首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Newly transcribed small nuclear RNAs (snRNAs) appear transiently in the cytoplasm where they assemble with snRNP core proteins (B, D, E, F, and G) stored in large pools of snRNA-free intermediates before returning permanently to the nucleus. In this report, the cytoplasmic assembly of snRNP core particles in L929 mouse fibroblasts was investigated by kinetic analysis of assembly intermediates resolved on sucrose gradients. Immunoprecipitation of gradient fractions with anti-snRNP autoimmune antisera identify pools of 6 and 20 S snRNA-free snRNP protein intermediates. The snRNP B protein has a heterodisperse sedimentation from 4 to 20 S with peaks at 6 and 20 S, and the snRNP D protein is in a bimodal distribution at 6 and 20 S. At 6 S the D protein is assembled with the E, F, and G proteins into a RNA-free core particle with a stoichiometry of D4EFG. SnRNP assembly proceeds by snRNA assembling initially with the 6 S D4EFG particle and then two copies of the B protein to form an 11-15 S SnRNP particle. The 20 S forms of the D protein in the cytoplasm are less stable than the 6 S D4EFG particle. The U1-specific A and C proteins leak from isolated nuclei and appear in the cytoplasmic fractions where they sediment from 10 to 20 S and from 4 to 8 S, respectively.  相似文献   

2.
Nuclear exchange of the U1 and U2 snRNP-specific proteins   总被引:9,自引:1,他引:8       下载免费PDF全文
The snRNP particles include a set of common core snRNP proteins and snRNP specific proteins. In rodent cells the common core proteins are the B, D, D', E, F and G proteins in a suggested stoichiometry of B2D'2D2EFG. The additional U1- and U2-specific proteins are the 70-kD, A and C proteins and the A' and B" proteins, respectively. Previous cell fractionation and kinetic analysis demonstrated the snRNP core proteins are stored in the cytoplasm in large partially assembled snRNA-free intermediates that assemble with newly synthesized snRNAs during their transient appearance in the cytoplasm (Sauterer, R. A., R. J. Feeney, and G. W. Zieve. 1988. Exp. Cell Res. 176:344-359). This report investigates the assembly and intracellular distribution of the U1 and U2 snRNP-specific proteins. Cell enucleation and aqueous cell fractionation are used to prepare nuclear and cytoplasmic fractions and the U1- and U2-specific proteins are identified by isotopic labeling and immunoprecipitation or by immunoblotting with specific autoimmune antisera. The A, C, and A' proteins are found both assembled into mature nuclear snRNP particles and in unassembled pools in the nucleus that exchange with the assembled snRNP particles. The unassembled proteins leak from isolated nuclei prepared by detergent extraction. The unassembled A' protein sediments at 4S-6S in structures that may be multimers. The 70-kD and B" proteins are fully assembled with snRNP particles which do not leak from isolated nuclei. The kinetic studies suggest that the B" protein assembles with the U2 particle in the cytoplasm before it enters the nucleus.  相似文献   

3.
Small nuclear ribonucleoprotein (snRNP) particles are a class of RNA-containing particles in the nucleus of eukaryotic cells. They consist of uridylate-rich small nuclear RNA complexed with several proteins. snRNP particles U1, U2, U4/U6, and U5 all contain a common protein core consisting of proteins B'/B, D, D', E, F, and G. In addition to this core, U1 snRNP particles contain proteins 70K, A, and C, whereas U2 snRNP particles contain proteins A' and B". Almost any of the small nuclear RNA-associated polypeptides is targeted by autoantibodies in the sera from patients with SLE or related connective tissue diseases. We immunized a genetically non-autoimmune mouse with recombinant human B" protein and obtained three mAb reactive with native U2 snRNP particles. Two of these mAb particles cross-reacted with U1 snRNP, 9A9 and 11A1, via epitopes present on the U2 snRNP B" protein as well as on the U1 snRNP-specific A protein. A third mAb 4g3, reacted exclusively with U2 snRNP via a unique epitope on protein B". Two epitopes mapped at the carboxy-terminal region of the B" protein, whereas binding of the third mAb involved both amino- and carboxy-terminal amino acids of the B" protein. Epitope mapping, employing a DNAse I fragment library of the B" cDNA, revealed that the three mAb-reactive sites were discontinuous. Autoantibodies in sera from patients with SLE and other connective tissue diseases competed for binding with the mAb, implying that the mAb define a major autoantibody-reactive region on protein B".  相似文献   

4.
The major small nuclear ribonucleoproteins (snRNPs) U1, U2, U5 and U4/U6 participate in the splicing of pre-mRNA. U1, U2, U4 and U5 RNAs share a highly conserved sequence motif PuA(U)nGPu, termed the Sm site, which is normally flanked by two hairpin loops. The Sm site provides the major binding site for the group of common proteins, B', B, D1, D2, D3, E, F and G, which are shared by the spliceosomal snRNPs. We have investigated the ability of common snRNP proteins to recognize the Sm site of snRNA by using ultraviolet light-induced RNA-protein cross-linking within U1 snRNP particles. The U1 snRNP particles, reconstituted in vitro, contained U1 snRNA labelled with 32P. Cross-linking of protein to this U1 snRNA occurred only in the presence of the single-stranded stretch of snRNA that makes up the conserved Sm site. Characterization of the cross-linked protein by one and two-dimensional gel electrophoresis indicated that snRNP protein G had become cross-linked to the U1 snRNA. This was confirmed by specific immunoprecipitation of the cross-linked RNA-protein complex with an anti-G antiserum. The cross-link was located on the U1 snRNA by fingerprint analysis with RNases T1 and A; this demonstrated that the protein G has been cross-linked to the AAU stretch within the 5'-terminal half of the Sm site (AAUUUGUGG). These results suggest that the snRNP protein G may be involved in the direct recognition of the Sm site.  相似文献   

5.
Newly synthesized snRNAs appear transiently in the cytoplasm where they assemble into ribonucleoprotein particles, the snRNP particles, before returning permanently to the interphase nucleus. In this report, bona fide cytoplasmic fractions, prepared by cell enucleation, are used for a quantitative analysis of snRNP assembly in growing mouse fibroblasts. The half-lives and abundances of the snRNP precursors in the cytoplasm and the rates of snRNP assembly are calculated in L929 cells. With the exception of U6, the major snRNAs are stable RNA species; U1 is almost totally stable while U2 has a half-life of about two cell cycles. In contrast, the majority of newly synthesized U6 decays with a half-life of about 15 h. The relative abundances of the newly synthesized snRNA species U1, U2, U3, U4 and U6 in the cytoplasm are determined by Northern hybridization using cloned probes and are approximately 2% of their nuclear abundance. The half-lives of the two major snRNA precursors in the cytoplasm (U1 and U2) are approximately 20 min as determined by labeling to steady state. The relative abundance of the snRNP B protein in the cytoplasm is determined by Western blotting with the Sm class of autoantibodies and is approximately 25% of the nuclear abundance. Kinetic studies, using the Sm antiserum to immunoprecipitate the methionine-labeled snRNP proteins, suggest that the B protein has a half-life of 90 to 120 min in the cytoplasm. These data are discussed and suggest that there is a large pool of more stable snRNP proteins in the cytoplasm available for assembly with the less abundant but more rapidly turning-over snRNAs.  相似文献   

6.
V A Raker  G Plessel    R Lührmann 《The EMBO journal》1996,15(9):2256-2269
Stable association of the eight common Sm proteins with U1, U2, U4 or U5 snRNA to produce a spliceosomal snRNP core structure is required for snRNP biogenesis, including cap hypermethylation and nuclear transport. Here, the assembly of snRNP core particles was investigated in vitro using both native HeLa and in vitro generated Sm proteins. Several RNA-free, heteromeric protein complexes were identified, including E.F.G, B/B'.D3 and D1.D2.E.F.G. While the E.F.G complex alone did not stably bind to U1 snRNA, these proteins together with D1 and D2 were necessary and sufficient to form a stable U1 snRNP subcore particle. The subcore could be chased into a core particle by the subsequent addition of the B/B'.D3 protein complex even in the presence of free competitor U1 snRNA. Trimethylation of U1 snRNA's 5' cap, while not observed for the subcore, occurred in the stepwise-assembled U1 snRNP core particle, providing evidence for the involvement of the B/B' and D3 proteins in the hypermethylation reaction. Taken together, these results suggest that the various protein heterooligomers, as well as the snRNP subcore particle, are functional intermediates in the snRNP core assembly pathway.  相似文献   

7.
The human spliceosomal Sm B/B' proteins are essential for the biogenesis of the snRNP particles. B/B' proteins contain several clusters of the PPPPGM/IR sequence, which occurs within the C-terminus of Sm B/B'. This sequence is very similar to the PPPPPGHR sequence of the cytoplasmic tail of the CD2 receptor and closely resembles the class II of SH3 ligands, suggesting a similarly important role. We report that a monoclonal antibody (3E10) against the PPPPPGHR sequence recognizes spliceosomal Sm B/B' proteins. Proteins that are specifically immunoprecipitated by 3E10 include Sm B, B', D1, D2, D3, E, F, and G. However, unlike Y12 and other anti-Sm immunoprecipitates, 3E10 immunoprecipitates appear to lack the U1 snRNP-specific proteins A and C and U snRNAs. These findings indicate that 3E10 recognizes a subset of Sm protein core and suggest the presence of snRNA-free Sm protein complex(es) in vivo. We propose that the epitope binding for 3E10 may become unaccessible upon interactions of Sm proteins and their subsequent incorporation into the core particles. The Sm proline-rich sequences may have an important role in mediating protein-protein interactions necessary for the proper snRNP core assembly or function, or both. To our knowledge, 3E10 is the first well characterized mAb specific for a subclass of polyproline-arg motif recognizing Sm B/B' and CD2 proteins. 3E10 antibody can be used to further characterize the nature of protein components in the snRNA-free Sm subcore protein complex(es) that are formed during the snRNP core assembly steps.  相似文献   

8.
Small nuclear ribonucleoproteins (snRNPs) containing U1 and U5 snRNAs from HeLa cells have been fractionated using a combination of isopycnic centrifugation in cesium chloride and ion-exchange chromatography on DEAE-Sepharose. The procedure is based on the extreme stability conferred upon snRNPs by Mg2+ enabling them to withstand the very high ionic strength that prevails in cesium chloride. U1 snRNP prepared by this method contains all nine major proteins (68K, A, B, B', C, D, E, F, G) corresponding to those previously identified by immunoprecipitation and is therefore precipitable by anti-RNP and anti-Sm antibodies. U5 snRNP purified in this way contains the common D to G proteins and is also enriched in a 25 X 10(3) Mr protein that may be U5 snRNP-specific. The core-resistant U5 snRNA sequence (nucleotide 84 to 3' OH) covered by D to G proteins is extended by only six nucleotides. A similar situation is seen in U4-U6 snRNP, which we have obtained in a sufficiently pure form to examine protected sequences. However, the core-resistant sequence of U4 (nucleotide 116 to 3' OH) in U4-U6 snRNP is extended by 37 nucleotides, suggesting that the protein composition of this particle could be more complex than that of U5 snRNP. The ribonucleoprotein organization of snRNPs is summarized and discussed in view of our current knowledge on snRNA sequences protected by proteins.  相似文献   

9.
The Sm small nuclear ribonucleoproteins (snRNPs) from mammalian cells have been characterized as containing U1, U2, U4, U5, and U6 RNA associated with some subset of at least 10 distinct polypeptides (called 68K, A, A', B, B', C, D, E, F, and G) that range in molecular weight from 68,000 to 11,000. Whereas this entire collection of snRNP particles is precipitated by patient anti-Sm autoantibodies, anti-(U1)RNP autoantibodies specifically recognize U1 snRNPs. Here, we have performed immunoblots using the sera from 29 patients and a mouse anti-Sm monoclonal antibody to identify which HeLa cell snRNP proteins carry anti-Sm or anti-(U1)RNP antigenic determinants. Strikingly, every serum surveyed, as well as the monoclonal antibody, recognizes determinants on two or more snRNP protein components. The three proteins, 68K, A, and C, that uniquely fractionate with U1 snRNPs are specifically reactive with anti-(U1)RNP sera in blots. Anti-Sm patient sera and the mouse monoclonal antibody react with proteins B, B', D, and sometimes E, one or more of which must be present on all Sm snRNPs. The blot results combined with data obtained from a refined 32P-labeled RNA immunoprecipitation assay reveal that, in our collection of the sera from 29 patients, anti-Sm rarely exists in the absence of equal or higher titers of anti-(U1)RNP; moreover, (U1)RNP sera often contain detectable levels of anti-Sm. Our findings further define the protein composition of the Sm snRNPs and raise intriguing questions concerning the relatedness of snRNP polypeptides and the mechanism of autoantibody induction.  相似文献   

10.
Chemical cross-linking of Sm and RNP antigenic proteins   总被引:4,自引:0,他引:4  
S G Harris  S O Hoch  H C Smith 《Biochemistry》1988,27(13):4595-4600
Nuclear extracts, competent for in vitro premessenger RNA splicing, were chemically cross-linked with thiol-reversible reagents in order to study the organization of proteins within ribonucleoprotein particles (RNPs) containing uridine-rich small nuclear RNAs (UsnRNPs). The distribution of select UsnRNP antigens within cross-linked complexes was determined by Western blotting of diagonal two-dimensional gels. On the basis of calculations from the molecular weights of cross-linked complexes containing UsnRNP common proteins B', B, and D, it is proposed that each of these proteins was associated with UsnRNP common proteins E and G. In addition, D' is proposed to be positioned close to D. The spatial distribution of UsnRNP common proteins was such that B' and B could not be cross-linked to D. The data also suggested that the 63-kDa U1 snRNP specific protein was cross-linked to other U1-specific proteins, particularly C, but not to the UsnRNP common proteins. We propose that part of the UsnRNP core of common proteins contains at least two asymmetrical copies of B':B:D:D':E:G with stoichiometries of 2:1:1:1:1:1 and 1:2:1:1:1:1.  相似文献   

11.
The in vivo synthesis and assembly of human small nuclear ribonucleoproteins (snRNPs) have been studied using pulse/chase analysis. Antibodies derived from patients with systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) recognize distinguishable subsets of pulse-labeled snRNP peptides. These antibodies were used to immunoprecipitate sucrose gradient fractionated pulse-labeled and pulse/chased snRNP proteins. The results indicate that assembly of the U RNA-containing snRNPs is a multistep process involving prior assembly of an RNA-free 6S core particle. This precursor contains snRNP peptides D, E, F, and G, which are common to all the different U RNA-containing particles. Furthermore, a posttranslational modification of one of the U1 snRNP-specific peptides has been observed, and the kinetics of this process indicates that the modification occurs after particle assembly. Functional and structural implications of a protein core for snRNP particles are discussed.  相似文献   

12.
13.
U1 snRNP is required at an early stage during assembly of the spliceosome, the dynamic ribonucleoprotein (RNP) complex that performs nuclear pre-mRNA splicing. Here, we report the purification of U1 snRNP particles from Drosophila nuclear extracts and the characterization of their biochemical properties, polypeptide contents, and splicing activities. On the basis of their antigenicity, apparent molecular weight, and by peptide sequencing, the Drosophila 70K, SNF, B, U1-C, D1, D2, D3, E, F, and G proteins are shown to be integral components of these particles. Sequence database searches revealed that both the U1-specific and the Sm proteins are extensively conserved between human and Drosophila snRNPs. Furthermore, both species possess a conserved intrinsic U1-associated kinase activity with identical substrate specificity in vitro. Finally, our results demonstrate that a second type of functional U1 particle, completely lacking the U1/U2-specific protein SNF and the associated protein kinase activity, can be isolated from cultured Kc cell or Canton S embryonic nuclear extracts. This work describes the first characterization of a purified Drosophila snRNP particle and reinforces the view that their activity and composition, with the exception of the atypical bifunctional U1-A/U2-B" SNF protein, are highly conserved in metazoans.  相似文献   

14.
Five anti-Sm monoclonal antibodies, Y12, 7.13, KSm4, KSm6, and 128, stain similar discrete punctate structures distributed throughout the cytoplasm of hamster fibroblasts in addition to the expected intense nuclear staining. Several criteria suggest the cytoplasmic staining reflects the cytoplasmic pools of snRNP core proteins. The relative intensity of the cytoplasmic staining is similar to the 30% relative abundance of the cytoplasmic snRNP core proteins compared to the nuclear snRNP core proteins based on cell-fractionation studies. Moreover, the cytoplasmic staining is removed by the same extraction conditions that solubilize the pools of cytoplasmic snRNP core proteins. The cytoplasmic sites of staining are typically spherical but heterogeneous in diameter (0.2-0.5 microm). The larger particles greatly exceed the diameter of individual snRNP core particles and are likely to represent centers of many snRNP proteins or snRNP protein complexes. The staining, though punctate, is evenly dispersed throughout the cytoplasm with no evidence of major compartmentalization. The cytoplasmic staining pattern collapses into larger foci of intensely staining structures when cellular energy levels are depleted or when cells are exposed to hypertonic medium. Unlike the normal sites of snRNP protein cytoplasmic staining, these larger collapsed foci resist detergent extraction. These results suggest that the cytoplasmic staining identified with the anti-Sm monoclonal antibodies represents the large pools of snRNP core proteins in the cytoplasm.  相似文献   

15.
Spliceosome assembly during pre-mRNA splicing requires the correct positioning of the U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) on the precursor mRNA. The structure and integrity of these snRNPs are maintained in part by the association of the snRNAs with core snRNP (Sm) proteins. The Sm proteins also play a pivotal role in metazoan snRNP biogenesis. We have characterized a Saccharomyces cerevisiae gene, SMD3, that encodes the core snRNP protein Smd3. The Smd3 protein is required for pre-mRNA splicing in vivo. Depletion of this protein from yeast cells affects the levels of U snRNAs and their cap modification, indicating that Smd3 is required for snRNP biogenesis. Smd3 is structurally and functionally distinct from the previously described yeast core polypeptide Smd1. Although Smd3 and Smd1 are both associated with the spliceosomal snRNPs, overexpression of one cannot compensate for the loss of the other. Thus, these two proteins have distinct functions. A pool of Smd3 exists in the yeast cytoplasm. This is consistent with the possibility that snRNP assembly in S. cerevisiae, as in metazoans, is initiated in the cytoplasm from a pool of RNA-free core snRNP protein complexes.  相似文献   

16.
Small nuclear ribonucleoprotein particles containing the five major nucleoplasmic snRNAs U1, U2, U4, U5 and U6 as well as two smaller sized snRNAs were purified from broad bean nuclear extracts by anti-m3G, monoclonal antibody, immunoaffinity chromatography. We have so far defined 13 polypeptides of approximate mol. wts. of 11 kd, 11.5 kd, 12.5 kd, 16 kd, 17 kd, 17.5 kd, 18.5 kd, 25 kd (double band), 30 kd, 31 kd, 35 kd, 36 kd and 54 kd. Upon fractionation of the UsnRNPs by anion exchange chromatography, essentially pure U5 snRNPs were obtained, containing the 11 kd, 11.5 kd, 12.5 kd, 16 kd, 17 kd, 17.5 kd, 35 kd and 36 kd polypeptides. These may therefore represent the common snRNP polypeptides and which may also be present in the other snRNPs. By immunoblotting studies, using anti-Sm sera and mouse monoclonal antibodies we show that the 35 kd and 36 kd proteins are immunologically related to the mammalian common B/B' proteins. The broad bean 16 kd and 17 kd proteins appear to share structural elements with the mammalian D protein. The three proteins of mol. wts. 11 kd, 11.5 kd and 12.5 kd probably represent the broad bean polypeptides E, F, and G. Cross-reactivity of proteins of mol. wts of 30 kd and 31 kd with Anti-(U1/U2)RNP antibodies suggests that they may represent the broad bean A and B" polypeptides. The 54 kd protein and the 18.5 kd protein could be candidates for the U1 specific 70 k and C polypeptides. Our results demonstrate a strong similarity between the overall structure of broad bean and mammalian snRNPs.  相似文献   

17.
18.
A murine IgG2a, kappa-monoclonal autoantibody (mAb) F78 is described that recognizes a novel epitope associated with small nuclear ribonucleoprotein complexes (snRNP). F78 selectively immunoprecipitated a unique pattern of small nuclear RNA (U1, U2, and U4 to U6) characterized by a marked depletion of U1 and an elevated proportion of U2 compared with known patterns immunoprecipitated by previously described anti-RNP (2.73) and anti-Sm (7.13, Y12) mAb. Analysis of immunoprecipitated RNA from extracts previously cleared with mAb F78 and probed with anti-RNP mAb 2.73 further indicated the presence of two distinct subsets of U1. Immunoblots of whole cell extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) without heating showed that F78 selectively bound to a trypsin-sensitive component of apparent m.w. greater than 120,000 which was decreased in size following RNase A treatment. The anti-Sm mAb, but not the anti-RNP mAb, also recognized this component in unheated samples. Heating before SDS-PAGE resulted in abrogation of binding to the F78 epitope. Immunoprecipitation of unlabeled or [35S]methionine-labeled cell extracts with F78 revealed the presence of most snRNP peptides, but the absence of peptide C and the 68,000 m.w. component, known to be selectively associated with U1-specific snRNP. Two-dimensional SDS-PAGE analysis of F78 immunoprecipitates confirmed that the epitope recognized by this mAb resides on a heat-dissociable complex containing snRNP-related peptides B, B', D, E, F, and G, but lacking U1-associated peptides. F78 mAb therefore defines a subset of snRNP which lack anti-RNP associated U1 RNA as well as peptides known to be selectively associated with this RNA species. It apparently recognizes an epitope associated with an assembled form of these particles and may be useful in examining structures involved in RNA processing.  相似文献   

19.
The addition of urea to sodium dodecyl sulfate (SDS)-polyacrylamide gels has allowed the identification and characterization of the small nuclear ribonucleoprotein particle (snRNP) D' protein and has also improved resolution of the E, F, and G snRNP core proteins. In standard SDS-polyacrylamide gels, the D' and D snRNP core proteins comigrate at approximately 16 kilodaltons. The addition of urea to the separating gel caused the D' protein to shift to a slower electrophoretic mobility that is distinct from that of the D protein. The shift to a slower electrophoretic mobility in the presence of urea suggests that the D' protein has extensive secondary structure that is not totally disrupted by SDS alone. Both N-terminal sequencing and partial peptide maps indicate that the D and D' proteins are distinct gene products, and the sequence data have identified the faster moving of the two proteins as the previously cloned D protein (L. A. Rokeach, J. A. Haselby, and S. O. Hoch, Proc. Natl. Acad. Sci. USA 85:4832-4836, 1988). In the cytoplasm, the D protein is found primarily in the small-nuclear-RNA-free 6S protein complexes, while the D' protein is found primarily in the 20S protein complexes. Like the D protein, the D' protein is an autoantigen in patients with systemic lupus erythematosus and is recognized by some of the Sm class of autoimmune antisera.  相似文献   

20.
Small nuclear (sn) ribonucleoprotein (RNP) U2 functions in the splicing of mRNA by recognizing the branch site of the unspliced pre-mRNA. When HeLa nuclear splicing extracts are centrifuged on glycerol gradients, U2 snRNPs sediment at either 12S (under high salt concentration conditions) or 17S (under low salt concentration conditions). We isolated the 17S U2 snRNPs from splicing extracts under nondenaturing conditions by using centrifugation and immunoaffinity chromatography and examined their structure by electron microscope. In addition to common proteins B', B, D1, D2, D3, E, F, and G and U2-specific proteins A' and B", which are present in the 12S U2 snRNP, at least nine previously unidentified proteins with apparent molecular masses of 35, 53, 60, 66, 92, 110, 120, 150, and 160 kDa bound to the 17S U2 snRNP. The latter proteins dissociate from the U2 snRNP at salt concentrations above 200 mM, yielding the 12S U2 snRNP particle. Under the electron microscope, the 17S U2 snRNPs exhibited a bipartite appearance, with two main globular domains connected by a short filamentous structure that is sensitive to RNase. These findings suggest that the additional globular domain, which is absent from 12S U2 snRNPs, contains some of the 17S U2-specific proteins. The 5' end of the RNA in the U2 snRNP is more exposed for reaction with RNase H and with chemical probes when the U2 snRNP is in the 17S form than when it is in the 12S form. Removal of the 5' end of this RNA reduces the snRNP's Svedberg value from 17S to 12S. Along with the peculiar morphology of the 17S snRNP, these data indicate that most of the 17S U2-specific proteins are bound to the 5' half of the U2 snRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号