作用,达到提高产物得率的效果。此外,采用固定化酶较固定化细胞效率高,占用下相体积小,较游离酶稳定性高,且完全单侧分配在下相。因此,在两水相中进行固定化酶的催化反应具有明显的优越性。形成两水相的高聚物PNBC通过488 nm 的激光照射或经滤光的450nm 光源照射得到回收;pH敏感型成相聚合物PADB可通等电点 4.1沉淀可实现循环利用,高聚物的回收率在95%-98%之间,按此回收率计算,聚合物可使用60次以上。  相似文献   

9.
采用固定化青霉素酰化酶(Penicillin acylase)在反应器中进行青霉素G水解生产6-APA,同时与离子交换柱相组合以连续地去除反应混合液中的苯乙酸。建立了离子变换柱的分格模型(Comparunent model).在确定了青霉素G和苯乙酸沿柱高的浓度分布的基础上,与描述固定化酶反应器的状态方程相结合,得到了固定化酶-离子交换组合系统的数学模型。在将计算机模拟值与实验值进行验证后,探讨了组合系统中树脂量、循环流速和组合起始时间对青霉素G酶解过程的影响。  相似文献   

10.
Summary The effect of phenylacetic acid (PAA) and several analogs on the activity of isopenicillin N synthase (IPNS) and acyl-CoA: 6-APA acyltransferase (AT) fromPenicillium chrysogenum Wis 54-1255 has been tested. Whereas the substitution on the ring of a hydrogen atom by hydroxy-, methyl- or methoxy- groups did not cause any effect, the presence of halogens (Cl or Br) at positions 3 and/or 4 of PAA strongly inhibited these two enzymes. The replacement of hydrogen atoms by fluorine in certain positions also caused inhibition, but to a lesser extent.  相似文献   

11.
Extracts containing penicillin acylase were obtained by shaking the mycelium of Fusarium avenaceum and of Penicillium chrysogenum in 0.2 M sodium acetate or sodium chloride solution. The optimum pH for conversion of penicillin V into 6-aminopenicillanic acid (6-APA) by the enzyme of Fusarium was about 7.5, and the reaction velocity was increased by a rise in temperature from 27 to 37 C. Penicillin G and penicillins with an aliphatic side chain were cleaved much less readily than was penicillin V. With the enzyme preparation obtained from a nonpenicillin-producing strain of P. chrysogenum, the reaction rate was higher at pH 8.5 than at pH 7.5 and pH 6.5. The acylase of P. chrysogenum hydrolyzes penicillin V more readily than penicillin G. In a series of aliphatic penicillins, the amount of 6-APA formed through the action of this enzyme increased with the number of carbon atoms of the side chain. Penicillins with a glutaryl or an adipyl group as side chain were unaffected by the enzyme of Fusarium and of Penicillium. No reaction was observed upon incubation of penicillin N (with a D-aminoadipyl side chain) or isopenicillin N (with an L-aminoadipyl side chain) with Fusarium and Penicillium extract. When the carboxy group of the side chain of these penicillins was esterified, formation of 6-APA was observed upon incubation with Penicillium extract, whereas no 6-APA or only very small amounts were obtained by acylase of Fusarium.  相似文献   

12.
The penicillin acylase-catalyzed synthesis of ampicillin by acyl transfer from D-(-)-phenylglycine amide (D-PGA) to 6-aminopenicillanic acid (6-APA) becomes more effective when a judiciously chosen pH gradient is applied in the course of the process. This reaction concept is based on two experimental observations: 1) The ratio of the initial synthesis and hydrolysis rates (V(S)/V(H)) is pH-dependent and exhibits a maximum at pH 6.5-7.0 for a saturated solution of 6-APA; 2) at a fixed 6-APA concentration below saturation, V(S)/V(H) increases with decreasing pH. Optimum synthetic efficiency could, therefore, be achieved by starting with a concentrated 6-APA solution at pH 7 and gradually decreasing the pH to 6.3 in the course of 6-APA consumption. A conversion of 96% of 6-APA and 71% of D-PGA into ampicillin was accomplished in an optimized procedure, which significantly exceeds the efficiency of enzymatic synthesis performed at a constant pH of either 7.0 or 6.3.  相似文献   

13.
Hydrophobic protein chromatography was used to prepare homogeneous fractions of penicillin amidase (EC 3.5.1.11) from E. coli. The apparent ratios of the rate constants for the deacylation of the acyl-penicillin amidase formed in the hydrolysis of phenylacetylglycine or D-phenylglycine methyl ester, by H2O and 6-aminopenicillanic acid (6-APA), were determined at different concentrations of the latter compound. The ratios were obtained from direct measurements of the initial rates of formation of phenylacetic acid and benzylpenicillin or D-phenylglycine and ampicillin. For the semisynthesis of ampicillin as well as of benzylpenicillin the ratio was found to depend on the concentration of 6-APA. This was observed for heterogeneous and homogeneous enzyme preparations. These results show that 6-APA must be bound to the acyl-enzyme before the deacylation, yielding ampicillin and benzylpenicillin, occurs. The dissociation constant KN for the formation of the complex was estimated to be approximately 10mM. This mechanism in which acyl-enzyme with and without bound nucleophile is involved, is in agreement with the principle of microscopic reversibility. Both acyl-enzymes can be deacylated by H2O. The finding that there is a specific binding site for 6-APA adjacent to the binding site for the phenylacetyl-(D-phenylglycyl-) group in the active site of the enzyme is supported by the observation that 6-APA acts as a mixed inhibitor in the hydrolysis of D-phenylglycine methyl ester. The ionic strength dependence indicates that the binding site for 6-APA of the acyl-enzyme is positively charged.  相似文献   

14.
The methodology for designing a multicolumns recirculated packed bed batch reactor (MRPBR) system is developed. The performance of the system employing immobilized penicillin-G amidase (IPGA) for the production of 6-APA is studied. The total IPGA activity in the cyclic operated MRPBR system is maintained within a constant range by periodically replacing the oldest column in the system. The reaction time for each cycle of batch reaction is, therefore, maintained within a constant range by employing a sufficient number of columns and independent on the cycle number. The variations of 6-APA production rate is held to a desired level. The production yield of IPGA increases and 6-APA production rate decreases with the number of column installed in the MRPBR system. Both the production yield and production rate increase with the IPGA lifetime in the system. The production yield can be enhanced significantly by extending the batch reaction time. For a system designed to allow the batch reaction to be completed within 240 min, the production yield of IPGA can be 80% higher than that in the stirred tank reactor (STR) system. However, the 6-APA production rate decreases to 55% of that in STR system.  相似文献   

15.
Penicillin acylase (PA) is used in the industrial production of 6-amino penicillanic acid (6-APA). However, by proper control of reaction medium, the enzyme can be used in the reverse synthesis of β-lactam antibiotics from the corresponding β-lactam nuclei and suitable acyl donors. Under thermodynamically controlled strategy, the use of organic cosolvents can favor synthesis over hydrolysis by lowering water activity and favoring the non-ionic reactive species. Under kinetically controlled strategy using activated acyl donors, organic solvents can favor synthesis by depressing hydrolytic reactions. Results are presented on the synthesis of ampicillin from phenylglycine methyl ester and 6-APA with immobilized Escherichia coli PA in the presence of organic cosolvents. Several solvents were tested in terms of enzyme stability and solubility of substrates. Ethylene glycol, glycerol, 1–2 propanediol and 1–3 butanediol were selected accordingly and ampicillin synthesis was performed in all of them. Best results in terms of yield and productivity were obtained with ethylene glycol, with which further studies were conducted. Variables studied were enzyme to limiting substrate ratio, acyl acceptor to acyl donor ratio, organic solvent concentration, pH and temperature. Experimental design based on a two-level fractional factorial design was conducted. pH was determined as the most sensitive variable and was further optimized. The best conditions for ampicillin synthesis in terms of productivity, within the range of values studied for those variables, were pH 7.4, 28°C, 36 US PA/mmol 6-APA, 3 mol PGME/mol 6-APA and 45 % (v/v) ethylene glycol concentration. Productivity was 7.66 mM ampicillin/h, which corresponds to a specific productivity of 7.02 μmol ampicillin/h US at 55 % yield. Productivity was lower than in buffer but product yield was higher because of the much lower relative hydrolysis rates.  相似文献   

16.
Partially purified penicillin acylases (EC 3.5.1.11) were prepared from Pseudomonas melanogenum KY 3987 and Kluyvera citrophila KY 3641 capable of synthesizing d(–)-α-amino-benzylpenicillin (APc) from 6-aminopenicillanic acid (6-APA) and phenylglycine methyl ester. As the cell-free extract of P. melanogenum contained high levels of penicillinase (EC 3.5.2.6), the acylase was separated completely from the penicillinase by use of Sephadex column chromatography or electrofocusing. The most salient property of the P. melanogenum penicillin acylase was its substrate specificity to penicillin substrates: it could form 6-APA only from APc but not from penicillin G, penicillin V and p-aminobenzylpenicillin, whereas the K. citrophila acylase acted on all of these penicillins. The P. melanogenum enzyme is hence considered a novel type of penicillin acylase.  相似文献   

17.
AIMS: Optimization of 6-aminopenicillanic acid (6-APA) production using cross-linked enzyme aggregates (CLEA) of Bacillus badius penicillin G acylase (PAC). METHODS AND RESULTS: CLEA-PAC was prepared using purified/partially purified PAC with phenylacetic acid as active-site blocking agent and glutaraldehyde as cross-linker. Conversion of penicillin G to 6-APA by CLEA-PAC was optimized using response surface methodology (RSM) (central composite rotatable design) consisting of a three-factor-two-level pattern with 20 experimental runs. CONCLUSION: Nearly, 80% of immobilization yield was obtained when partially purified enzyme was used for the preparation of CLEA-PAC. Quantitative conversion of penicillin G to 6-APA was observed within 60 min and the CLEA-PAC was reusable for 20 repeated cycles with 100% retention of enzyme activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The faster conversion of penicillin G to 6-APA by CLEA-PAC and efficient reusability holds a strong potential for the industrial application.  相似文献   

18.
通过固定化青霉素G酰化酶(PGA)对(±)-N-苯乙酰基-3-氨基-3-苯基丙酸进行酶法拆分,得到合成达泊西汀的中间体(S)-3-氨基-3-苯基丙酸,(S)-3-氨基-3-苯基丙酸经过还原、甲基化、缩合等多步化学合成得到最终产物达泊西汀。(±)-N-苯乙酰基-3-氨基-3-苯基丙酸的最佳拆分条件:底物(±)-N-苯乙酰基-3-氨基-3-苯基丙酸2.83 g,固定化的青霉素酰化酶2.66 g,pH 7.5,25℃反应4 h,(S)-3-氨基-3-苯基丙酸收率为89.4%,e.e.值99.3%。达泊西汀的总收率25.5%,e.e.值96.7%。  相似文献   

19.
A significant problem in the enzymatic production of the beta-lactam antibiotic amoxicillin from 6-Aminopenicillanic acid (6-APA) and p-hydroxyphenylglycine methyl ester (HPGM) is the enzymatic hydrolysis of both HPGM and amoxicillin. Here we show that APA is able to competitively inhibit the hydrolysis of HPGM, with a Michaelis-Menten inhibition constant Ki of 7.23mM. While this phenomenon also results in a slowdown of the amoxicillin rate of formation, the S/H (synthesis to hydrolysis ratio) rate is improved. We found that this S/H rate depends directly on the ratio of the two substrates rather than their absolute concentrations. A doubling in S/H rate was obtained by decreasing the HPGM to APA ratio from 3 to 0.5.  相似文献   

20.
Plate and frame filter used as a recirculated batch reactor for the production of 6-APA was studied. Penicillin-G solution was recirculated between the immobilized penicillin-G amidase (IPGA) loaded filter and the pH controlled neutralization tank. As penicillin-G solution flowed convectively through the frames loaded with IPGA particles, penicillin-G was hydrolyzed by IPGA and 6-APA was produced. Because of the large filtration area and short filtration depth of plate and frame filter, the batch hydrolysis reaction was operated at high recirculation flow rate without causing high pressure drop. The effect of recirculation flow rate on 2% penicillin-G hydrolysis was stronger than that on 8% penicillin-G hydrolysis. The amount of IPGA loaded in filter had no significant effect on the production yield of IPGA. The operational stability of IPGA in the filter was very satisfactory. There was no appreciable activity decrease after 25 batches of reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号