首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Arabidopsis gene GF14 lambda that encodes a 14-3-3 protein was introduced into cotton plants to explore the physiological roles that GF14 lambda might play in plants. The expression level of GF14 lambda under the control of the cauliflower mosaic virus 35S promoter varied in transgenic cotton plants, and lines that expressed GF14 lambda demonstrated a "stay-green" phenotype and improved water-stress tolerance. These lines wilted less and maintained higher photosynthesis than segregated non-transgenic control plants under water-deficit conditions. Stomatal conductance appears to be the major factor for the observed higher photosynthetic rates under water-deficit conditions. The stomatal aperture of transgenic plants might be regulated by GF14 lambda through some transporters such as H(+)-ATPase whose activities are controlled by their interaction with 14-3-3 proteins. However, since 14-3-3 proteins interact with numerous proteins in plant cells, many metabolic processes could be affected by the GF14 lambda overexpression. Whatever the mechanisms, the traits observed in the GF14 lambda-expressing cotton plants are beneficial to crops under certain water-deficit conditions.  相似文献   

3.
4.
Bacterial speck caused by the pathogen Pseudomonas syringae pv. tomato (P. s. tomato) is a devastating disease of tomato plants. Here we show that inhibition of Ep5C gene expression, which encodes a secreted cationic peroxidase, is sufficient to confer resistance against P. s. tomato. The inhibition of Ep5C protein accumulation in antisense tomato plants established resistance that was not accompanied by the pre-activation of known defense pathways. Therefore, Ep5C inhibition represents a novel form of disease resistance based on a loss-of-gene function in the plant required for successful infection by a compatible bacterial pathogen. Ep5C expression is rapidly induced by H2O2, a reactive oxygen intermediate normally generated during the course of a plant-pathogen interaction. This was corroborated by monitoring the expression of an Ep5C-GUS gene in transgenic Arabidopsis plants. Collectively, these results identify a signaling pathway that uses early signals generated during the oxidative burst, such as H2O2, for the selective activation of host factors required for mounting a compatible interaction. Thus, Ep5C provides a new resource for developing bacterial speck disease-resistant varieties.  相似文献   

5.
Plant 14-3-3 proteins regulate important cellular processes, including plant immune responses, through protein-protein interactions with a wide range of target proteins. In rice (Oryza sativa), the GF14e gene, which encodes a 14-3-3 protein, is induced during effector-triggered immunity (ETI) associated with pathogens such as Xanthomonas oryzae pv. oryzae (Xoo). To determine whether the GF14e gene plays a direct role in resistance to disease in rice, we suppressed its expression by RNAi silencing. GF14e suppression was correlated with the appearance of a lesion-mimic (LM) phenotype in the transgenic plants at 3 weeks after sowing. This indicates inappropriate regulation of cell death, a phenotype that is frequently associated with enhanced resistance to pathogens. GF14e-silenced rice plants showed high levels of resistance to a virulent strain of Xoo compared with plants that were not silenced. Enhanced resistance was correlated with GF14e silencing prior to and after development of the LM phenotype, higher basal expression of a defense response peroxidase gene (POX22.3), and accumulation of reactive oxygen species (ROS). In addition, GF14e-silenced plants also exhibit enhanced resistance to the necrotrophic fungal pathogen Rhizoctonia solani. Together, our findings suggest that GF14e negatively affects the induction of plant defense response genes, cell death and broad-spectrum resistance in rice.  相似文献   

6.
7.
The class 1 pathogenesis-related (PR) proteins are thought to be involved in plant defence responses, but their molecular functions are unknown. The function of PR-1 was investigated in tobacco by generating stable PR-1a-silenced lines in which other acidic PR-1 genes (PR-1b and PR-1c) were silenced. Plants lacking extracellular PR-1s were more susceptible than wild-type plants to the oomycete Phytophthora parasitica but displayed unaffected systemic acquired resistance and developmental resistance to this pathogen. Treatment with salicylic acid up-regulates the PR-1g gene, encoding a basic protein of the PR-1 family, in PR-1-deficient tobacco, indicating that PR-1 expression may repress that of PR-1g. This shows that acidic PR-1s are dispensable for expression of salicylic acid-dependent acquired resistances against P. parasitica and may reveal a functional overlap in tobacco defence or a functional redundancy in the PR-1 gene family. The data also show that there is a specific increase in apoplastic beta-(1-->3)-glucanase activity and a decrease in beta-(1-->3)-glucan deposition in PR-1-silenced lines following activation of defence reactions. Complementation of the silencing by apoplastic treatment with a recombinant PR-1a protein largely restores the wild-type beta-(1-->3)-glucanase activity and callose phenotype. Taken together with the immunolocalization of PR-1a to sites of beta-(1-->3)-glucan deposition in wild-type plants, these results are indicative of a function for PR-1a in regulation of enzymatic activity of extracellular beta-(1-->3)-glucanases.  相似文献   

8.
Three pathogenesis-related (PR) proteins of tobacco are acidic isoforms of beta-1,3-glucanase (PR-2a, -2b, -2c). We have cloned and sequenced a partial cDNA clone (lambda FJ1) corresponding to one of the PR-2 beta-1,3-glucanases. A small gene family encodes the PR-2 proteins in tobacco, and similar genes are present in a number of plant species. We analyzed the stress and developmental regulation of the tobacco PR-2 beta-1,3-glucanases by using northern and western analyses and a new technique to assay enzymatic activity. Stress caused by both thiamine and tobacco mosaic virus (TMV) infection resulted in a dramatic increase in the levels of PR-2 mRNA, protein, and enzyme activities. The increased PR-2 gene expression in upper uninoculated leaves of plants infected with TMV also suggests a role in systemic acquired resistance. During floral development, a number of beta-1,3-glucanase activities were observed in all flower tissues. However, PR-2 polypeptides were observed only in sepal tissue. In contrast, an mRNA that hybridized to the PR-2 cDNA was present in stigma/style tissue and the sepals. Primer extension analysis confirmed the identity of the PR-2 mRNA in sepals, but indicated that the beta-1,3-glucanase gene expressed in the stigma/style of flowers was distinct from the PR-2 genes. The induction of PR-2 protein synthesis by both stress and developmental signals was accompanied by a corresponding increase in the steady-state levels of PR-2 mRNA, suggesting that PR-2 gene expression is regulated, in part, at the level of mRNA accumulation.  相似文献   

9.
Sang S  Li X  Gao R  You Z  Lü B  Liu P  Ma Q  Dong H 《Plant molecular biology》2012,79(4-5):375-391
Harpin proteins secreted by phytopathogenic bacteria have been shown to activate the plant defense pathway, which involves transduction of a hydrogen peroxide (H(2)O(2)) signal generated in the apoplast. However, the way in which harpins are recognized in the pathway and what role the apoplastic H(2)O(2) plays in plant defenses are unclear. Here, we examine whether the cellular localization of Hpa1(Xoo), a harpin protein produced by the rice bacterial leaf blight pathogen, impacts H(2)O(2) production and pathogen resistance in Arabidopsis thaliana. Transformation with the hpa1 (Xoo) gene and hpa1 (Xoo) fused to an apoplastic localization signal (shpa1 (Xoo)) generated h pa1 (Xoo)- and sh pa1 (Xoo)-expressing transgenic A . t haliana (HETAt and SHETAt) plants, respectively. Hpa1(Xoo) was associated with the apoplast in SHETAt plants but localized inside the cell in HETAt plants. In addition, Hpa1(Xoo) localization accompanied H(2)O(2) accumulation in both the apoplast and cytoplasm of SHETAt plants but only in the cytoplasm of HETAt plants. Apoplastic H(2)O(2) production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) located in the plasma membrane is a common feature of plant defenses. In SHETAt plants, H(2)O(2) was generated in apoplasts in a NOX-dependent manner but accumulated to a greater extent in the cytoplasm than in the apoplast. After being applied to the wild-type plant, Hpa1(Xoo) localized to apoplasts and stimulated H(2)O(2) production as in SHETAt plants. In both plants, inhibiting apoplastic H(2)O(2) generation abrogated both cytoplasmic H(2)O(2) accumulation and plant resistance to bacterial pathogens. These results suggest the possibility that the apoplastic H(2)O(2) is subject to a cytoplasmic translocation for participation in the pathogen defense.  相似文献   

10.
RING finger proteins comprise a large family and play key roles in regulating growth/developmental processes, hormone signaling and responses to biotic and abiotic stresses in plants. A rice gene, OsBIRF1, encoding a putative RING-H2 finger protein, was cloned and identified. OsBIRF1 encodes a 396 amino acid protein belonging to the ATL family characterized by a conserved RING-H2 finger domain (C-X2-C-X15-C-X1-H-X2-H-X2-C-X10-C-X2-C), a transmembrane domain at the N-terminal, a basic amino acid rich region and a characteristic GLD region. Expression of OsBIRF1 was up-regulated in rice seedlings after treatment with benzothaidiazole, salicylic acid, l-aminocyclopropane-1-carboxylic acid and jasmonic acid, and was induced differentially in incompatible but not compatible interactions between rice and Magnaporthe grisea, the causal agent of blast disease. Transgenic tobacco plants that constitutively express OsBIRF1 exhibit enhanced disease resistance against tobacco mosaic virus and Pseudomonas syringae pv. tabaci and elevated expression levels of defense-related genes, e.g. PR-1, PR-2, PR-3 and PR-5. The OsBIRF1-overexpressing transgenic tobacco plants show increased oxidative stress tolerance to exogenous treatment with methyl viologen and H2O2, and up-regulate expression of oxidative stress-related genes. Reduced ABA sensitivity in root elongation and increased drought tolerance in seed germination were also observed in OsBIRF1 transgenic tobacco plants. Furthermore, the transgenic tobacco plants show longer roots and higher plant heights as compared with the wild-type plants, suggesting that overexpression of OsBIRF1 promote plant growth. These results demonstrate that OsBIRF1 has pleiotropic effects on growth and defense response against multiple abiotic and biotic stresses.  相似文献   

11.
Human seven-in-absentia (SIAH)-interacting protein (SIP) is a component of the E3 ligase complex targeting beta-catenin for destruction. Arabidopsis has one SIP protein (AtSIP) with 32% amino acid sequence identity to SIP. To investigate the functions of AtSIP, we isolated an atsip knockout mutant, and generated transgenic plants overexpressing AtSIP. The growth rates and morphologies of the atsip and transgenic plants were indistinguishable from those of wild type. However, atsip plants were more susceptible to Pseudomonas syringae infection, and the transgenic plants overexpressing AtSIP were more resistant. Consistent with this, RNA blot analysis showed that the AtSIP gene is strongly induced by wounding and hydrogen peroxide treatment. In addition, when plants were infected with P. syringae, AtSIP was transiently induced prior to PR-1 induction. These observations show that Arabidopsis AtSIP plays a role in resistance to pathogenic infection.  相似文献   

12.
13.
Three Botrytis-susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways.  相似文献   

14.
HrpN(EP), from the gram-negative pathogen, Erwinia pyrifoliae, is a member of the harpin group of proteins, inducing pathogen resistance and hypersensitive cell death in plants. When the hrpN(EP) gene driven by the OsCc1 promoter was introduced into tobacco plants via Agrobacterium-mediated transformation, their resistance to the necrotrophic fungal pathogen, Botrytis cinerea, increased. Resistance to B. cinerea was correlated with enhanced induction of SA-dependent genes such as PR-1a, PR2, PR3 and Chia5, of JA-dependent genes such as PR-1b, and of genes related to ethylene production, such as NT-EFE26, NT-1A1C, DS321, NT-ACS1 and NT-ACS2. However the expression of NPR1, which is thought to be essential for multiple-resistance, did not increase. Since the pattern of expression of defense-related genes in hrpN(EP)-expressing tobacco differed from that in plants expressing hpaG(Xoo) from Xanthomonas oryzae pv. Oryzae, these results suggest that different harpins can affect the expression of different defense-related genes, as well as resistance to different plant pathogens.  相似文献   

15.
The plant growth-promoting fungus (PGPF), Phoma sp. GS8-3, isolated from a zoysia grass rhizosphere, is capable of protecting cucumber plants against virulent pathogens. This fungus was investigated in terms of the underlying mechanisms and ability to elicit systemic resistance in Arabidopsis thaliana . Root treatment of Arabidopsis plants with a culture filtrate (CF) from Phoma sp. GS8-3 elicited systemic resistance against the bacterial speck pathogen Pseudomonas syringae pv. tomato DC3000 ( Pst ), with restricted disease development and inhibited pathogen proliferation. Pathway-specific mutant plants, such as jar1 (jasmonic acid insensitive) and ein2 (ethylene insensitive), and transgenic NahG plants (impaired in salicylate signalling) were protected after application of the CF, demonstrating that these pathways are dispensable (at least individually) in CF-mediated resistance. Similarly, NPR1 interference in npr1 mutants had no effect on CF-induced resistance. Gene expression studies revealed that CF treatment stimulated the systemic expression of both the SA-inducible PR-1 and JA/ET-inducible PDF1.2 genes. However, pathogenic challenge to CF-treated plants was associated with potentiated expression of the PR-1 gene and down-regulated expression of the PDF1.2 gene. The observed down-regulation of the PDF1.2 gene in CF-treated plants indicates that there may be cross-talk between SA- and JA/ET-dependent signalling pathways during the pathogenic infection process. In conclusion, our data suggest that CF of Phoma sp. GS8-3 induces resistance in Arabidopsis in a manner where SA and JA/ET may play a role in defence signalling.  相似文献   

16.
Systemic acquired resistance (SAR) is an inducible defence mechanism which plays a central role in protecting plants from microbial pathogen attack. Guided by bioassays, a new chemical inducer of SAR was isolated from the extracts of Strobilanthes cusia and identified to be 3-acetonyl-3-hydroxyoxindole (AHO), a derivative of isatin. Tobacco plants treated with AHO exhibited enhanced resistance to tobacco mosaic virus (TMV) and to the fungal pathogen Erysiphe cichoracearum (powdery mildew), accompanied by increased levels of pathogenesis-related gene 1 ( PR-1 ) expression, salicylic acid (SA) accumulation and phenylalanine ammonia-lyase activity. To study the mode of action of AHO, its ability to induce PR-1 expression and TMV resistance in nahG transgenic plants expressing salicylate hydroxylase, which prevents the accumulation of SA, was analysed. AHO treatment did not induce TMV resistance or PR-1 expression in nahG transgenic plants, suggesting that AHO acts upstream of SA in the SAR signalling pathway. In addition, using two-dimensional gel electrophoresis combined with mass spectrometry, five AHO-induced plant proteins were identified which were homologous to the effector proteins with which SA interacts. Our data suggest that AHO may represent a novel class of inducer that stimulates SA-mediated defence responses.  相似文献   

17.
18.
19.
Zhang Z  Li Q  Li Z  Staswick PE  Wang M  Zhu Y  He Z 《Plant physiology》2007,145(2):450-464
Salicylic acid (SA) plays a central role in plant disease resistance, and emerging evidence indicates that auxin, an essential plant hormone in regulating plant growth and development, is involved in plant disease susceptibility. GH3.5, a member of the GH3 family of early auxin-responsive genes in Arabidopsis (Arabidopsis thaliana), encodes a protein possessing in vitro adenylation activity on both indole-3-acetic acid (IAA) and SA. Here, we show that GH3.5 acts as a bifunctional modulator in both SA and auxin signaling during pathogen infection. Overexpression of the GH3.5 gene in an activation-tagged mutant gh3.5-1D led to elevated accumulation of SA and increased expression of PR-1 in local and systemic tissues in response to avirulent pathogens. In contrast, two T-DNA insertional mutations of GH3.5 partially compromised the systemic acquired resistance associated with diminished PR-1 expression in systemic tissues. The gh3.5-1D mutant also accumulated high levels of free IAA after pathogen infection and impaired different resistance-gene-mediated resistance, which was also observed in the GH3.6 activation-tagged mutant dfl1-D that impacted the auxin pathway, indicating an important role of GH3.5/GH3.6 in disease susceptibility. Furthermore, microarray analysis showed that the SA and auxin pathways were simultaneously augmented in gh3.5-1D after infection with an avirulent pathogen. The SA pathway was amplified by GH3.5 through inducing SA-responsive genes and basal defense components, whereas the auxin pathway was derepressed through up-regulating IAA biosynthesis and down-regulating auxin repressor genes. Taken together, our data reveal novel regulatory functions of GH3.5 in the plant-pathogen interaction.  相似文献   

20.
Riboflavin mediates many bioprocesses associated with the generation of hydrogen peroxide (H?O?), a cellular signal that regulates defense responses in plants. Although plants can synthesize riboflavin, the levels vary widely in different organs and during different stages of development, indicating that changes in riboflavin levels may have physiological effects. Here, we show that changing riboflavin content affects H?O? accumulation and a pathogen defense in Arabidopsis thaliana. Leaf content of free riboflavin was modulated by ectopic expression of the turtle gene encoding riboflavin-binding protein (RfBP). The RfBP-expressing Arabidopsis thaliana (REAT) plants produced the RfBP protein that possessed riboflavin-binding activity. Compared with the wild-type plant, several tested REAT lines had >70% less flavins of free form. This change accompanied an elevation in the level of H?O? and an enhancement of plant resistance to a bacterial pathogen. All the observed REAT characters were eliminated due to RfBP silencing (RfBPi) under REAT background. When an H?O? scavenger was applied, H?O? level declined in all the plants, and REAT no longer exhibited the phenotype of resistance enhancement. However, treatment with an NADPH oxidase inhibitor diminished H?O? content and pathogen defense in wild-type and RfBPi but not in REAT. Our results suggest that the intrinsic down-regulation of free flavins is responsible for NADPH oxidase-independent H?O? accumulation and the pathogen defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号