首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Footbaths represent a potentially useful strategy for the prevention of claw infectious diseases by treating a large number of animals concomitantly. Nevertheless, under field conditions, footbath solutions are exposed to increasing number of animal passages and therefore, to different volume losses and concentrations of manure contamination which could alter their presumed bactericidal activity. Across increasing number of cow passages, the organic matter (OM) concentration, the microbial load (ML) and the residual volumes were assessed in six commercial farms. The results indicate that the OM concentration and ML increased linearly with the number of passages of animals, and with the number of defecations in the footbath. The OM concentrations and the ML were not impacted by the farm’s feet hygiene status (clean, fair and dirty), suggesting that probably the increasing number of cow passages and defecations influenced more the contamination of footbaths than the hygiene of the feet. In all the farms the volumes decreased drastically after 200 cow passages (50%). The OM concentrations after 150 and 200 cow passages did not exceed the regulatory concentrations in which disinfectant products should demonstrate to still be effective (20 g/l), and coincide with the often advised renewal rates. The findings of this study suggested that beyond the footbath contamination by OM, the renewal rates must be mainly adapted according to the remaining volume to guarantee that the entire foot is covered and therefore assure the topical action of the solution. This study highlights the importance of footbath designs for the successful implementation of these strategies in practice.  相似文献   

5.
6.
Endocannabinoid/cannabinoid receptor signaling acts centrally and peripherally to govern appetite and energy balance. While system stimulation promotes eating and energy storage, receptor blockade can reduce food intake and facilitate weight loss. In this issue of Cell Metabolism, Addy et al. (2008) test the therapeutic antiobesity potential of taranabant, a cannabinoid 1 receptor inverse agonist.  相似文献   

7.
8.
9.
Hypsodont (i.e. high-crowned) teeth have been interpreted as an indicator of feeding preferences and habitat selection in ungulates. For this reason, the degree of hypsodonty has been used for estimating the diet of ancient taxa and in palaeoenvironmental reconstructions. The goal of this study is to elucidate the relative importance of grass consumption and open habitat foraging in the development of hypsodont teeth, using novel computer techniques of knowledge discovery applied to a dataset of 134 species of artiodactyls and perissodactyls distributed among thirteen families. The results obtained suggest that high-crowned teeth represent an adaptation for feeding in an open habitat, although the minimum threshold of hypsodonty seems to increase with the relative length of the anterior part of the jaw. On the contrary, there is no direct relationship between the degree of hypsodonty and the percentage of grass consumed, except for the correspondence between grazing and dwelling in open habitats. A relatively wide muzzle evidences an adaptation for grass foraging in open and mixed habitats, but there are some non-grazing species from a closed habitat that also show wide muzzles. Thus, the hypsodonty index, combined with the length of the anterior part of the jaw and the width of the muzzle, allows accurate inferences on the ecological preferences of extinct ungulates.  相似文献   

10.
Nicolelis MA 《Neuron》2002,34(3):331-332
Neuronal adaptation to repetitive sensory stimuli is ubiquitous in the mammalian cortex. Despite its prevalence, the cellular mechanisms underlying this basic physiological property remain a matter of dispute. In this issue of Neuron, Chung et al. provide conclusive evidence that depression of thalamocortical synapses may play a significant role in the expression of neuronal adaptation in the rat somatosensory cortex.  相似文献   

11.
The present investigation aimed to establish whether noncompetitive rock climbing fulfills sports medicine recommendations for maintaining a good level of aerobic fitness. The physiological profile of 13 rock climbers, 8 men (age, 43 +/- 8 years) and 5 women (age, 31 +/- 8 years) was assessed by means of laboratory tests. Maximal aerobic power (VO2peak) and ventilatory threshold (VT) were assessed using a cycloergometer incremental test. During outdoor rock face climbing, VO2 and heart rate (HR) were measured with a portable metabolimeter and the relative steady-state values (VO2 and HR during rock climbing) were computed. Blood lactate was measured during recovery. All data are presented as mean +/- SD. VO2 was 39.1 +/- 4.3 mL.kg.min in men and 39.7 +/- 5 mL.kg.min in women, while VT was 29.4 +/- 3.0 mL.kg.min in men and 28.8 +/- 4.6 mL.kg.min in women. The VO2 during rock climbing was 28.3 +/- 1.5 mL.kg.min in men and 27.5 +/- 3.7 mL.kg.min in women. The HR during rock climbing was 144 +/- 16 b.min in men and 164 +/- 13 b.min in women. The aerobic profile was classified from excellent to superior in accordance with the standards of the American College of Sports Medicine (ACSM). The exercise intensity (VO2 during rock climbing expressed as a percentage of VO2peak) was 70 +/- 6% in men and 72 +/- 8% in women. Moreover, the energy expenditure was 1000-1500 kcal per week. In conclusion, noncompetitive rock climbing has proved to be a typical aerobic activity. The intensity of exercise is comparable to that recommended by the American College of Sports Medicine to maintain good cardiorespiratory fitness.  相似文献   

12.
13.
14.
Breeding Brünnich's guillemots Uria lomvia show stepwise mass loss at the time of hatch. This mass loss has usually been explained as an adaptation to reduce the cost of flight during the chick‐rearing period because flight time increases during that period. It is possible, however, that mass loss also increases dive performance during the chick‐rearing period because time spent diving also increases during that period. Reduced mass could reduce basal metabolic rate or costs associated with buoyancy and therefore increase aerobic dive limit. To examine the role of mass loss in dive behavior, we attached time‐depth‐temperature recorders for 24–48 h to chick‐rearing and incubating Brünnich's guillemots at Coats Island, Nunavut (2005: n=45, 2006: n=40), and recorded body mass before and after each deployment. There was no relationship between mass and dive duration during either incubation or chick‐rearing. Seventeen of the birds we sampled during incubation were resampled during chick‐rearing. For this group, dive duration increased with mass loss between incubation and chick‐rearing (r2=0.67–0.75). Mass loss occurred through reductions in metabolically‐active tissues (liver, bladder) and buoyant tissues (lipids) although muscle and gut mass did not change. Despite the large change in lipids, buoyancy only changed by 0.1%, and mass loss therefore did not have much effect on costs associated with buoyancy. Nonetheless, surface pause duration for a given dive depth decreased during chick‐rearing, supporting the idea that reduced mass led to increased aerobic dive limit through reduced metabolic rate and inertial costs; oxygen stores did not increase. We also attached neutrally (n=9) and negatively (n=11) buoyant handicaps to the legs of adults to assess the effect of artificial mass increases on time budgets. Artificially increasing mass decreased total time spent diving but did not change time spent flying. There was no change in shift length between incubation and chick‐rearing, and therefore no support for the idea that mass loss reflected a change in fasting endurance requirements. An energetic model suggested that the observed mass reduction reduced dive costs by 5–8% and flight costs by 3%. We concluded that mass loss may be as important for increasing dive performance as increasing flight performance.  相似文献   

15.
Kaufman J 《Immunogenetics》1999,50(3-4):228-236
  相似文献   

16.
17.
Biodiversity research is often impeded by the time and resources required to identify species. One possible solution is to use higher taxa to predict species richness and community composition. However, previous studies have shown that the performance of higher taxa as surrogates for species is highly variable, making it difficult to predict whether the method will be reliable for a particular objective. Using 8 independent datasets, I tested whether higher taxa accurately characterize the responses of beetle and ant communities to environmental drivers. For each dataset, ordinations were carried out using species and higher taxa, and the two compared using the Procrustes statistic (a scale‐independent variant of Procrustes sum of squares). I then modelled the relationship between five hypothesised explanatory variables and 1) Procrustes , and 2) the coefficient of determination () for the correlation between richness of species and higher taxa. The species to higher taxon ratio, community structure, beta diversity, completeness of sampling, and taxon (beetles or ants) were all significant predictors of , together explaining 88% of the variance. The only significant predictor of was the species to higher taxon ratio, which explained 45% of the variance. When using higher taxa to predict community composition, better performance is expected when the ratio of species to higher taxa is low, in communities with high evenness and high species turnover, and when there is niche conservation within higher taxa. When using higher taxa to predict species richness, effective surrogacy can be expected when the species to higher taxon ratio is very low. When it is not, surrogacy performance may be strongly influenced by stochastic factors, making predictions of performance difficult.  相似文献   

18.
ABSTRACT: Is immunosenescence an intrinsic ageing process leading to dysregulation of immunity or an adaptive response of the individual to pathogen exposure? Age-associated differences in bone marrow immune cell output and thymic involution suggest the former. Accepted hallmarks of immunosenescence (decreased numbers and percentages of peripheral na?ve T cells, especially CD8?+?cells, and accumulations of memory T cells, especially late-stage differentiated CD8+ cells) suggest the latter, viewed as the result of depletion of the reservoir of na?ve cells over time by contact with pathogens and their conversion to memory cells, the basis of adaptive immunity. Thymic involution beginning early in life limits the generation of naive cells such that the adult is believed to rely to a great extent on the na?ve cell pool produced mostly before puberty. Thus, these hallmarks of immunosenescence would be markedly affected by the history of the individual′s exposure to pathogens. It would be predicted that in modern industrialized populations, the cumulative effects of antigenic "stressors" would be lower than in less hygienic societies, whereas intrinsic processes might be more similar in different populations. Identifying such stressors and taking steps to nullify their impact could therefore result in delayed immunosenescence and contribute significantly to improving public health. Here, I discuss some of the available data bearing on this prediction.  相似文献   

19.
At high altitude, the reduced availability of thermal energy and oxygen poses major challenges to organisms. Different species or populations have evolved similar solutions to these challenges, such as blood flow regulation in animals (Bouverot, 1985). Previous studies investigating such convergent adaptations have primarily looked at changes in host genomes (e.g., see Scheinfeldt & Tishkoff, 2010), but have rarely considered the potential role of the gut microbiome in mediating host adaptation. As gut microbes can indirectly regulate host blood pressure (Pluznick, 2014) and energy intake efficiency, it has been hypothesized that they could help maintain normal energy production and/or optimize nutritional assimilation in high‐altitude hypoxic environments (e.g., Li & Zhao, 2015). However, it has been hard to (a) show that there is a direct effect of altitude on the gut microbiota, because of the many potential confounding effects of altitude (e.g., diet is correlated to altitude, as well as to the microbiome) and to (b) understand the mechanisms by which the microbiota could mediate host hypoxic and thermoregulatory stresses. In this issue of Molecular Ecology, Suzuki, Martins, and Nachman (2018) show that, independently of diet, taxonomic composition and functions of mouse gut microbiota converge in independent high‐altitude environments and propose the intriguing hypothesis that some of these functional convergences might be beneficial to their host.  相似文献   

20.
Nix P  Bastiani M 《Neuron》2012,74(6):961-963
In this issue of Neuron, Shin et?al. (2012) show that the dual leucine zipper kinase (DLK) is responsible for the retrograde injury signal in spinal sensory and motor neurons. DLK is required for the accelerated regeneration seen after axotomy and for the improved regeneration seen after a conditioning injury. DLK KO axons have severely reduced axon regeneration in?vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号