首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies were raised in rabbits against 70S ribosomes, 50S and 30S ribosomal subunits individually. Purified immunoglobulins from the antiserum against each of the above ribosomal entities were tested for their capabilities of precipitating 70S, 50S and 30S ribosomes. The observations revealed the following: (i) The antiserum (IgG) raised against 70S ribosomes precipitates 70S ribosomes completely, while partial precipitation is seen with the subunits, the extent of precipitation being more with the 50S subunits than with 30S subunits; addition of 50S subunits to the 30S subunits facilitates the precipitation of 30S subunits by the antibody against 70S ribosomes. (ii) Antiserum against 50S subunits has the ability to immunoprecipitate both 50S and 70S ribosomes to an equal extent. (iii) Antiserum against 30S subunits also has the property of precipitating both 30S and 70S ribosomes. The differences in the structural organisation of the two subunits may account for the differences in their immunoprecipitability.  相似文献   

2.
Effect of Sulfhydryl Reagents on the Ribosomes of Bacillus subtilis   总被引:1,自引:0,他引:1       下载免费PDF全文
The effect of various sulfhydryl reagents on the ribosomes of Bacillus subtilis was studied. The 70S ribosomes were completely dissociated into 30S and 50S subunits by appropriate concentrations of p-chloromercuribenzoic acid (PCMB) and 5,5'-dithio-bis-(2-nitro-benzoic acid). The N-ethylmaleimide and iodoacetamide failed to dissociate the ribosomes even at relatively high concentrations. The rate of dissociation of ribosomes by PCMB varied with the concentration of ribosomes. A progressive decrease in the rate of dissociation was observed as the concentration of ribosomes in the reaction mixture was increased. The PCMB-induced ribosomal subunits were unable to reassociate into 70S monomers unless they were dialyzed against buffer containing beta-mercaptoethanol. On the average, four molecules of PCMB per 70S ribosome and two molecules of PCMB per each 30S and 50S subunit were bound. The number of PCMB molecules bound per ribosome did not change with increasing concentrations of PCMB, even though higher concentrations of PCMB resulted in dissociation of ribosomes into subunits.  相似文献   

3.
A mixture of 30 S and 50 S subunits quantitatively absorbs on a column of Sepharose--4B from the buffer: 0.02 M Tris--HCl, pH 7.5, containing 1.5 M (NH4)2SO4. During elution by reverse gradient of ammonium sulphate (1.5--0.05 M) the subunits are eluted at different salt concentrations. Complete separation of subunits is attained in the absence of Mg2+ ions. The 30 S subunits prepared from 70 S ribosomes according to this procedure are fully active in the codon--dependent binding of a specific aminoacyl--tRNA. After their reassociation with 50 S subunits isolated by zonal centrifugation, the resulting 70 S ribosomes are active in polypeptide synthesis at the same degree as control 70 S ribosomes in which both types of subunits were prepared by zonal centrifugation. The initial 70 S ribosomes for the chromatographic separation into subunits can be obtained by their pelleting from a crude extract with subsequent washing with concentrated solutions of NH4Cl in the ultracentrifuge, or by salt fractionation of the crude extract according to a slightly modified procedure of Kurland.  相似文献   

4.
Ribonuclease sensitivity of Escherichia coli ribosomes   总被引:5,自引:1,他引:4  
Santer, Melvin (Haverford College, Haverford, Pa.), and Josephine R. Smith. Ribonuclease sensitivity of Escherichia coli ribosomes. J. Bacteriol. 92:1099-1110. 1966.-The ribonucleic acid (RNA) contained in 70S ribosomes and in 50S and 30S subunits was hydrolyzed by pancreatic ribonuclease. A 7% amount of the RNA was removed from the 70S particle; at 10(-4)m magnesium concentration, a maximum of 24 and 30% of the RNA in the 50S and the 30S fractions, respectively, was removed by ribonuclease. At the two lower magnesium ion concentrations, 50S ribosomes did not lose any protein, whereas 30S ribosomes lost protein as a result of ribonuclease treatment. A number of proteins were removed from the 30S particles by ribonuclease, and these proteins were antigenically related to proteins present in 50S ribosomes. The differential effect of ribonuclease on 50S and 30S ribosomes suggested that they have structural dissimilarities.  相似文献   

5.
J A Langer  F Jurnak  J A Lake 《Biochemistry》1984,23(25):6171-6178
A complex between elongation factor Tu (EF-Tu), GTP, phenylalanyl-tRNA (Phe-tRNA), oligo(uridylic acid) [oligo(U)], and the 30S ribosomal subunit of Escherichia coli has been formed and isolated. Binding of the EF-Tu complex appears to be at the functionally active 30S site, by all biochemical criteria that were examined. The complex can be isolated with 0.25-0.5 copy of EF-Tu bound per ribosome. The binding is dependent upon the presence of both the aminoacyl-tRNA and the cognate messenger RNA. Addition of 50S subunits to the preformed 30S-EF-Tu-GTP-Phe-tRNA-oligo(U) complex ("30S-EF-Tu complex") causes a rapid hydrolysis of GTP. This hydrolysis is coordinated with the formation of 70S ribosomes and the release of EF-Tu. Both the release of EF-Tu and the hydrolysis of GTP are stoichiometric with the amount of added 50S subunits. 70S ribosomes, in contrast to 50S subunits, neither release EF-Tu nor rapidly hydrolyze GTP when added to the 30S-EF-Tu complexes. The inability of 70S ribosomes to react with the 30S-EF-Tu complex argues that the 30S-EF-Tu complex does not dissociate prior to reaction with the 50S subunit. The requirements of the 30S reaction for Phe-tRNA and oligo(U) and the consequences of the addition of 50S subunits resemble the reaction of EF-Tu with 70S ribosomes, although EF-Tu binding to isolated 30S subunits does not occur during the elongation microcycle. This suggests that the EF-Tu ternary complex binds to isolated 30S subunits at the same 30S site that is occupied during ternary complex interaction with the 70S ribosome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
At low NH4-+ concentrations, 50S ribosomal subunits from E. coli were fully active in the absence of 30S ribosomal subunits, in forming a complex with the polypeptide chain elongation factor G (EF-G) and guanine nucleotide (ternary complex formation), and also in supporting EF-G dependent hydrolysis of GTP (uncoupled GTPase reaction). However, both activities were markedly inhibited on increasing the concentration of the monovalent cation, and at 160 mM NH4-+, the optimal concentration for polypeptide synthesis in a cell-free system, almost no activity was observed with 50S ribosomes alone. It was found that the inhibitory effect of NH4-+ was reversed by addition of 30S subunits. Thus, at 160 mM NH4-+, only 70S ribosomes were active in supporting the above two EF-G dependent reactions, whereas at 20 mM NH4-+, 50S ribosomes were almost as active as 70S ribosomes. Kinetic studies on inhibition by NH4-+ of the formation of 50S ribosome-EF-G-guanine nucleotide complex, indicated that the inhibition was due to reduction in the number of active 50S ribosomes which were capable of interacting with EF-G and GTP at higher concentrations of NH4-+. The inhibitory effects of NH4-+ on ternary complex formation and the uncoupled GTPase reaction were markedly influenced by temperature, and were much greater at 0 degrees than at 30 degrees. A conformational change of 50S subunits through association with 30S subunits is suggested.  相似文献   

7.
Ribosomes from Escherichia coli were tested for activity in initiation with R17 RNA as messenger. All vacant 70 S ribosomes but not all subunits were found to be active. The ability of 30 S and 50 S subunits to form a 70 S couple at Mg2+ concentrations above 4 mm is a stringent test for activity.Fresh extracts, prepared at 10 mm-Mg2+ from cells harvested after slow cooling contain up to 80% of the ribosomes in the form of vacant 70 S couples and 20% of free subunits. The proportion of subunits increases with standing as a result of the preferential inactivation of the 50 S particles. “Native” subunits are heterogeneous and consist mostly of active 30 S and inactive 50 S particles.In contrast to 50 S subunits, 30 S subunits prepared by exposure of 70 S ribosomes to low Mg2+ concentrations, are largely inactive and unable to reassociate with their active 50 S counterparts. However, both initiation and association activity can be restored by heating.The results imply that the structures necessary for subunit association are most critical for the biological activity of ribosomes, presumably because they are topologically closely related to the binding sites for messenger RNA, transfer RNA, and the protein factors for initiation, translocation and termination.  相似文献   

8.
RatA (YfjG) is a toxin encoded by the ratA-ratB (yfjG-yfjF) operon on the Escherichia coli genome. Induction of RatA led to the inhibition of protein synthesis, while DNA and RNA synthesis was not affected. The stability of mRNAs was also unchanged as judged by in vivo primer extension experiments and by Northern blotting analysis. The ribosome profile of the cells overexpressing RatA showed that 70S ribosomes as well as polysomes significantly decreased with concomitant increase of 50S and 30S subunits. The addition of purified RatA to a cell-free system inhibited the formation of 70S ribosomes even in the presence of 6 mM Mg(2+) . RatA was specifically associated with 50S subunits, indicating that it binds to 50S subunits to block its association with 30S subunits leading to the inhibition of formation of 70S ribosomes. However, RatA did not cause dissociation of 70S ribosomes and its anti-association activity was blocked by paromomycin, an inhibitor for IF3, an essential initiation factor, having 21% sequence homology with RatA. Here we demonstrate that RatA is a new E. coli toxin, which effectively blocks the translation initiation step. We propose that this toxin of previously unknown function be renamed as RatA (Ribosome association toxin A).  相似文献   

9.
Two monoclonal antibodies raised against intact Escherichia coli ribosomal protein L2 were isolated, affinity-purified, and characterized. One of the antibodies (Ab 5-186) recognizes an epitope within residues 5-186, and the other (Ab 187-272) recognizes an epitope within residues 182-272. Both antibodies strongly inhibit in vitro polyphenylalanine synthesis when they are first allowed to bind to 50 S subunits prior addition of 30 S subunits. However, only Ab 187-272 is inhibitory when added to preformed 70 S ribosomes. Ab 5-186 binds to 50 S subunits but not to 70 S ribosomes. Ab 187-272 does not cause dissociation of 70 S ribosomes under the ionic conditions of the assay for polyphenylalanine synthesis (15 mM magnesium), although at 10 mM magnesium it does cause dissociation. Both antibodies inhibit the reassociation of 50 S with 30 S subunits. Both antibodies strongly inhibit peptidyltransferase activity. The two antibodies differ in their effects on interactions with elongation factors Tu (EF-Tu) and G (EF-G). Neither antibody significantly inhibits EF-G-dependent GTPase activity, nor the binding of EF-G when the antibodies are incubated with 50 S subunits; however, Ab 187-272 causes a decrease in the binding of EF-Tu X aminoacyl-tRNA X GTP ternary complex and of EF-Tu-dependent GTPase when it is incubated with 70 S ribosomes. The Fab fragments of both antibodies had effects similar to the intact antibodies. The results show that monoclonal antibodies can be used to discriminate different regions of L2 and that EF-Tu and EF-G do not have identical ribosomal binding sites.  相似文献   

10.
Ribosomes and polyribosomes from Clostridium pasteurianum were isolated and their activities were compared with those of ribosomes from Escherichia coli in protein synthesis in vitro. C. pasteurianum ribosomes exhibited a high level of activity due to endogenous messenger ribonucleic acid (RNA). For translation of polyuridylic acid [poly(U)], C. pasteurianum ribosomes required a higher concentration of Mg(2+) and a much higher level of poly(U) than did E. coli ribosomes. Phage f2 RNA added to the system with C. pasteurianum ribosomes gave no significant stimulation of protein synthesis in a homologous system or with E. coli initiation factors. The 30S and 50S subunits prepared from C. pasteurianum ribosomes reassociated less readily than subunits from E. coli. The ability of the C. pasteurianum subunits to reassociated was found to be dependent upon the presence of a reducing agent during preparation and during analysis of the reassociation products. In heterologous combinations, E. coli 30S subunits associated readily with C. pasteurianum 50S subunits to form 70S particles, but C. pasteurianum 30S subunits and E. coli 50S subunits did not associate. In poly(U) translation, E. coli 30S subunits were active in combination with 50S subunits from either E. coli or C. pasteurianum, but C. pasteurianum 30S subunits were not active in combination with either type of 50S subunits. Polyribosomes prepared from C. pasteurianum were very active in protein synthesis, and well-defined ribosomal aggregates as large as heptamers could be seen on sucrose gradients. An attempt was made to demonstrate synthesis in vitro of ferredoxin.  相似文献   

11.
The interaction between Escherichia coli translation-initiation factor IF-1 and ribosomes was studied in binding experiments by Airfuge centrifugation. IF-1 binds to the 30S, but not to the 50S, ribosomal subunit and its binding is strongly stimulated by IF-3 and IF-2, either alone or in combination. From the dependence of the Kd of the 30S-subunit--IF-1 complex on ionic strength, it can be concluded that IF-1 binds primarily via an ionic interaction, most likely with the 16S rRNA, with the minimum number of ion pairs involved being 2.7-3.6. The 30S-subunit--IF-1 interaction is unaffected by temperature changes between 11 degrees C and 44 degrees C and is thus accompanied by a negligible enthalpy change. It is concluded that the interaction is an entropy-driven process triggered mainly by the release of counter ions from the RNA phosphates. Titration of 30S-subunit--IF-1 complexes with 50S subunits causes the ejection of the factor indicating that IF-1 is released from the ribosomes during the subunit association step which marks the transition from a 30S-initiation-complex to a 70S initiation complex.  相似文献   

12.
30S subunits were isolated capable to bind simultaneously two molecules of Phe-tRNAPhe (or N-Acetyl-Phe-tRNAPhe), both poly(U) dependent. The site with higher affinity to tRNA was identified as P site. tRNA binding to this site was not inhibited by low concentrations of tetracycline (2 x 10(-5)M) and, on the other hand, N-Acetyl-Phe-tRNAPhe, initially prebound to the 30S.poly(U) complex in the presence of tetracycline, reacted with puromycin quantitatively after addition of 50S subunits. The site with lower affinity to tRNA revealed features of the A site: tetracycline fully inhibited the binding of both Phe-tRNAPhe and N-Acetyl-Phe-tRNAPhe. Binding of two molecules of Phe-tRNAPhe to the 30S.poly(U) complex followed by the addition of 50S subunits resulted in the formation of (Phe)2-tRNAPhe in 75-90% of the reassociated 70S ribosomes. These results prove that isolated 30S subunits contain two physically distinct centers for the binding of specific aminoacyl- (or peptidyl-) tRNA. Addition of 50S subunits results in the formation of whole 70S ribosomes with usual donor and acceptor sites.  相似文献   

13.
The reaction pattern with N-[14C]ethylmaleimide served to follow conformational changes of 30 S ribosomal subunits that are induced by association with 50 S subunits and by the binding of aminoacyl-tRNA to 70 S ribosomes either enzymatically or non-enzymatically.The usefulness of the reaction with N-ethylmaleimide in discerning different conformational forms of the ribosome was previously demonstrated (Ginzburg et al., 1973) in an analysis of inactive and active 30 S subunits (as obtained at low Mg2+ and after heat reactivation, respectively). The reaction pattern of the 30 S moiety of 70 S ribosomes differs from the pattern of isolated active subunits (the only form capable of forming 70 S ribosomes) in both the nature of the labeled proteins and in being Mg2+-dependent. The reaction at 10 mm-Mg2+ reveals the following differences between isolated and reassociated 30 S subunits: (1) proteins S1, S18 and S21 that are not labeled in isolated active subunits, but are labeled in the inactive subunits, are highly reactive in 70 S ribosomes; (2) proteins S2, S4, S12 and S17 that uniquely react with N-ethylmaleimide in active subunits are all rendered inaccessible to modification after association; and (3) proteins S9, S13 and S19, that react in both active and inactive 30 S subunits, are labeled to a lesser extent in the 70 S ribosomes than in isolated subunits. This pattern is altered in two respects when the reaction with the maleimide is carried out at 20 mm-Mg2+; protein S18 is not modified while S17 becomes labeled.The differences in reaction pattern are considered as manifesting the existence of different conformational forms of the 30 S subunit in the dissociated and associated states as well as of different forms of 70 S ribosomes. The 30 S moiety of 70 S ribosomes at 10 mm-Mg2+ resembles the inactive subunit, while some of the features of the active subunit are preserved in the 70 S ribosome at 20 mmMg2+. The structural changes appear to be expressed in the functioning of the ribosome: non-enzymatic binding of aminoacyl-tRNA to active 30 S subunits is suppressed by 50 S subunits at 10 mm but not at 20 mm-Mg2+ (Kaufmann &; Zamir, 1972). The fact that elongation factor Tu-mediated binding is not suppressed by 50 S subunits raises the possibility that the function of the elongation factor might involve the facilitation of a conformational change of the ribosome. The analysis of different ribosomal binding complexes with N-ethylmaleimide showed that the binding of poly(U) alone results in a decrease in the labeling of S1 and S18. Binding of aminoacyl-tRNA, on the other hand, is closely correlated with the exposure of S17 for reaction with the maleimide. A model is outlined that accounts for this correlation as well as for the proposed role of elongation factor Tu.  相似文献   

14.
[35S]--70S ribosomes (150 Ci/mmol) were isolated from E. coli MRE-600 cells grown on glucose-mineral media in the presence of [35S] ammonium sulfate. The labeled 30S and 50S subunits were obtained from [35S] ribosomes by centrifugation in a sucrose density gradient of 10--30% under dissociating conditions (0.5 mM Mg2+). The activity of [35S]--70S ribosomes obtained by reassociation of the labeled subunits during poly(U)-dependent diphenylalanine synthesis was not less than 70%. The activity of [35S]--70S ribosomes during poly(U)-directed polyphenylalanine synthesis was nearly the same as that of the standard preparation of unlabeled ribosomes. The 23S, 16S and 5S RNAs isolated from labeled ribosomes as total rRNA contained no detectable amounts of their fragments as revealed by polyacrylamide gel electrophoresis. The [35S] ribosomal proteins isolated from labeled ribosomes were analyzed by two-dimensional gel electrophoresis. The [35S] label was found in all proteins, with the exception of L20, L24 and L33 which did not contain methionine or cysteine residues.  相似文献   

15.
The in vivo assembly of ribosomal subunits requires assistance by auxiliary proteins that are not part of mature ribosomes. More such assembly proteins have been identified for the assembly of the 50S than for the 30S ribosomal subunit. Here, we show that the RimP protein (formerly YhbC or P15a) is important for the maturation of the 30S subunit. A rimP deletion (ΔrimP135) mutant in Escherichia coli showed a temperature-sensitive growth phenotype as demonstrated by a 1.2-, 1.5-, and 2.5-fold lower growth rate at 30, 37, and 44 °C, respectively, compared to a wild-type strain. The mutant had a reduced amount of 70S ribosomes engaged in translation and showed a corresponding increase in the amount of free ribosomal subunits. In addition, the mutant showed a lower ratio of free 30S to 50S subunits as well as an accumulation of immature 16S rRNA compared to a wild-type strain, indicating a deficiency in the maturation of the 30S subunit. All of these effects were more pronounced at higher temperatures. RimP was found to be associated with free 30S subunits but not with free 50S subunits or with 70S ribosomes. The slow growth of the rimP deletion mutant was not suppressed by increased expression of any other known 30S maturation factor.  相似文献   

16.
The number of proteins in yeast ribosomal subunits was determined by two-dimensional polyacrylamide gel electrophoresis. The 40S subunit obtained after dissociation of ribosomes at high ionic strength contains 30 different protein species (including six acidic proteins). The 60S subunit, obtained in the same way contains 39 different species (including 1 acidic protein). While the total number of protein species found in yeast ribosomes, thus, is in close agreement with those reported for other eukaryotic organisms, the distribution between acidic and basic proteins is quite different. When the ribosomes were dissociated at low ionic strength, four extra protein spots appeared in the electropherograms of both 40S and 60S subunits. We consider these proteins to be nonribosomal.  相似文献   

17.
Four types of ribosomes occurring in E. coli have been separated by sucrose gradient centrifugation. These are the 30S and 50S particles occurring in E. coli extracts (native particles), and the 30S and 50S particles which are the subunits of 70S ribosomes (derived particles). Two criteria were used in comparing these particles: (1) The type of RNA contained in each, as determined by sedimentation velocity in the analytical ultracentrifuge. (2) The ability of mixtures of 30S and 50S ribosomes (derived 30S + derived 50S, native 30S + native 50S) to undergo the reaction: [Formula: see text] Native and derived 30S particles were found to contain 16S RNA. Derived 50S particles contained 23S RNA and a small amount of 15 to 20S RNA, whereas native 50S ribosomes contained only 16S RNA. Derived 30S and 50S particles combined to form 70S particles. However, under identical conditions, native 30S and 50S particles did not form 70S ribosomes.  相似文献   

18.
tRNA binding sites on the subunits of Escherichia coli ribosomes   总被引:2,自引:0,他引:2  
Programmed 30 S subunits expose only one binding site, to which the different classes of tRNA (deacylated tRNAPhe, Phe-tRNAPhe, and N-acetylphenylalanyl (AcPhe)-tRNAPhe) bind with about the same affinity. Elongation factor Tu within the ternary complex does not contribute to the binding of Phe-tRNA. Binding of acylated or deacylated tRNA to 30 S depends on the cognate codon; nonprogrammed 30 S subunits do not bind tRNA to any significant extent. The existence of only one binding site/30 S subunit (and not, for example, two sites in 50% of the subunits) could be shown with Phe-tRNAPhe as well as deacylated tRNAPhe pursuing different strategies. Upon 50 S association the 30 S-bound tRNA appears in the P site (except the ternary complex which is found at the A site). Inhibition experiments with tetracycline demonstrated that the 30 S inhibition pattern is identical to that of the P site but differs from that of the A site of 70 S ribosomes. In contrast to 30 S subunits the 50 S subunit exclusively binds up to 0.2 and 0.4 molecules of deacylated tRNAPhe/50 S subunit in the absence and presence of poly(U), respectively, but neither Phe-tRNA nor AcPhe-tRNA. Noncognate poly(A) did not stimulate the binding indicating codon-anticodon interaction at the 50 S site. The exclusive binding of deacylated tRNA and its dependence on the presence of cognate mRNA is reminiscent of the characteristics of the E site on 70 S ribosomes. 30 and 50 S subunits in one test tube expose one binding site more than the sum of binding capacities of the individual subunits. The results suggest that the small subunit contains the prospective P site and the large subunit the prospective E site, thus implying that the A site is generated upon 30 S-50 S association.  相似文献   

19.
Polyribosomes, ribosomes, and ribosomal subunits were prepared from rat liver using sodium deoxycholate and a variety of ionic media. They were examined in the electron microscope, mainly as negatively or positively stained preparations, and in the analytical ultracentrifuge. The polyribosomes consist of up to twelve or more ribosomes linked by a fine strand, 10 to 15 A in diameter, probably of RNA. The ribosomes are approximately spherical with diameters of 250 to 300 A, and are estimated to be about 50 per cent porous. Possibly because of their high protein content, whole ribosomes show no cleavage furrows. Ribosomes were dissociated in phosphate buffer and the subunits separated on sucrose density gradients containing 10 per cent formalin. Three classes of subunit were obtained with sedimentation coefficients of 71S, 50S, and 31S respectively. The smallest, 31S subunit is about 250 A long by 100 A wide. The largest subunits appear to be clusters of smaller particles. It is estimated from their linear dimensions in electron micrographs that the whole 83S ribosome could contain up to six 31S subunits, or their equivalent.  相似文献   

20.
R T Marconi  W E Hill 《Biochemistry》1989,28(2):893-899
A nine-base oligodeoxyribonucleotide complementary to bases 2497-2505 of 23S rRNA was hybridized to both 50S subunits and 70S ribosomes. The binding of the probe to the ribosome or ribosomal subunits was assayed by nitrocellulose filtration and by sucrose gradient centrifugation techniques. The location of the hybridization site was determined by digestion of the rRNA/cDNA heteroduplex with ribonuclease H and gel electrophoresis of the digestion products, followed by the isolation and sequencing of the smaller digestion fragment. The cDNA probe was found to interact specifically with its rRNA target site. The effects on probe hybridization to both 50S and 70S ribosomes as a result of binding deacylated tRNA(Phe) were investigated. The binding of deacylated tRNA(Phe), either with or without the addition of poly(uridylic acid), caused attenuation of probe binding to both 50S and 70S ribosomes. Probe hybridization to 23S rRNA was decreased by about 75% in both 50S subunits and 70S ribosomes. These results suggest that bases within the 2497-2505 site may participate in a deacylated tRNA/rRNA interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号