首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that rapid vasodilation proportional to contraction intensity contributes to the immediate (first cardiac cycle after initial contraction) exercise hyperemia. Ten healthy subjects performed single 1-s isometric forearm contractions at 5, 10, 15, 20, 30, 50, and 70% maximal voluntary contraction intensity (MVC) in arm above heart (AH) and below heart (BH) positions. Forearm blood flow (FBF; brachial artery mean blood velocity, Doppler ultrasound), mean arterial pressure (arterial tonometry), and heart rate (electrocardiogram) were measured beat by beat. Venous emptying (measured with a forearm strain gauge) was already maximized at 5% MVC, indicating that increases in contraction intensity did not further empty the forearm veins. Immediate increases in FBF were linearly proportional to contraction intensity from 5 to 70% MVC in AH (slope = 4.4 +/- 0.5%DeltaFBF/%MVC). In BH, the immediate increase in FBF demonstrated a curvilinear relationship with increasing contraction intensity and was greater than AH at 15, 20, 30, and 50% MVC (P < 0.05). Peak changes in FBF were greater in BH vs. AH from 10 to 50% MVC, even when venous refilling was complete (P < 0.05). These data support the existence of a rapid-acting vasodilatory mechanism(s) at the onset of human forearm exercise.  相似文献   

2.
The purpose of this study was to examine the association among electromyographic (EMG) activity, recovery blood flow, and the magnitude of the autonomic adjustments to rhythmic exercise in humans. To accomplish this, 10 healthy subjects (aged 23-37 y) performed rhythmic handgrip exercise for 2 min at 5, 15, 25, 40, and 60% of maximal voluntary force. Heart rate and arterial blood pressure were measured at rest (control), during each level of exercise, and for 2 min following exercise (recovery). The rectified, filtered EMG activity of the exercising forearm was measured continuously during each level of exercise and was used as an index of the level of central command. Post-exercise hyperemia was calculated as the difference between the control and the average recovery (2 min) forearm blood flows (venous occlusion plethysmography) and was examined as a possible index of the stimulus for muscle chemoreflex activation. Heart rate, arterial pressure, forearm EMG activity, and post-exercise hyperemia all increased progressively with increasing exercise intensity. The magnitudes of the increases in heart rate and arterial pressure from control to exercise were directly related to both the level of EMG activity and the degree of post-exercise hyperemia across the five exercise intensities (delta heart rate vs EMG activity: r = 0.99; delta arterial pressure vs EMG activity: r = 0.99; delta heart rate vs hyperemia: r = 0.99; and delta arterial pressure vs hyperemia: r = 0.98; all p less than 0.01). Furthermore, the level of EMG activity was directly related (r = 0.99) to the corresponding degree of hyperemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Evidence for sympatholysis at the onset of forearm exercise.   总被引:2,自引:0,他引:2  
The effect of augmented sympathetic outflow on forearm vascular conductance after single handgrip contractions of graded intensity was examined to determine whether sympatholysis occurs early in exercise (n = 7). While supine, subjects performed contractions that were 1 s in duration and 15, 30, and 60% of maximal voluntary contraction (MVC) in intensity. The contractions were repeated during control and lower body negative pressure (LBNP) (-40 mmHg) sessions. Forearm blood flow (FBF; Doppler ultrasound) and mean arterial pressure were measured continuously for 30 s before and 60 s after the single contractions. Vascular conductance (VC) was calculated. Total postcontraction blood flow increased in an exercise intensity-dependent manner. Compared with control, LBNP caused a reduction in baseline and postexercise FBF (P < 0.05), VC (P < 0.01), as well as total excess flow (P < 0.01). Specifically, during LBNP, baseline FBF and VC were reduced by 29 and 34% of control, respectively (P < 0.05). After the 15% MVC contraction, peak VC during LBNP was reduced by a magnitude similar to that during baseline (i.e., ~30%), but it was only reduced by 15% during both the 30 and 60% MVC trials (P < 0.01). It was concluded that the stimuli for exercise hyperemia during moderate and heavy, but not mild, handgrip exercise intensities, diminish the vasoconstrictor effects of LBNP. Furthermore, these data demonstrate that this sympatholysis occurs early in exercise.  相似文献   

4.
Nine healthy volunteers performed a series of single handgrip isometric contractions to test the hypothesis that the blood flow response to a contraction is determined solely by the tension-time index (isometric analog of work). Contractions were performed in duplicate at 15, 30, and 60% of maximal voluntary contraction (MVC) at durations of 0.5, 1, and 2 s. Forearm blood flow (FBF) was measured beat by beat by using Doppler ultrasound. Peak FBF responded in a graded fashion to graded increases in peak tension with contraction time held constant (35, 56, and 90 ml/min for 15, 30, and 60% MVC for 1 s, respectively). When tension was kept constant, peak FBF responded in a graded fashion to graded increases in duration (77, 90, and 97 ml/min for 60% MVC for 0.5, 1, and 2 s). With a constant tension-time index, peak FBF responded in a graded fashion to graded increases in peak tension (48, 56, and 77 ml/min for 15% MVC/2 s, 30% MVC/1 s, and 60% MVC/0.5 s). Similar trends were also observed for total postcontraction hyperemia. Blood flow increased regardless of whether the change in tension-time index was accomplished by an increase in tension or duration of contraction. However, with a constant tension-time index, the change in blood flow was related to the peak tension developed. Our results suggest that the blood flow response to a single muscle contraction is not determined solely by the work performed (tension-time index) but also by the number of muscle fibers recruited.  相似文献   

5.
ATP-sensitive potassium (KATP) channels have been suggested to contribute to coronary and skeletal muscle vasodilation during exercise, either alone or interacting in a parallel or redundant process with nitric oxide (NO), prostaglandins (PGs), and adenosine. We tested the hypothesis that KATP channels, alone or in combination with NO and PGs, regulate exercise hyperemia in forearm muscle. Eighteen healthy young adults performed 20 min of moderate dynamic forearm exercise, with forearm blood flow (FBF) measured via Doppler ultrasound. After steady-state FBF was achieved for 5 min (saline control), the KATP inhibitor glibenclamide (Glib) was infused into the brachial artery for 5 min (10 microg.dl(-1).min(-1)), followed by saline infusion during the final 10 min of exercise (n = 9). Exercise increased FBF from 71 +/- 11 to 239 +/- 24 ml/min, and FBF was not altered by 5 min of Glib. Systemic plasma Glib levels were above the therapeutic range, and Glib increased insulin levels by approximately 50%, whereas blood glucose was unchanged (88 +/- 2 vs. 90 +/- 2 mg/dl). In nine additional subjects, Glib was followed by combined infusion of NG-nitro-L-arginine methyl ester (L-NAME) plus ketorolac (to inhibit NO and PGs, respectively). As above, Glib had no effect on FBF but addition of L-NAME + ketorolac (i.e., triple blockade) reduced FBF by approximately 15% below steady-state exercise levels in seven of nine subjects. Interestingly, triple blockade in two subjects caused FBF to transiently and dramatically decrease. This was followed by an acute recovery of flow above steady-state exercise values. We conclude 1) opening of KATP channels is not obligatory for forearm exercise hyperemia, and 2) triple blockade of NO, PGs, and KATP channels does not reduce hyperemia more than the inhibition of NO and PGs in most subjects. However, some subjects are sensitive to triple blockade, but they are able to restore FBF acutely during exercise. Future studies are required to determine the nature of these compensatory mechanisms in the affected individuals.  相似文献   

6.
We hypothesized that forearm blood flow (FBF) during moderate intensity dynamic exercise would meet the demands of the exercise and that postexercise FBF would quickly recover. In contrast, during heavy exercise, FBF would be inadequate causing a marked postexercise hyperemia and sustained increase in muscle oxygen uptake (VO(2musc)). Six subjects did forearm exercise (1-s contraction/relaxation, 1-s pause) for 5 min at 25 and 75% of peak workload. FBF was determined by Doppler ultrasound, and O(2) extraction was estimated from venous blood samples. In moderate exercise, FBF and VO(2musc) increased within 2 min to steady state. Rapid recovery to baseline suggested adequate O(2) supply during moderate exercise. In contrast, FBF was not adequate during heavy dynamic exercise. Immediately postexercise, there was an approximately 50% increase in FBF. Furthermore, we observed for the first time in the recovery period an increase in VO(2musc) above end-exercise values. During moderate exercise, O(2) supply met requirements, but with heavy forearm exercise, inadequate O(2) supply during exercise caused accumulation of a large O(2) deficit that was repaid during recovery.  相似文献   

7.
We have investigated the magnitude and duration of excess post-exercise oxygen consumption (EPOC) in a lizard following a single bout of vigorous exercise of 5-60 s, common activity durations for many ectothermic vertebrates. Desert iguanas (Dipsosaurus dorsalis) were run for 5 s, 15 s, 30 s, or 60 s. Oxygen consumption (VO2) increased from 0.16 ml O2 g(-1) h(-1) at rest to 1.3-1.6 ml O2 g(-1) h(-1) during 5-60 s of running. EPOC duration increased with activity duration, ranging from 35-63 min. EPOC volume, the excess oxygen consumed post-exercise, doubled from 0.13 ml O2 g(-1) following 5 s of activity to 0.25 ml O2 g(-1) after 60 s. EPOC represented 91-98% of the total metabolic expense of the activity. EPOC durations were always shorter than the period required for lactate removal, illustrating that these two processes are not causally related. Alpha- and beta-adrenergic receptor blockade by phentolamine and propranolol had no effect on resting VO2 but depressed excess post-exercise oxygen consumption volumes 2540%. The extent of catechol stimulation post-exercise may be motivation or stimulus dependent. The data indicate that metabolic elevations post-exercise represent the majority of activity costs in lizards. The study suggests that EPOC of ectothermic vertebrates is sensitive to exercise duration and catecholamine release post-activity, even when activity periods are less than 60 s in duration.  相似文献   

8.
Previously, the decline in glycemia in individuals with type 1 diabetes has been shown to be less with intermittent high-intensity exercise (IHE) compared with continuous moderate-intensity exercise (MOD) despite the performance of a greater amount of total work. The purpose of the present study was to determine whether this lesser decline in glycemia can be attributed to a greater increment in endogenous glucose production (Ra) or attenuated glucose utilization (Rd). Nine individuals with type 1 diabetes were tested on two separate occasions, during which either a 30-min MOD or IHE protocol was performed under conditions of a euglycemic clamp in combination with the infusion of [6,6-(2)H]glucose. MOD consisted of continuous cycling at 40% VO2 peak, whereas IHE involved a combination of continuous exercise at 40% VO2 peak interspersed with additional 4-s maximal sprint efforts performed every 2 min to simulate the activity patterns of intermittent sports. During IHE, glucose Ra increased earlier and to a greater extent compared with MOD. Similarly, glucose Rd increased sooner during IHE, but the increase by the end of exercise was comparable with that elicited by MOD. During early recovery from IHE, Rd rapidly declined, whereas it remained elevated after MOD, a finding consistent with a lower glucose infusion rate during early recovery from IHE compared with MOD (P<0.05). The results suggest that the lesser decline in glycemia with IHE may be attributed to a greater increment in Ra during exercise and attenuated Rd during exercise and early recovery.  相似文献   

9.

Background

New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates.

Aim

To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system.

Methods

We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording.

Results

Interpretable sensor recordings were obtained in all patients (feasibility = 100%). Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value) was more frequent in patients than controls (27% vs 8%, p < 0.05). At 100 bpm stress heart rate, systolic/diastolic time ratio (normal, < 1) was > 1 in 20 patients and in none of the controls (p < 0.01); at recovery systolic/diastolic ratio was > 1 in only 3 patients (p < 0.01 vs stress). Post-exercise reduced arterial pressure was sensed.

Conclusion

Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor.  相似文献   

10.
Several mechanisms have been hypothesized to contribute to the rapid hyperemia at the onset of exercise. The aim of the present study was to investigate the role played by the mechanosensitivity of the vascular network. In 12 anesthetized rabbits blood flow was recorded from the exclusively muscular masseteric artery in response to brief spontaneous contractions (BSC) of the masseter muscle, artery occlusion (AO), muscle compression (MC), and muscle stretch (MS). Activation of masseter muscle was monitored by electromyography (EMG). Responses to AO were also recorded from the mostly cutaneous facial and the central ear arteries. Five animals were also tested in the awake condition. The hyperemic response to BSC (peak amplitude of 394 ± 82%; time to peak of 1.8 ± 0.8 s) developed with a latency of 300-400 ms from the beginning of the EMG burst and 200-300 ms from the contraction-induced transient flow reduction. This response was neither different from the response to AO (peak amplitude = 426 ± 158%), MC, and MS (P = 0.23), nor from the BSC response in the awake condition. Compared with the masseteric artery, the response to AO was markedly smaller both in the facial (83 ± 18%,) and in the central ear artery (68 ± 20%) (P < 0.01). In conclusion, the rapid contraction-induced hyperemia can be replicated by a variety of stimuli affecting transmural pressure in muscle blood vessels and is thus compatible with the Bayliss effect. This prominent mechanosensitivity appears to be a characteristic of muscle and not cutaneous vascular beds.  相似文献   

11.
Peripheral vasculature resistance can play an important role in affecting blood pressure and the development of cardiovascular disease. A better understanding of the genes that encode vasodilators, such as adenosine, will provide insight into the mechanisms underlying cardiovascular disease. We tested whether the adenosine monophosphate deaminase-1 (AMPD1) C34T gene polymorphism was associated with the vasodilatory response to ischemia in Caucasian females aged 18-35 years. Blood samples (n = 58) were analyzed for the C34T variant and resulted in the following genotype groups: CC (n = 45) and CT (n = 13). Mean blood pressure (MBP), heart rate, and forearm blood flow (FBF) measured by venous occlusion plethysmography were measured at baseline and at 1 (peak FBF), 2 and 3 min of vasodilation during reactive hyperemia following 5 min of arm ischemia. To control for interindividual variability in baseline FBF and forearm vascular resistance (FVR) the percent change in FBF and FVR were calculated for each min. The percent decrease in FVR was significantly greater in the CT compared to the CC genotype group (-40+/-4% vs. -24+/-3%, P = 0.01) during the 2nd min of reactive hyperemia. The percent increase in FBF tended to be greater in the CT compared to the CC genotype group (+69+/-9% vs. +42+/-9%, P = 0.07) during the 2nd min of reactive hyperemia after adjustment for percent body fat. Consistent with previous findings of increased production of adenosine during exercise in individuals carrying a T allele, our findings suggest that the AMPD1 C34T polymorphism is associated with vasodilatory response to ischemia in the peripheral vasculature because individuals with the T allele had a greater vasodilatory response to ischemia.  相似文献   

12.
Different magnitudes and durations of postocclusion reactive hyperemia were achieved by occluding different volumes of tissue with and without ischemic exercise to test the hypotheses that flow-mediated dilation (FMD) of the brachial artery would depend on the increase in peak flow rate or shear stress and that the position of the occlusion cuff would affect the response. The brachial artery FMD response was observed by high-frequency ultrasound imaging with curve fitting to minimize the effects of random measurement error in eight healthy, young, nonsmoking men. Reactive hyperemia was graded by 5-min occlusion distal to the measurement site at the wrist and the forearm and proximal to the site in the upper arm. Flow was further increased by exercise during occlusion at the wrist and forearm positions. For the two wrist occlusion conditions, flow increased eightfold and FMD was only 1 to 2% (P > 0.05). After the forearm and upper arm occlusions, blood flow was almost identical but FMD after forearm occlusions was 3.4% (P < 0.05), whereas it was significantly greater (6.6%, P < 0.05) and more prolonged after proximal occlusion. Forearm occlusion plus exercise caused a greater and more prolonged increase in blood flow, yet FMD (7.0%) was qualitatively and quantitatively similar to that after proximal occlusion. Overall, the magnitude of FMD was significantly correlated with peak forearm blood flow (r = 0.59, P < 0.001), peak shear rate (r = 0.49, P < 0.002), and total 5-min reactive hyperemia (r = 0.52, P < 0.001). The prolonged FMD after upper arm occlusion suggests that the mechanism for FMD differs with occlusion cuff position.  相似文献   

13.
We investigated the independent contributions of the peak and continued reactive hyperemia on flow-mediated dilation (FMD). 1) For the duration manipulation experiment (DME), 10 healthy males experienced reactive hyperemia durations of 10 s, 20 s, 30 s, 40 s, 50 s, or full reactive hyperemia (RH). 2) For the peak manipulation experiment (PME), eight healthy males experienced reactive hyperemia trials with three peak shear rate magnitudes (large, medium, and small). Data are means +/- SD. For the DME, peak shear rate was not different between trials (P = 0.326). Shear rate area under the curve (AUC) was P < 0.001. Peak %FMD was dependent on shear rate AUC: 10 s, 2.7 +/- 1.3; 20 s, 6.2 +/- 1.9; 30 s, 7.9 +/- 2.9; 40 s, 8.3 +/- 3.2; 50 s, 7.9 +/- 3.2; full RH, 9.3 +/- 4.1, with 10 and 20 s less than full RH (P < 0.001). For the PME, peak shear rate was different between trials (large, 1,049.1 +/- 285.8; medium, 726.4 +/- 228.8; small, 512.8 +/- 161.8; P < 0.001). AUC of the continued shear rate was not (P = 0.412). Peak %FMD was unaffected by peak shear rate (large, 7.0 +/- 2.7%; medium, 7.4 +/- 2.6%; small, 6.6 +/- 1.8%; P = 0.542). Peak and AUC shear stimulus were not significantly related in full RH (r(2) = 0.35, P = 0.07). We conclude that the shear stimulus AUC, not the peak itself, is the critical determinant of the peak FMD response. This indicates AUC as the best method of quantifying reactive hyperemia shear stimulus for %FMD normalization.  相似文献   

14.
The responses to brief maximal exercise of 10 male subjects have been studied. During 30 s of exercise on a non-motorized treadmill, the mean power output (mean +/- SD) was 424.8 +/- 41.9 W, peak power 653.3 +/- 103.0 W and the distance covered was 167.3 +/- 9.7 m. In response to the exercise blood lactate concentrations increased from 0.60 +/- 0.26 to 13.46 +/- 1.71 mmol.l-1 (p less than 0.001) and blood glucose concentrations from 4.25 +/- 0.45 to 5.59 +/- 0.67 mmol.l-1 (p less than 0.001). The severe nature of the exercise is indicated by the fall in blood pH from 7.38 +/- 0.02 to 7.16 +/- 0.07 (p less than 0.001) and the estimated decrease in plasma volume of 11.5 +/- 3.4% (p less than 0.001). The plasma catecholamine concentrations increased from 2.2 +/- 0.6 to 13.4 +/- 6.4 nmol.l-1 (p less than 0.001) and 0.2 +/- 0.2 to 1.4 +/- 0.6 nmol.l-1 (p less than 0.001) for noradrenaline (NA) and adrenaline (AD) respectively. The plasma concentration of the opioid beta-endorphin increased in response to the exercise from less than 5.0 to 10.2 +/- 3.9 p mol.l-1. The post-exercise AD concentrations correlated with those for lactate as well as with changes in pH and the decrease in plasma volume. Post-exercise beta-endorphin levels correlated with the peak speed attained during the sprint and the subjects peak power to weight ratio. These results suggest that the increases in plasma adrenaline are related to those factors that reflect the stress of the exercise and the contribution of anaerobic metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Five healthy male volunteers performed 20 min of both seated and supine cycle-ergometer exercise (intensity, 50% maximal O2 uptake) in a warm environment (Tdb = 30 degrees C, relative humidity = 40-50%) with and without breathing 10 cmH2O of continuous positive airway pressure (CPAP). The final esophageal temperature (Tes) at the end of 20 min of seated exercise was significantly higher during CPAP (mean difference = 0.18 +/- 0.04 degree C, P less than 0.05) compared with control breathing (C). The Tes threshold for forearm vasodilation was significantly higher (P less than 0.05) during seated CPAP exercise than C (C = 37.16 +/- 0.13 degrees C, CPAP = 37.38 + 0.12 degree C). The highest forearm blood flow (FBF) at the end of exercise was significantly lower (P less than 0.05) during seated exercise with CPAP (mean +/- SE % difference from C = -30.8 +/- 5.8%). During supine exercise, there were no significant differences in the Tes threshold, highest FBF, or final Tes with CPAP compared with C. The added strain on the cardiovascular system produced by CPAP during seated exercise in the heat interacts with body thermoregulation as evidenced by elevated vasodilation thresholds, reduced peak FBF, and slightly higher final esophageal temperatures.  相似文献   

16.
We measured pulmonary function in 12 healthy volunteers before and at 5-min intervals for 30 min following treadmill exercise of 30 min duration performed under control (20 degrees C) and cold (-11 degrees C) ambient temperatures. Post-run changes in forced vital capacity (FVC), residual volume (RV) and peak expiratory flow rate were similar between the two temperature conditions. FVC decreased slightly but significantly 5 min post-run (-0.25 +/- 0.20 l and -0.21 +/- 0.20 l, for control and cold conditions respectively) and returned to baseline by 30 min. RV increased significantly post-exercise (+0.07 +/- 0.09 l and +0.14 +/- 0.1 l, control and cold respectively) and remained elevated for 30 min. Forced expired volume in 1 s was not significantly different following either run. Post-exercise, maximum mid-expiratory flow rate and flows at 50% and 25% of vital capacity were not significantly different between warm and cold conditions. These data suggest that changes in lung volumes following exercise under cold ambient conditions are similar to changes seen following warm exercise of similar duration. In non-asthmatics, moderate exertion under cold ambient conditions does not appear to cause clinically significant decreases in expiratory flow rates as compared to similar exertion under warm conditions.  相似文献   

17.
Previous research has shown significantly lower arterial distensibility (AD) after resistance exercise (RE) yet higher AD after aerobic exercise (AE). These changes may be related to exercise-induced differences in vasodilatory capacity. The purpose of this study was to investigate the vasodilatory and AD responses to acute AE and RE. Forearm blood flow (FBF) during reactive hyperemia (RH) was assessed before and 60 minutes after exercise, whereas aortic and femoral pulse wave velocity was measured as an index of arterial stiffness pre, 40, and 60 minutes after an acute bout of AE (30-minute leg ergometry at 65% of VO2peak) and RE (3 sets, 10 reps; upper and lower body at 65% 1 repetition maximum) in 10 male subjects (24.9 ± 0.86 years). Area under the curve (AUC) was employed to determine differences in flow. After the intervention, we found that central pulse wave velocity decreased 8% after AE and remained depressed at this level through 60 minutes of observation, whereas RE increased central pulse wave velocity 9.8% from pre to 40 and 60 minutes postexercise. Area under the curve for FBF-RH significantly increased 38% after RE, yet there was no significant change after AE. Forearm vasodilatory capacity increased after acute RE but not after acute AE. This suggests that changes in AD may be disassociated from changes in vasodilatory capacity after acute exercise. Further, in a direct comparison of RE vs. AE, we have shown that RE has greater increases in limb blood flow and augments postexercise hypotension greater at 40 minutes postexercise when compared to AE.  相似文献   

18.
Studies have been conducted to evaluate intra- and extravascular volume changes and blood flow in the exercising human forearm by means of (1) combining plethysmographic and scintigraphic methods, (2) an indirect procedure using the relationship of blood flow and volume change from reactive hyperemia. A static hand grip exercise of 60% maximal voluntary contraction and 30 s duration increased the forearm volume by 3.03 +/- 0.65 ml/100 ml soft tissue, involving both the intra- and extravascular volume components. There is a quantitative and qualitative difference in the time course of change in these components, showing an extravascular part of about 50% for the 2-min post-exercise value and a substantially slower rate of recovery. Experiments involving muscle work at intervals (50% maximal voluntary contraction, 30 s duration, 2-min intervals) caused a further increase in extravascular volume. Furthermore, the study suggests that the flow-volume relationship from reactive hyperemia may be considered to be available for the determination of local blood volume changes in exercise hyperemia. The results are discussed in connection with the influence of anaerobic muscle metabolism and conclusions referring to this are drawn about the use of plethysmographic methods.  相似文献   

19.
Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (P<0.05). They remained lower at 20 min [e.g. Tc: CON 38.4+/-0.2 (+/-S.E.), LW 37.9+/-0.1, and LC 37.8+/-0.1 degrees C; HR: 177+/-3, 163+/-3 and 167+/-3 b.p.m.), except that FBF was equivalent (P=0.10) between CON (15.5+/-1.6) and LW (13.6+/-1.0 ml.100 ml tissue(-1) x min(-1)). Subsequent power output was higher in LW (2.95+/-0.24) and LC (2.91+/-0.25) than in CON (2.52+/-0.28 W kg(-1), P=0.00, N=8), yet final Tc remained lower. Pre-cooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.  相似文献   

20.
We tested the hypothesis that vasoregulatory mechanisms completely counteract the effects of sudden changes in arterial perfusion pressure on exercising muscle blood flow. Twelve healthy young subjects (7 female, 5 male) lay supine and performed rhythmic isometric handgrip contractions (2 s contraction/ 2 s relaxation 30% maximal voluntary contraction). Forearm blood flow (FBF; echo and Doppler ultrasound), mean arterial blood pressure (arterial tonometry), and heart rate (ECG) were measured. Moving the arm between above the heart (AH) and below the heart (BH) level during contraction in steady-state exercise achieved sudden approximately 30 mmHg changes in forearm arterial perfusion pressure (FAPP). We analyzed cardiac cycles during relaxation (FBF(relax)). In an AH-to-BH transition, FBF(relax) increased immediately, in excess of the increase in FAPP (approximately 69% vs. approximately 41%). This was accounted for by pressure-related distension of forearm resistance vasculature [forearm vascular conductance (FVC(relax)) increased by approximately 19%]. FVC(relax) was restored by the second relaxation. Continued slow decreases in FVC(relax) stabilized by 2 min without restoring FBF(relax). In a BH-to-AH transition, FBF(relax) decreased immediately, in excess of the decrease in FAPP (approximately 37% vs. approximately 29%). FVC(relax) decreased by approximately 14%, suggesting pressure-related passive recoil of resistance vessels. The pattern of FVC(relax) was similar to that in the AH-to-BH transition, and FBF(relax) was not restored. These data support rapid myogenic regulation of vascular conductance in exercising human muscle but incomplete flow restoration via slower-acting mechanisms. Local arterial perfusion pressure is an important determinant of steady-state blood flow in the exercising human forearm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号