首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prazosin, an antagonist of the alpha 1-adrenoceptor, has been found to suppress the clinical and histologic expression of experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. This effect appears to be specific for the alpha 1-receptor. To determine the effect of this drug on vascular permeability to serum proteins and inflammatory cells, leakage of serum proteins into the central nervous system (CNS) was measured with [125I]albumin, and quantitation of cellular inflammation was determined by an estimation of total DNA. The results show that in both actively induced and passively transferred models of the disease, treatment with prazosin significantly suppresses leakage of serum proteins into the CNS but does not significantly suppress the increase of DNA. The results of the [125I]albumin studies additionally support the conclusion that the extent of vascular permeability to serum proteins in the spinal cord is a significant correlate of clinical disease. The results of the DNA estimation were at variance with the histologic evidence of cellular infiltration. We conclude that treatment with prazosin has a significant effect on the development of vascular edema in EAE. These results additionally validate a role for the adrenergic receptor in the development of EAE, and support the hypothesis that the primary site of action of prazosin is on the vascular alpha 1-adrenoceptor.  相似文献   

2.
A radioisotopic index test was used to detect that time of onset and intensity of cell-mediated immune inflammation of experimental autoimmune encephalomyelitis (EAE) in mice. Mice were tested at various time intervals after an encephalitogenic immunization with mouse spinal cord to homogenate for delayed-type hypersensitivity (DTH) to myelin basic protein (MBP) by intradermal challenge with antigen in the ear pinna. After 25 hr, the intensity of DTH was measured by 125I-radiometry which depends upon the migration of 125I-UdR radiolabeled mononuclear cells into the antigen depot. Cells reactive to MBP were detected by the ear assay as early as 7 days after the initial encephalitogenic sensitization. The degree of cell-mediated immune inflammation in the brain and spinal cord during the evolution of EAE was also measured by a radioisotopic technique; increased 125I-UdR uptake could be detected in the brain 3 to 4 days before the onset of signs of EAE at days 11 to 12, whereas 125I-UdR in the spinal cord was detected only 1 day before, or concomitant with, the onset of signs of EAE. Both, or concomitant with, the onset of signs of EAE. Both the "ear" and "organ" radiometric index tests are useful in measuring the degree of cell-mediated inflammation in EAE, and supplement routine histopathological and observational assessments.  相似文献   

3.
—The metabolic activity of proteins from myelin and non-myelin fractions of slices of lesions in monkey brains and in spinal cords of Lewis rats with acute experimental allergic encephalomyelitis was investigated using [1-14C]leucine as a protein precursor. The uptake in vitro of [1-14C]leucine into the monkey EAE lesions was greatly increased in both the myelin and non-myelin fractions. Similar findings were made in spinal cord slices of the EAE rat with an average specific activity 341 per cent of control measured in proteins of purified myelin and 415 per cent of control in the non-myelin protein. The increased uptake appeared with the onset of paralytic symptoms 10–14 days after injection. The increased uptake did not appear to be a result of an increased amino acid pool size as measured with uniformly labelled l -leucine, valine, arginine and phenylalanine. The increase in specific activity of the myelin protein of the EAE rats was shown to be associated with the peaks characteristic of myelin protein when separated on polyacrylamide gels and the serial slices counted. Most of the radioactivity of both the control and EAE myelin protein migrated with the high molecular weight fraction, and the largest increase in radioactivity in myelin protein appeared in this fraction. Some increase in specific activity was also found in the basic and proteolipid proteins. Four different guinea-pig antigens were used to induce EAE: whole spinal cord, purified basic protein, purified myelin and basic protein + cerebroside. All caused paralytic symptoms and greatly increased incorporation in vitro of [1-14C]leucine into spinal cord proteins. The incorporation of [1-14C]leucine into slices of the inguinal and popliteal lymph nodes of the EAE and Freund's adjuvant control rats were measured and compared with the incorporation into the spinal cord non-myelin fractions. The specific activity of lymph node proteins was of the order of 10 × that of the non-myelin protein of the control spinal cord. Invasion of a moderate number of cells of the order of activity of these lymph nodes could account for the large increase in rate of protein synthesis in the EAE nervous tissue. It is concluded that much of the increased protein synthesis could be due to the inflammatory cells, although a small amount of the total increase appears to be associated with myelin protein. Other changes in metabolism of the CNS tissue of the EAE rat include a lower rate of lipid synthesis and a decreased activity of the tricarboxylic acid cycle.  相似文献   

4.
Experimental autoimmune encephalomyelitis (EAE), the most common model for multiple sclerosis, is characterized by inflammatory cell infiltration into the central nervous system and demyelination. Previous studies have demonstrated that administration of some polyphenols may reduce the neurological alterations of EAE. In this work, we show that ellagic acid, a polyphenolic compound, is beneficial in EAE, most likely through stimulation of ceramide biosynthesis within the brain. EAE was induced in Lewis rats by injection of guinea-pig spinal cord tissue along with Freund's complete adjuvant containing Mycobacterium tuberculosis. Clinical signs first appeared at day 8 post-immunization and reached a peak within 3?days, coincident with reduction of myelin basic protein (MBP) in the cortex. Sphingolipids, the other major components of myelin, also decreased at the acute phase of EAE, both in the cerebral cortex and in the spinal cord. In rats receiving ellagic acid in the drinking water from 2?days before immunization, the onset of the disease was delayed and clinical signs were reduced. This amelioration of clinical signs was accompanied by sustained levels of both MBP and sphingolipid in the cortex, without apparent changes in infiltration of inflammatory CD3+ T-cells, microglial activation, or weight loss, which together suggest a neuroprotective effect of ellagic acid. Finally, in glioma and oligodendroglioma cells we demonstrate that urolithins, the ellagic acid metabolites that circulate in plasma, stimulate the synthesis of ceramide. Together these data suggest that ellagic acid consumption protects against demyelination in rats with induced EAE, likely by a mechanism involving sphingolipid synthesis.  相似文献   

5.
PROTEOLYTIC ENZYMES AND EXPERIMENTAL DEMYELINATION IN THE RAT AND MONKEY   总被引:5,自引:2,他引:3  
Abstract— Visible lesions from monkeys with acute experimental allergic encephalomyelitis (EAE) induced by injection of purified myelin basic protein were assayed for acid proteinase, for a neutral proteinase at pH 6·5, and one lesion was measured for cathepsin A. Acid proteinase was increased to 152–176 per cent of levels in normal-appearing brain areas, neutral proteinase increased to 220–258 per cent, and the one lesion assayed for cathepsin A was 840 per cent of control. These enzymes were measured in the brain stem of Lewis rats with acute EAE as a result of basic protein injection and compared to Freund's adjuvant-injected controls. Acid proteinase was increased significantly to an average level of 128 per cent of control, the increase in neutral proteinase was not significant, and cathepsin A levels were 258 per cent of control, a highly significant increase. The rise in cathepsin A levels was not seen until the onset of paralytic symptoms. The brain stem of Wistar rats treated with whole spinal cord which show EAE in a milder form than the Lewis rat did not contain significantly higher enzyme levels than the control. The increases in acid proteinase and cathepsin A in brain stems were compared to levels of these enzymes in lymph nodes of EAE, Freund's adjuvant-injected controls and uninjected controls. The level of acid proteinase of lymph nodes/g protein did not change appreciably in the course of EAE development in the Lewis and Wistar rats and was about 3–4 times the activity in the brain stem. The cathepsin A in the inguinal lymph nodes of Wistar and Lewis rats injected with whole spinal cord in Freund's adjuvant increases to a level 2× that of the lymph nodes of the uninjected control. The cathepsin A levels in these activated lymph nodes was 6–8 × that of the control brain stem. The lymph nodes of Lewis and Wistar rats injected with Freund's adjuvant alone showed the same increase in cathepsin A as those from rats injected with spinal cord. The brain stem of rats undergoing severe demyelination as a result of chronic administration of triethyl tin did not show the enzyme increases. These results are compatible with the theory that proteolytic enzyme increases in EAE (and probably multiple sclerosis) are due to the invasion of mononuclear cells, some of which are probably lymphocytes. Whether or not these enzymes participate in the actual dissolution of myelin is unknown.  相似文献   

6.

Background

Experimental autoimmune encephalomyelitis (EAE), the best available model of multiple sclerosis, can be induced in different animal strains using immunization with central nervous system antigens. EAE is associated with inflammation and demyelination of the nervous system. Micro-array can be used to investigate gene expression and biological pathways that are altered during disease. There are few studies of the changes in gene expression in EAE, and these have mostly been done in a chronic mouse EAE model. EAE induced in the Lewis with myelin basic protein (MBP-EAE) is well characterised, making it an ideal candidate for the analysis of gene expression in this disease model.

Methodology/Principal Findings

MBP-EAE was induced in female Lewis rats by inoculation with MBP and adjuvants. Total RNA was extracted from the spinal cords and used for micro-array analysis using AffimetrixGeneChip Rat Exon 1.0 ST Arrays. Gene expression in the spinal cords was compared between healthy female rats and female rats with MBP-EAE. Gene expression in the spinal cord of rats with MBP-EAE differed from that in the spinal cord of normal rats, and there was regulation of pathways involved with immune function and nervous system function. For selected genes the change in expression was confirmed with real-time PCR.

Conclusions/Significance

EAE leads to modulation of gene expression in the spinal cord. We have identified the genes that are most significantly regulated in MBP-EAE in the Lewis rat and produced a profile of gene expression in the spinal cord at the peak of disease.  相似文献   

7.
Fas ligand (FasL) is an essential molecule strongly expressed in some immunoprivileged sites, but is expressed at very low levels in normal CNS. In this study, acute experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats with guinea pig myelin basic protein. Intrathecal infusion of recombinant FasL before EAE onset dose dependently suppressed acute EAE and alleviated pathological inflammation in lumbosacral spinal cord. This treatment greatly increased apoptosis in CNS inflammatory cells, but did not inhibit systemic immune response to myelin basic protein. Systemic administration of a similar dose of rFasL was ineffective. In vitro, encephalitogenic T cells were highly sensitive to rFasL-induced cell death, and activated macrophages were also susceptible. In addition, in vitro rFasL treatment potentiated the immunosuppressive property of rat cerebrospinal fluid. We conclude that intrathecal infusion of rFasL eliminated the initial wave of infiltrating T cells and macrophages, and therefore blocked the later recruitment of inflammatory cells into CNS. Although Fas receptor expression was observed on spinal cord neurons, astrocytes, and oligodendrocytes, no damage to these cells or to the myelin structure was detected after rFasL infusion.  相似文献   

8.
In order to assess whether experimental allergic encephalomyelitis (EAE), a putative animal model for multiple sclerosis (MS), is an ongoing chronic disorder, we have studied the permeability of spinal cords of Lewis rats with EAE to 3H-uridine- or 3H-thymidine-labeled lymphoid cells obtained from thymuses of naive donors or from draining lymph nodes of donors injected with guinea pig spinal cord + complete Fruend's adjuvant (CFA), guinea pig myelin basic protein + CFA, or with CFA alone. During the acute clinical phase of EAE there is a high-level infiltration of 3H-thymidine- or 3H-uridine-labeled cells into the spinal cords. After clinical recovery from EAE up to 58 days post-inoculation, there is a low-level infiltration of 3H-thymidine-labeled cells into the spinal cords. A similar infiltration into the spinal cords by 3H-uridine-labeled cells was not detected. Donor cells from animals immunized with CFA alone showed similar levels of infiltration into the spinal cords of animals with EAE as donor cells from animals immunized with the encephalitogenic emulsion. Spinal cords from recipients immunized with CFA alone showed no increased permeability to labeled cells. Heat-killed labeled cells did not migrate into the spinal cords of animals with EAE. We conclude that a) EAE is a chronic disease and in this regard is a valid model for MS; and B) in the chronic phase of EAE, recently divided cells (3H-thymidine-labeled cells) show higher levels of migration into the target tissue than 3H-uridine-labeled cells.  相似文献   

9.
Norepinephrine and dopamine concentrations were determined by radioenzymatic assay in discrete gray matter regions of the spinal cords of rats with experimental allergic encephalomyelitis (EAE). Norepinephrine was depleted in most spinal cord regions of EAE rats compared with controls, whereas dopamine depletion in EAE rats was restricted to the cervical dorsal horn. There was a rostrocaudal gradient of norepinephrine reduction in the spinal cords of the EAE rats with most severe depletion in the lumbar region. The results of this experiment confirmed recent anatomical observations that suggested that catecholamine-fluorescent axons and terminals were damaged in spinal cords of rats with EAE.  相似文献   

10.
Monoclonal antibodies specific for different rat T cell subsets and Ia-positive cells were used in a quantitative morphologic study of the cellular infiltrates in the spinal cords of Lewis rats during acute, actively induced experimental allergic encephalomyelitis (EAE). The predominant cell types in the inflammatory spinal cord lesions are W3/25-positive and Ia-positive cells. The relative percentages represented by each cell type remain quite constant regardless of the degree of clinical illness exhibited by the rat. These data demonstrate a quantitative profile of the infiltrating cells in acute, active EAE, and suggest that the principal inflammatory cells in these lesions are T helper cells and Ia-bearing cells (macrophages, B cells, or activated T helper cells).  相似文献   

11.
Peroxynitrite (ONOO(-)), a toxic product of the free radicals nitric oxide and superoxide, has been implicated in the pathogenesis of CNS inflammatory diseases, including multiple sclerosis and its animal correlate experimental autoimmune encephalomyelitis (EAE). In this study we have assessed the mode of action of uric acid (UA), a purine metabolite and ONOO(-) scavenger, in the treatment of EAE. We show that if administered to mice before the onset of clinical EAE, UA interferes with the invasion of inflammatory cells into the CNS and prevents development of the disease. In mice with active EAE, exogenously administered UA penetrates the already compromised blood-CNS barrier, blocks ONOO(-)-mediated tyrosine nitration and apoptotic cell death in areas of inflammation in spinal cord tissues and promotes recovery of the animals. Moreover, UA treatment suppresses the enhanced blood-CNS barrier permeability characteristic of EAE. We postulate that UA acts at two levels in EAE: 1) by protecting the integrity of the blood-CNS barrier from ONOO(-)-induced permeability changes such that cell invasion and the resulting pathology is minimized; and 2) through a compromised blood-CNS barrier, by scavenging the ONOO(-) directly responsible for CNS tissue damage and death.  相似文献   

12.
Progress in identifying new therapies for multiple sclerosis (MS) can be accelerated by using imaging biomarkers of disease progression or abatement in model systems. In this study, we evaluate the ability to noninvasively image and quantitate disease pathology using emerging “hot-spot” 19F MRI methods in an experimental autoimmune encephalomyelitis (EAE) rat, a model of MS. Rats with clinical symptoms of EAE were compared to control rats without EAE, as well as to EAE rats that received daily prophylactic treatments with cyclophosphamide. Perfluorocarbon (PFC) nanoemulsion was injected intravenously, which labels predominately monocytes and macrophages in situ. Analysis of the spin-density weighted 19F MRI data enabled quantification of the apparent macrophage burden in the central nervous system and other tissues. The in vivo MRI results were confirmed by extremely high-resolution 19F/1H magnetic resonance microscopy in excised tissue samples and histopathologic analyses. Additionally, 19F nuclear magnetic resonance spectroscopy of intact tissue samples was used to assay the PFC biodistribution in EAE and control rats. In vivo hot-spot 19F signals were detected predominantly in the EAE spinal cord, consistent with the presence of inflammatory infiltrates. Surprising, prominent 19F hot-spots were observed in bone-marrow cavities adjacent to spinal cord lesions; these were not observed in control animals. Quantitative evaluation of cohorts receiving cyclophosphamide treatment displayed significant reduction in 19F signal within the spinal cord and bone marrow of EAE rats. Overall, 19F MRI can be used to quantitatively monitored EAE disease burden, discover unexpected sites of inflammatory activity, and may serve as a sensitive biomarker for the discovery and preclinical assessment of novel MS therapeutic interventions.  相似文献   

13.
Role of the clotting system in the pathogenesis of neuroimmunologic disease   总被引:5,自引:0,他引:5  
Experimental allergic encephalomyelitis (EAE) is a prototypic neuroautoimmune disease involving sensitization to central nervous system myelin basic protein (MBP). Our studies of the clotting system and ensuing fibrinolysis implicate coagulation and cleavage of fibrin within or on the luminal surface of the cerebrovasculature as events initiating the inflammation characterizing EAE. Among recipient rats injected with MPB-primed, cultured-activated lymph node cells, opening of the blood-brain barrier (BBB) and deposition of perivascular fibrin within the spinal cord occur in parallel 1 day before onset of clinical signs of EAE. Daily treatment of recipient rats with trans-4-(aminomethyl)cyclohexanecarboxylic acid, a synthetic product that specifically inhibits plasminogen activator derived from endothelial cells, results in marked reduction of increased permeability of the BBB and suppression of clinical signs of EAE. We postulate that the critical event precipitating EAE is binding of circulating MBP-reactive immune effector cells to MBP immunodeterminants on the surface of cerebrovascular endothelial cells. Coagulation and ensuing fibrinolysis occur at sites of binding of effector cells to cerebrovascular endothelium. Release of biologically active peptides cleaved from fibrin open the BBB, thereby setting the stage for the cascade of inflammatory events culminating in clinical manifestations of EAE.  相似文献   

14.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that commonly affects young adults. It is characterized by demyelination and glial scaring in areas disseminated in the brain and spinal cord. These lesions alter nerve conduction and induce the disabling neurological deficits that vary with the location of the demyelinated plaques in the CNS (e.g. paraparesis, paralysis, blindness, incontinence). Experimental autoimmune encephalomyelitis (EAE) is a model for MS. EAE was first induced accidentally in humans during vaccination against rabies, using viruses grown on rabbit spinal cords. Residues of spinal injected with the inactivated virus induced the CNS disease. Following these observations, a first model of EAE was described in non-human primates immunized with a CNS homogenate by Rivers and Schwenther in 1935. EAE has since been generated in a variety of species and can follow different courses depending on the species/strain and immunizing antigen used. For example, immunizing Lewis rats with myelin basic protein in emulsion with adjuvant induces an acute model of EAE, while the same antigen induces a chronic disease in guinea pigs. The EAE model described here is induced by immunizing DA rats against DA rat spinal cord in emulsion in complete Freund's adjuvant. Rats develop an ascending flaccid paralysis within 7-14 days post-immunization. Clinical signs follow a relapsing-remitting course over several weeks. Pathology shows large immune infiltrates in the CNS and demyelination plaques. Special considerations for taking care for animals with EAE are described at the end of the video.  相似文献   

15.
Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system (CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor pathogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water channel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS, they mediate astrocyte destruction by complement-dependent and by antibody-dependent cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from therapies involving type I interferons (I-IFN), NMO patients typically do not profit from such treatments. How is I-IFN involved in NMO pathogenesis? To address this question, we made gene expression profiles of spinal cords from Lewis rat models of experimental neuromyelitis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial, we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier was open. With this treatment regimen, we could amplify possible effects of the I-IFN induced genes on the transmigration of infiltrating cells through the blood brain barrier, and on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting beneficial effects of I-IFN.  相似文献   

16.
DNA levels were measured in the spinal cords of Lewis rats during the development of and recovery from experimental allergic encephalomyelitis (EAE). Spinal cord DNA was first increased 11 days after immunizing the rats with guinea pig myelin and rose to levels four times that of the Freund's adjuvant controls at day 14, then subsided after day 22. Spinal cord DNA was still 150% of control levels 60 days after immunization. These DNA changes were compared with fluctuations in spinal cord acid proteinase in the same animals. Acid proteinase activity in EAE spinal cord increased later than the rise in DNA and attained a level of 170% of control at days 15-17, then subsided. Spinal cord DNA was higher in rats immunized with whole myelin than in those administered equivalent amounts of purified myelin basic protein. Furthermore DNA was higher in spinal cords of rats immunized with a larger dose of myelin (1.0 mg) than with a lower amount (0.5 mg). Various protease inhibitors including pepstatin, nitrophenyl p-guanidino benzoate, polylysine, and dipropionyl rhein, previously shown to protect Lewis rats against EAE, suppressed the increase of DNA in the spinal cord. Measurement of DNA increases in the spinal cord of EAE animals provides a convenient reproducible measurement of the severity of inflammation in the CNS and provides an objective criterion for assessment of the efficacy of various agents screened as possible therapeutic treatment for multiple sclerosis.  相似文献   

17.
Experimental allergic encephalomyelitis (EAE) is an autoimmune syndrome that can be induced in Lewis rats by myelin basic protein (BP) in complete Freund's adjuvant (CFA). Rats that have recovered from a primary episode of EAE display paradoxical long-term resistance to EAE reinduction by BP-CFA. Previous observations indicated, however, that clinical disease could be reinduced in convalescent rats by a concomitant secondary challenge with BP-CFA + Bordetella pertussis extract (PERT). Vascular permeability changes in the central nervous system (CNS) paralleled disease reinduction. To further probe the relationship between disease reinduction and vascular permeability, convalescent rats were treated with the vasoactive amine antagonist cyproheptadine (CYP) prior to a secondary challenge with BP-CFA + PERT. Data presented here indicate that CYP treatment results in substantial protection of convalescent rats from clinical disease reinduction by BP-CFA + PERT. CYP did not, however, prevent the development of new CNS lesions. CYP therapy also altered the clinical course of EAE induced by a primary injection of BP-CFA + PERT. In these rats, there was a delay in the onset of clinical signs as well as in the appearance of CNS lesions. Nevertheless, both CYP-treated and untreated naive rats challenged with BP-CFA + PERT eventually developed severe and usually lethal EAE. The effect of CYP on EAE induced in naive rats without including PERT in the sensitization protocol was also evaluated. In contrast to the mitigating effect of CYP on EAE induced or reinduced by BP-CFA + PERT, CYP treatment did not affect the clinical course or the development of CNS lesions in rats challenged with BP-CFA alone. Likewise, the passive transfer of EAE, mediated by mitogen-stimulated cells obtained from BP-CFA-sensitized donors, was not affected by CYP treatment. Collectively, these data indicate that CYP therapy altered the expression of EAE induced by regimens that included PERT, but did not affect EAE induced without PERT. In view of the opposing effects of PERT and CYP on vascular permeability, these data are consistent with the hypothesis that alterations in vascular permeability may play a crucial role in controlling the expression of autoimmune neurological diseases.  相似文献   

18.
The immunization of inbred Dark Agouti (DA) rats with an emulsion containing homogenized spinal cord and CFA induces chronic relapsing experimental autoimmune encephalomyelitis (EAE), a disease with many similarities to multiple sclerosis. We report here the first genome-wide search for quantitative trait loci regulating EAE in the rat using this model. We identified one quantitative trait locus on chromosome 9, Eae4, in a [DA(RT1av1) x BN(RT1n)]F2 intercross showing linkage to disease susceptibility and expression of mRNA for the proinflammatory cytokine IFN-gamma in the spinal cord. Eae4 had a larger influence on disease incidence among rats that were homozygous for the RT1av1 MHC haplotype (RT1av1 rats) compared with RT1n/av1 rats, suggesting an interaction between Eae4 and the MHC. Homozygosity for the DA allele at markers in Eae4 and in the MHC was sufficient for EAE. Thus, Eae4 is a major genetic factor determining susceptibility to EAE in this cross of DA rats. In addition, there was support for linkage to phenotypes of EAE on chromosomes 1, 2, 5, 7, 8, 12, and 15. The chromosome 12 region has been shown previously to predispose DA rats to arthritis, and the chromosome 2 region is syntenic to Eae3 in mice. We conclude that Eae4 and probably the other identified genome regions harbor genes regulating susceptibility to neuroinflammatory disease. The identification and functional characterization of these genes may disclose critical events in the pathogenesis of multiple sclerosis; understanding these events could be essential for the development of new therapies against the disease.  相似文献   

19.
Experimental allergic encephalomyelitis (EAE) was induced in Lewis rats using several different immunization protocols, and draining lymph node cells from these animals were assayed for proliferation against heterologous, homologous, and syngeneic MBP, and syngeneic spinal cord. Proliferative responses were largely stimulated by nonsyngeneic antigenic determinants and correlated better with the antigen used to induce EAE than with signs of autoimmune disease. Lymph node cells from rats immunized with either guinea pig spinal cord or syngeneic MBP did not proliferate measurably when restimulated in vitro with syngeneic MBP, yet lymphoid cells from these animals were enhanced in their capacity to transfer EAE following in vitro stimulation with syngeneic MBP.  相似文献   

20.
Tan GJ  Zhu YF  Cao CF  Zhao XY  Ma CS  Yang TZ 《生理学报》2004,56(5):579-584
为探讨脑组织血红素氧合酶-1(hemeoxygenase-1,HO-1)对实验性变态反应性脑脊髓炎(experimental allergic encephalomyelitis,EAE)的作用,分别应用逆转录-聚合酶链反应(RT-PCR)和免疫组化技术测定了豚鼠脊髓生理盐水匀浆 完全福氏佐剂诱导EAE大鼠1、7、14、21d时,脑组织HO-1基因和蛋白表达的动态变化,并观察与症状之间的关系。结果显示:对照组大鼠脑组织仅有少量HO-1基因和蛋白表达:诱导EAE后,伴随着大鼠EAE症状及脑组织病理损伤的出现和进行性加重,脑组织HO-1基因和蛋白表达量逐渐增高。在豚鼠脊髓生理盐水匀浆 完全福氏佐剂诱导7d后,HO-1 mRNA上升至高峰。14d时,HO-1蛋白表达至高峰,HO-1阳性细胞主要位于脉络丛、穹隆下器、血管“套袖样”病灶的周围,与EAE病变部位一致。此时大鼠的病情最重、体重减轻最显著、脑组织病理改变最明显。21d时脑组织HO-1基因和蛋白表达量逐渐下降,大鼠EAE症状也逐渐减轻。应用HO-1特异性抑制剂锡原卟啉-9以抑制脑内HO-1蛋白表达后,大鼠EAE症状和脑组织损伤明显减轻,说明脑组织HO-1的动态变化与EAE症状及脑组织损伤密切相关。提示脑组织HO-1基因和蛋白过表达对EAE发病起着重要的作用,应用HO-1抑制剂可能是防治该病的有效方法之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号