首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The centrosome is a cytoplasmic organelle which duplicates once during each cell cycle, and the presence of excess centrosomes promote chromosome instability through chromosome missegregation following cytokinesis. Ionizing radiation (IR) can induce extra centrosomes by permitting the continuation of CDK2/Cyclin-A/E-mediated centrosome duplication when cells are arrested in the cell cycle after irradiation. The work described here shows that, in addition to IR, extra centrosomes were induced in human U2OS and mouse NIH3T3 cells after treatment with agents which include DNA adduct-forming chemicals: benzopyrene (BP), 4-nitroquinoline 1-oxide (4NQO), a DNA cross linker: cis-diamminedichloro-platinum (cisplatin), topoisomerase inhibitors: camptothecin, etoposide, genistein, and ultra-violet light (UV). These agents were divided into two categories with respect to the regulation of p21, which is an inhibitor of CDK2/Cyclin-A/E: specifically, p21 was up-regulated by an IR exposure and treatment with topoisomerase inhibitors. However, UV, BP, 4NQO and cisplatin down-regulated p21 below basal levels. When cells were irradiated with IR in combination with all of these agents, except genistein, enhanced induction of extra centrosomes was observed, regardless of the nature of p21 expression. Genistein significantly suppressed the frequency of IR-induced extra centrosomes in a dose-dependent manner, and 20μg/ml of genistein reduced this frequency to 66%. Consistent with this, genistein substantially up-regulated p21 expression over the induction caused by IR alone, while other agents down-regulated or marginally affected this. This suggests the inhibitory effect of genistein on the induction of extra centrosomes occurs through the inactivation of CDK2/Cyclin-A/E via p21 up-regulation. This hypothesis is supported by the observation that p21 knockdown with siRNA reduced the activity of CDK2/Cyclin-A/E and restored the enhanced effect of a combined treatment with genistein and IR. These results demonstrate the preventive effect of genistein and a crucial role for p21 in IR-induced excess centrosomes.  相似文献   

2.
3.
4.
In cycling between the mammalian host and the tsetse fly vector, African trypanosomes undergo adaptive differentiation steps that are coupled to growth control. The signaling pathways underlying these cellular processes are largely unknown. Mitogen-activated protein kinases (MAPKs) are known mediators of growth and differentiation in other eukaryotic organisms. To establish the function of a MAPK homologue, TbMAPK2, in T. brucei, a null mutant was constructed. Bloodstream forms of a deltamapk2/deltamapk2 clone were able to grow normally and exhibited no detectable phenotype. When these cells were triggered to differentiate in vitro, however, they developed to the procyclic (fly midgut) form with delayed kinetics and subsequently underwent cell cycle arrest. Introduction of an ectopic copy of the TbMAPK2 gene into the null mutant restored its ability to differentiate and to divide. In contrast, a TbMAPK2 mutant, in which the T190 and Y192 residues of the activating phosphorylation site were replaced by A and F, was unable to restore the growth and differentiation phenotypes. Analysis of the DNA content and the nucleus/kinetoplast configuration of individual cells showed that the null mutant was arrested in all phases of the cell cycle and that 25-30% of the cells had failed to segregate their nucleus and kinetoplast correctly. This implies that cell cycle progression by the procyclic form depends on a constitutive stimulus exerted by the signaling cascade operating through TbMAPK2.  相似文献   

5.
6.
彭忠禄  吴秀山  袁婺洲 《激光生物学报》2010,19(2):263-267,F0003
基因突变表型的获得是利用果蝇模型进行发育相关基因功能研究的基础.拟表型是指生物体的基因型未发生变化,而由外界环境条件的变化所引起的常与某个特定基因的突变表型相似的表型改变.拟表型的存在往往干扰突变表型的鉴定,为基因功能的研究带来困扰.采用胚胎抗体染色和绿色荧光蛋白GFP心脏特异标记的转基因果蝇(Hand-GALA;UAS-GFP品系)作为表型检测手段,比较活体胚胎、固定处理胚胎和低温处理幼虫中果蝇心管拟表型产生的概率以及统计分析其方法的差异,结果显示胚胎固定处理可以明显减少拟表型出现的概率,而低温固定幼虫也是有效减少拟表型的方法.拟表型和突变表型必须通过统计分析才能有效区分.  相似文献   

7.
The genetics of resistance to the organophosphate insecticide diazinon were investigated in four populations of the house fly, Musca domestica L., collected in the southern United States. Crosses were made between individual females of lines derived from each population and males of a susceptible strain with three recessive mutants on chromosome II. Individual F1 females were crossed to mutant males, and the progenies were scored for resistance to diazinon and for the presence of mutant phenotypes. A major chromosome II gene for resistance to diazinon was present in all populations at an overall frequency of 83%. Map distances between the resistance gene and the mutant aristapedia and between the mutants aristapedia and stubby wing were highly variable in all populations. Recombination among the visible mutants was usually reduced in resistant progenies relative to susceptible progenies. The data suggest that a single major gene for resistance to diazinon was present on chromosome II in all test populations at variable map positions and is usually associated with a chromosome rearrangement, probably an inversion. The results are similar to those obtained earlier with house fly populations selected for resistance to insecticides in the laboratory; therefore, they seem to be characteristic of field and laboratory populations of the house fly. Overall, the data offer an explanation for previous results suggesting the existence of multiple, closely linked genes for metabolic resistance to insecticides on house fly chromosome II.  相似文献   

8.
9.
1. A Km mutant of Saccharomyces cerevisiae with a lesion in CDPdiacylglycerol-inositol 3-phosphatidyltransferase was isolated. The mutant required a high concentration of myo-inositol for growth. 2. The CDPdiacylglycerol-inositol 3-phosphatidyltransferase in the mutant cells showed an apparent Km for myo-inositol over 200-times higher than that of the enzyme in wild-type cells. The maximum velocity of the mutant enzyme was comparable to that of the wild-type enzyme. 3. In mutant cells, labelled myo-inositol, phosphate and acetate were incorporated into phosphatidylinositol at much slower rates than in wild-type cells. The phosphatidylinositol content of mutant cells was markedly lower than that observed in wild-type cells. 4. Genetic analysis showed that the growth phenotype of the mutant arose from a single nuclear gene mutation in a gene coding for CDPdiacylglycerol-inositol 3-phosphatidyltransferase. 5. The mutant showed a normal level of phosphatidylserine synthase activity. The phosphatidylserine synthase gene was located between ura3 and hom3 on chromosome V, whereas the CDPdiacylglycerol-inositol 3-phosphatidyltransferase gene showed no linkage with ura3. 6. Labelled acetate was incorporated into various lipids including triacylglycerols, diacylglycerols, sterol esters and phospholipids other than phosphatidylinositol at faster rates in mutant cells than in wild-type cells. Incorporation into both the fatty acid and the sterol moieties was facilitated in the mutant. 7. A striking change in the cell-division process was observed when phosphatidylinositol synthesis was limited. The results showed that phosphatidylinositol synthesis is involved in the cell-division cycle of yeast.  相似文献   

10.
蛋白质的泛素化是一种重要的翻译后修饰过程,参与调控细胞周期、基因转录、信号转导、炎症反应和干细胞的维持等过程。泛素连接酶E3(ubiqutin ligase)是泛素化过程中关键酶。但许多E3基因在发育中的功能和作用机制还不明确。该研究以黑腹果蝇为模式动物,研究泛素连接酶家族一个重要基因CG4911的功能及分子机制。获得CG4911基因敲除果蝇,CG4911敲除果蝇纯合子可活。原位杂交结果显示,CG4911在胚胎发育早期表达。通过构建CG4911-pUAST-3HA重组子转染Hela细胞,确定CG4911定位于细胞质中,其表达并无修饰作用,并且过表达基因CG4911可导致背板发育缺陷。该研究首次获得了CG4911基因敲除果蝇和CG4911转基因果蝇,并初步探索了F-box基因CG4911的功能,为进一步阐明泛素连接酶的功能及分子机制提供了科学依据。  相似文献   

11.
The control of expression of the Drosophila melanogaster tropomyosin I (TmI) gene has been investigated by P-element transformation and rescue of the flightless and jumpless TmI mutant strain, Ifm(3)3. To localize cis-acting DNA sequences that control TmI gene expression, Ifm(3)3 flies were transformed with P-element plasmids containing various deletions and rearrangements of the TmI gene. The effects of these mutations on TmI gene expression were studied by analyzing both the extent of rescue of the Ifm(3)3 mutant phenotypes and determining TmI RNA levels in the transformed flies by primer extension analysis. The results of our analysis indicate that a region located within intron 1 of the gene is necessary and sufficient for directing muscle-specific TmI expression in the adult fly. This intron region has characteristics of a muscle regulatory enhancer element that can function in conjunction with the heterologous nonmuscle hsp70 promoter to promote rescue of the mutant phenotypes and to direct expression of an hsp70-Escherichia coli lacZ reporter gene in adult muscle. The enhancer can be subdivided further into two domains of activity based on primer extension analysis of TmI mRNA levels and on the rescue of mutant phenotypes. One of the intron domains is required for expression in the indirect flight muscle of the adult. The function of the second domain is unknown, but it could regulate the level of expression or be required for expression in other muscle.  相似文献   

12.
13.
14.
Many genes share sequence similarity between species, but their properties often change significantly during evolution. For example, the Drosophila genes engrailed and orthodenticle and the onychophoran gene Ultrabithorax only partially substitute for their mouse or Drosophila homologs. We have been analyzing the relationship between atonal (ato) in the fruit fly and its mouse homolog, Math1. In flies, ato acts as a proneural gene that governs the development of chordotonal organs (CHOs), which serve as stretch receptors in the body wall and joints and as auditory organs in the antennae. In the fly CNS, ato is important not for specification but for axonal arborization. Math1, in contrast, is required for the specification of cells in both the CNS and the PNS. Furthermore, Math1 serves a role in the development of secretory lineage cells in the gut, a function that does not parallel any known to be served by ato. We wondered whether ato and Math1 might be more functionally homologous than they appear, so we expressed Math1 in ato mutant flies and ato in Math1 null mice. To our surprise, the two proteins are functionally interchangeable.  相似文献   

15.
16.
G. Pennetta  D. Pauli 《Genetics》1997,145(4):975-987
We identified a new gene, stand still (stil), required in the female germline for proper survival, sex determination and differentiation. Three strong loss-of-function alleles were isolated. The strongest phenotype exhibited by ovaries dissected from adult females is the complete absence of germ cells. In other ovaries, the few surviving germ cells frequently show a morphology typical of primary spermatocytes. still is not required either for fly viability or for male germline development. The gene was cloned and found to encode a novel protein. still is strongly expressed in the female germ cells. Using P[stil(+)] transgenes, we show that stil and a closely localized gene are involved in the modification of the ovarian phenotypes of the dominant alleles of ovo caused by heterozygosity of region 49 A-D. The similarity of the mutant phenotypes of stil to that of otu and ovo suggests that the three genes function in a common or in parallel pathways necessary in the female germline for its survival, sex determination and differentiation.  相似文献   

17.
S. Wayne  K. Liggett  J. Pettus    R. N. Nagoshi 《Genetics》1995,139(3):1309-1320
The small ovary gene (sov) is required for the development of the Drosophila ovary. Six EMS-induced recessive alleles have been identified. Hypomorphic alleles are female sterile and have no effect on male fertility, whereas more severe mutations result in lethality. The female-sterile alleles produce a range of mutant phenotypes that affect the differentiation of both somatic and germline tissues. These mutations generally produce small ovaries that contain few egg cysts and disorganized ovarioles, and in the most extreme case no ovarian tissue is present. The mutant egg cysts that develop have aberrant morphology, including abnormal numbers of nurse cells and patches of necrotic cells. We demonstrate that sov gene expression is not required in the germline for the development of functional egg cysts. This indicates that the sov function is somatic dependent. We present evidence using loss-of-function and constitutive forms of the somatic sex regulatory genes that sov activity is essential for the development of the somatic ovary regardless of the chromosomal sex of the fly. In addition, the genetic mapping of the sov locus is presented, including the characterization of two lethal sov alleles and complementation mapping with existing rearrangements.  相似文献   

18.
Following a screening on EMS-induced Drosophila mutants defective for formation and morphogenesis of epithelial cells, we have identified three lethal mutants defective for the production of embryonic cuticle. The mutants are allelic to the CG12140 gene, the fly homologue of electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). In humans, inherited defects in this inner membrane protein account for multiple acyl-CoA dehydrogenase deficiency (MADD), a metabolic disease of β-oxidation, with a broad range of clinical phenotypes, varying from embryonic lethal to mild forms. The three mutant alleles carried distinct missense mutations in ETF:QO (G65E, A68V and S104F) and maternal mutant embryos for ETF:QO showed lethal morphogenetic defects and a significant induction of apoptosis following germ-band elongation. This phenotype is accompanied by an embryonic accumulation of short- and medium-chain acylcarnitines (C4, C8 and C12) as well as long-chain acylcarnitines (C14 and C16:1), whose elevation is also found in severe MADD forms in humans under intense metabolic decompensation. In agreement the ETF:QO activity in the mutant embryos is markedly decreased in relation to wild type activity. Amino acid sequence analysis and structural mapping into a molecular model of ETF:QO show that all mutations map at FAD interacting residues, two of which at the nucleotide-binding Rossmann fold. This structural domain is composed by a β-strand connected by a short loop to an α-helix, and its perturbation results in impaired cofactor association via structural destabilisation and consequently enzymatic inactivation. This work thus pinpoints the molecular origins of a severe MADD-like phenotype in the fruit fly and establishes the proof of concept concerning the suitability of this organism as a potential model organism for MADD.  相似文献   

19.
20.
The RAD54 gene of Saccharomyces cerevisiae plays a crucial role in recombinational repair of double-strand breaks in DNA. Here the isolation and functional characterization of the RAD54 homolog of the fruit fly Drosophila melanogaster, DmRAD54, are described. The putative Dmrad54 protein displays 46 to 57% identity to its homologs from yeast and mammals. DmRAD54 RNA was detected at all stages of fly development, but an increased level was observed in early embryos and ovarian tissue. To determine the function of DmRAD54, a null mutant was isolated by random mutagenesis. DmRADS4-deficient flies develop normally, but the females are sterile. Early development appears normal, but the eggs do not hatch, indicating an essential role for DmRAD54 in development. The larvae of mutant flies are highly sensitive to X rays and methyl methanesulfonate. Moreover, this mutant is defective in X-ray-induced mitotic recombination as measured by a somatic mutation and recombination test. These phenotypes are consistent with a defect in the repair of double-strand breaks and imply that the RAD54 gene is crucial in repair and recombination in a multicellular organism. The results also indicate that the recombinational repair pathway is functionally conserved in evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号