首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trp gene family has been proposed to encode the store-operated Ca(2+) influx (SOC) channel(s). This study examines the role of Trp1 in the SOC mechanism of salivary gland cells. htrp1, htrp3, and Trp1 were detected in the human submandibular gland cell line (HSG). HSG cells stably transfected with htrp1alpha cDNA displayed (i) a higher level of Trp1, (ii) a 3-5-fold increase in SOC (thapsigargin-stimulated Ca(2+) influx), determined by [Ca(2+)](i) and Ca(2+)-activated K(+) channel current measurements, and (iii) similar basal Ca(2+) permeability, and inhibition of SOC by Gd(3+) but not by Zn(2+), as compared with control cells. Importantly, (i) transfection of HSG cells with antisense trp1alpha cDNA decreased endogenous Trp1 level and significantly attenuated SOC, and (ii) transfection of HSG cells with htrp3 cDNA did not increase SOC. These data demonstrate an association between Trp1 and SOC and strongly suggest that Trp1 is involved in this mechanism in HSG cells. Consistent with this suggestion, Trp1 was detected in the plasma membrane region, the proposed site of SOC, of acinar and ductal cells in intact rat submandibular glands. Based on these aggregate data, we propose Trp1 as a candidate protein for the SOC mechanism in salivary gland cells.  相似文献   

2.
The addition of transforming growth factor alpha (TGFalpha) to a human submandibular gland cell line (HSG) cultured on basement membrane extract Matrigel, synergistically activates the acinar cell-specific salivary amylase promoter. Signaling through beta1 integrins and increased phosphorylation of ERK1/2 are involved in the increased promoter activity. Phorbol-12-myristate-13-acetate (PMA) and thapsigargin increase amylase promoter activity, suggesting that phorbol ester and calcium-dependent protein kinase C (PKC) pathways are also involved. The combination of specific inhibitors of PKC and MEK1 inhibits the amylase promoter. Inhibitors of the calcium-dependent PKC isoforms alpha, beta, and gamma decrease the promoter activity; however, PKCbeta is not detectable in HSG cells. TGFalpha alters the cellular localization of PKCalpha but not -gamma, suggesting PKCalpha is involved in TGFalpha upregulation of the amylase promoter. Furthermore, rottlerin, a PKCdelta-specific inhibitor, increases the promoter activity, suggesting PKC isoforms differentially regulate the amylase promoter. In conclusion, beta1-integrin and TGFalpha signaling pathways regulate the amylase promoter activity in HSG cells. In response to Matrigel and TGFalpha, the activation of both PKCalpha and phosphorylation of ERK1/2 results in synergistic activation of the amylase promoter. Published 2000 Wiley-Liss, Inc.  相似文献   

3.
4.
Salivary glands contain two major epithelial cell types: acinar cells which produce the primary salivary secretion, including amylase, and ductal cells which reabsorb electrolytes but also secrete kallikrein. Here we investigated salivary acinar cell differentiation in vitro using the activity of the salivary amylase and tissue kallikrein promoters as markers of acinar cell and ductal cell differentiation, respectively. Each of the promoter sequences was cloned into a replication-deficient adenoviral vector containing the luciferase reporter gene. Previous studies showed that a human submandibular gland cell line (HSG) differentiated into acinar cells when cultured on a reconstituted basement membrane matrix (Matrigel). The luciferase activity of the amylase promoter vector (AdAMY-luc) was low in HSG cells cultured on plastic, where they grow as an epithelial monolayer. The promoter activity increased approximately tenfold when HSG cells were cultured on Matrigel and developed an acinar phenotype. Under the same conditions, the luciferase activity of the kallikrein promoter (AdKALL-luc) was not induced. Because HSG cells demonstrate acinar cell morphology, but not amylase gene expression, when cultured on laminin-1, certain soluble components of Matrigel were tested for their ability to induce the amylase promoter during in vitro differentiation of acinar cells. We find that epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha), which are present in the basement membrane, and hepatocyte growth factor (HGF) increase activity of the amylase promoter. Other basement membrane-derived growth factors such as TGF-beta, basic fibroblast growth factor (bFGF), and platelet-derived growth factor (PGDF), as well as tumor necrosis factor (TNF-alpha), keratinocyte growth factor (KGH), nerve growth factor (NGF) and interferon gamma (IFN-gamma) were inactive. This system will be further exploited to study the mechanisms by which extracellular matrix molecules and growth factors regulate salivary acinar cell differentiation.  相似文献   

5.
Polymorphic amylase protein patterns have suggested the presence in the human genome of various haplotypes encoding these allozymes. To investigate the genomic organization of the human alpha-amylase genes, we isolated the pertinent genes from a cosmid library constructed of DNA from an individual expressing three different salivary amylase allozymes. From the restriction maps of the overlapping cosmids and a comparison of these maps with the restriction enzyme patterns of DNA from the donor and family members, we were able to identify two haplotypes consisting of very different numbers of salivary amylase genes. The short haplotype contains two pancreatic genes (AMY2A and AMY2B) and one salivary amylase gene (AMY1C), arranged in the order 2B-2A-1C, encompassing a total length of approximately 100 kb. The long haplotype spans about 300 kb and contains six additional genes arranged in two repeats, each one consisting of two salivary amylase genes (AMY1A and AMY1B) and a pseudogene lacking the first three exons (AMYP1). The order of the amylase genes within the repeat is 1A-1B-P1. All genes are in a head-to-tail orientation except AMY1B, which has the reverse orientation with respect to the other genes. Analysis of somatic cell hybrids confirmed the presence of these short and long haplotypes. Furthermore, we present evidence for the existence of additional haplotypes in the human population and propose a general model for the evolution of the human alpha-amylase multigene family. A general designation 2B-2A-(1A-1B-P)n-1C can describe these haplotypes, n being 0 and 2 for the short and the long haplotypes presented in this paper, respectively.  相似文献   

6.
A prominent histopathological feature of Sjögren''s syndrome, an autoimmune disease, is the presence of lymphocytic infiltrates in the salivary and lachrymal glands. Such infiltrates are comprised of activated lymphocytes and macrophages, and known to produce multiple cytokines including interferon-gamma (IFN-γ). In this study, we have demonstrated that IFN-γ strongly induces the expression of immunoproteasome beta subunits (β1i, β2i and β5i) and immunoproteasome activity but conversely inhibits the expression of proteasome beta subunits (β1, β2 and β5) in human salivary gland (HSG) cells. Mass spectrometric analysis has revealed potential MHC I-associated peptides on the HSG cells, including a tryptic peptide derived from salivary amylase, due to IFN-γ stimulation. These results suggest that IFN-γ induces immunoproteasomes in HSG cells, leading to enhanced presentation of MHC I-associated peptides on cell surface. These peptide-presenting salivary gland cells may be recognized and targeted by auto-reactive T lymphocytes. We have also found that lactacystin, a proteasome inhibitor, inhibits the expression of β1 subunit in HSG cells and blocks the IFN-γ-induced expression of β1i and immunoproteasome activity. However, the expression of β2i and β5i in HSG cells is not affected by lactacystin. These results may add new insight into the mechanism regarding how lactacystin blocks the action of proteasomes or immunoproteasomes.  相似文献   

7.
8.
The exact role of TRPC1 in store-operated calcium influx channel (SOCC) function is not known. We have examined the effect of overexpression of full-length TRPC1, depletion of endogenous TRPC1, and expression of TRPC1 in which the proposed pore region (S5-S6, amino acids (aa) 557-620) was deleted or modified by site-directed mutagenesis on thapsigargin- and carbachol-stimulated SOCC activity in HSG cells. TRPC1 overexpression induced channel activity that was indistinguishable from the endogenous SOCC activity. Transfection with antisense hTRPC1 decreased SOCC activity although characteristics of SOCC-mediated current, I(SOC), were not altered. Expression of TRPC1 Delta 567-793, but not TRPC1 Delta 664-793, induced a similar decrease in SOCC activity. Furthermore, TRPC1 Delta 567-793 was co-immunoprecipitated with endogenous TRPC1. Simultaneous substitutions of seven acidic aa in the S5-S6 region (Asp --> Asn and Glu --> Gln) decreased SOCC-mediated Ca(2+), but not Na(+), current and induced a left shift in E(rev). Similar effects were induced by E576K or D581K, but not D581N or E615K, substitution. Furthermore, expressed TRPC1 proteins interacted with each other. Together, these data demonstrate that TRPC1 is required for generation of functional SOCC in HSG cells. We suggest that TRPC1 monomers co-assemble to form SOCC and that specific acidic aa residues in the proposed pore region of TRPC1 contribute to Ca(2+) influx.  相似文献   

9.
The human submandibular gland cell line (HSG) has been used as a model for studying the molecular mechanisms of salivary cells. The aim of this study was to investigate some aspects of salivary Ca2+ signalling. We focused on the presence and function of specific molecular markers of salivary cells to see whether this cell line retained normal salivary characteristics, despite the neoplastic changes. We detected the M3 acetylcholine receptor and intracellular salivary amylase mRNA with RT-PCR. Carbachol treatment caused a rapid, transient elevation of [Ca2+]i, showing that the cholinergic receptors are functional in HSG cells. Protein kinase C activation by phorbol-esther PMA, prior to carbachol treatment, inhibited the normal Ca2+ signalling pathway in HSG cells. Using selective antagonists, we also identified the dominant muscarinic receptor subtype M3 on HSG cells. We also observed that functional extracellular purinergic receptors were present on HSG cells and coupled to intracellular Ca2+ signalling. Our results suggested that the coupling mechanisms of these receptors remained relatively intact despite the neoplastic transformation. This enables us to use this cell line to model the role of muscarinic and purinergic control of salivary gland function, cell proliferation and differentiation.  相似文献   

10.

Background

The digestion of dietary starch in humans is initiated by salivary α-amylase, an endo-enzyme that hydrolyzes starch into maltose, maltotriose and larger oligosaccharides. Salivary amylase accounts for 40 to 50% of protein in human saliva and rapidly alters the physical properties of starch. Importantly, the quantity and enzymatic activity of salivary amylase show significant individual variation. However, linking variation in salivary amylase levels with the oral perception of starch has proven difficult. Furthermore, the relationship between copy number variations (CNVs) in the AMY1 gene, which influence salivary amylase levels, and starch viscosity perception has not been explored.

Principal Findings

Here we demonstrate that saliva containing high levels of amylase has sufficient activity to rapidly hydrolyze a viscous starch solution in vitro. Furthermore, we show with time-intensity ratings, which track the digestion of starch during oral manipulation, that individuals with high amylase levels report faster and more significant decreases in perceived starch viscosity than people with low salivary amylase levels. Finally, we demonstrate that AMY1 CNVs predict an individual''s amount and activity of salivary amylase and thereby, ultimately determine their perceived rate of oral starch viscosity thinning.

Conclusions

By linking genetic variation and its consequent salivary enzymatic differences to the perceptual sequellae of these variations, we show that AMY1 copy number relates to salivary amylase concentration and enzymatic activity level, which, in turn, account for individual variation in the oral perception of starch viscosity. The profound individual differences in salivary amylase levels and salivary activity may contribute significantly to individual differences in dietary starch intake and, consequently, to overall nutritional status.  相似文献   

11.
Cycloheximide (1.0 ug/ml) reversibly induced a 1.7-fold increase in the distribution of cells in S phase and a 0.9-fold decrease in G1 phase in DNA histograms of human salivary adenocarcinoma cells (HSG). At this time, cycloheximide inhibited the synthesis of proteins by HSG cells and secretion of proteins in the media to 28.1% and 9% of the control values, respectively, which resulted in the almost complete arrest of cell reproduction. This indicates that HSG cells can pass through G1 to S phase even under the conditions of the arrest of protein synthesis.  相似文献   

12.
P C Groot  W H Mager  R R Frants 《Genomics》1991,10(3):779-785
Previous molecular studies have clearly shown that the human amylase locus has a very complicated structure. Multiple salivary and pancreatic amylase genes are present on haplotypes with variable numbers of genes. To study the population heterogeneity, human genomic DNA from family members and random individuals was digested with a number of different restriction enzymes and hybridized with probes representing various parts of the human pancreatic amylase cDNA. The complex patterns obtained were, in most cases, compatible with predictions from the restriction enzyme maps of cloned human amylase genes. With some enzymes deviations from the predicted intensities of the bands associated with the pancreatic amylase gene AMY2A were observed. These findings can be explained by unequal homologous crossovers between AMY2A and AMY1A, resulting in haplotypes with one gene less or one gene more than the haplotypes described thus far. Moreover, a very complicated TaqI polymorphism was found that can be explained by homologous crossovers between different salivary amylase genes. Because some salivary amylase genes have an inverted orientation with respect to the others, these data provide evidence for the occurrence of intrachromosomal, homologous crossovers, as proposed by us previously (P. C. Groot et al., 1990, Genomics 8: 97-105).  相似文献   

13.
Salivary alpha amylase (sAA) is the most abundant enzyme in saliva. Studies in humans found variation in enzymatic activity of sAA across populations that could be linked to the copy number of loci for salivary amylase (AMY1), which was seen as an adaptive response to the intake of dietary starch. In addition to diet dependent variation, differences in sAA activity have been related to social stress. In a previous study, we found evidence for stress-induced variation in sAA activity in the bonobos, a hominoid primate that is closely related to humans. In this study, we explored patterns of variation in sAA activity in bonobos and three other hominoid primates, chimpanzee, gorilla, and orangutan to (a) examine if within-species differences in sAA activity found in bonobos are characteristic for hominoids and (b) assess the extent of variation in sAA activity between different species. The results revealed species-differences in sAA activity with gorillas and orangutans having higher basal sAA activity when compared to Pan. To assess the impact of stress, sAA values were related to cortisol levels measured in the same saliva samples. Gorillas and orangutans had low salivary cortisol concentrations and the highest cortisol concentration was found in samples from male bonobos, the group that also showed the highest sAA activity. Considering published information, the differences in sAA activity correspond with differences in AMY1 copy numbers and match with general features of natural diet. Studies on sAA activity have the potential to complement molecular studies and may contribute to research on feeding ecology and nutrition.  相似文献   

14.
The genetic polymorphism of three salivary enzymes (esterase, glucose-6-phosphate dehydrogenase and amylase) was studied in 580 autochthonous individuals from the Galician population (North-West Spain). The gene frequencies obtained were: SetF = 0.4036, SetS = 0.5964; Sgd1 = 0.7828, Sgd2 = 0.2172; AMY11 = 0.9319, AMY21 = 0.0495, AMY31 = 0.0186. Evidence of genetic intrapopulational heterogeneity was found for Set and Sgd loci. An alternative method for AMY1 typing by means of isoelectric focusing is proposed which allows the use of long-term stored saliva samples.  相似文献   

15.
High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch‐rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed‐dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus.  相似文献   

16.
The human salivary gland (HSG) epithelial cell line can differentiate when cultured on extracellular matrix preparations. We previously identified >30 genes upregulated by adhesion of HSG cells to extracellular matrix. In the current studies, we examined the role of one of these genes, the polyamine pathway biosynthetic enzyme S-adenosylmethionine decarboxylase (SAM-DC) and the related enzyme, ornithine decarboxylase (ODC), on HSG cell differentiation during culture on extracellular matrix. HSG cells cultured on fibronectin-, collagen I gel-, and Matrigel-coated substrates for 12-24 h upregulated SAM-DC and ODC mRNA expression and enzyme activity compared to cells cultured on non-precoated substrates. After 3-5 days, HSG cells grown on Matrigel- or collagen I gel-coated substrates acquired a differentiated phenotype: the cells showed changes in culture morphology and increased expression of salivary gland differentiation markers (vimentin, SN-cystatin, and alpha-amylase). Further, culturing the cells on substrates precoated with an anti-beta1-integrin-antibody promoted differentiation-like changes. HSG cells cultured on collagen I- or Matrigel-coated substrates rapidly entered the cell cycle but showed decreased cell proliferation at longer times. In contrast, cell proliferation was enhanced on fibronectin-coated substrates compared to cells on non-precoated substrates. Treatment with the polyamine synthesis inhibitors, difluoromethylornithine (DFMO), and methylglyoxal bis-(guanylhydrazone) (MGBG), inhibited cell proliferation and delayed (3)H-thymidine incorporation in HSG cells cultured on all of the substrates. Further, inclusion of DFMO and MGBG inhibited or delayed acquisition of the differentiated phenotype in HSG cells cultured on Matrigel- or collagen I gel-coated substrates. This suggests that the adhesion-dependent expression of SAM-DC and ODC contributes to extracellular matrix-dependent HSG cell differentiation.  相似文献   

17.
Dexamethasone (1 microM) decreased the distribution of cells in S phase (about 75%) and increased that of G1 cells (1.1-fold) in the DNA histogram of human submandibular salivary gland adenocarcinoma cells (HSG) reversibly. In synchronized cells at G1 phase, glucocorticoid delayed the initiation of DNA synthesis by about 3-4 h. The conditioned medium (50%) or exogenous human epidermal growth factor (EGF, 10 ng/ml) significantly nullified these effects by glucocorticoids. These results suggested that glucocorticoids arrested the cells at G1 phase, which implied the inhibition of production of some progressive factor, probably EGF, in the cell cycle of HSG.  相似文献   

18.
19.
1alpha,25-Dihydroxy-Vitamin-D3 (1alpha,25(OH)2-Vitamin D3) stimulates in skeletal muscle cells Ca2+ release from inner stores and influx through both voltage-dependent and store-operated Ca2+ (SOC, CCE) channels. We investigated the involvement of TRPC proteins and Vitamin D receptor (VDR) in CCE induced by 1alpha,25(OH)2D3 in chick muscle cells. Two fragments were amplified by RT-PCR, exhibiting approximately 80% sequence homology with mammalian TRPC3/6/7. Northern and Western blots employing a TRPC3-probe and anti-TRPC3 antibodies, respectively, confirmed endogenous expression of a TRPC3-like protein of 140 kDa. Spectrofluorimetric measurements in Fura-2 loaded cells showed reduced CCE and Mn2+ entry in response to either thapsigargin or 1alpha,25(OH)2D3 upon transfection with anti-TRPC3/6/7 antisense oligodeoxynucleotides (ODNs). Transfection with anti-VDR antisense ODNs diminished 1alpha,25(OH)2D3-dependent Ca2+ and Mn2+ influx. Co-immunoprecipitation of TRPC3-like protein and VDR under non-denaturating conditions was observed. We propose that endogenous TRPC3-like proteins and the VDR participate in the modulation of CCE by 1alpha,25(OH)2D3 in muscle cells, which could be mediated by an interaction between these proteins.  相似文献   

20.
We have reported that internal Ca2+ store depletion in HSY cells stimulates a nonselective cation current which is distinct from I(CRAC) in RBL cells and TRPC1-dependent I(SOC) in HSG cells (Liu, X., Groschner, K., and Ambudkar, I. S. (2004) J. Membr. Biol. 200, 93-104). Here we have analyzed the molecular composition of this channel. Both thapsigargin (Tg) and 2-acetyl-sn-glycerol (OAG) stimulated similar non-selective cation currents and Ca2+ entry in HSY cells. The effects of Tg and OAG were not additive. HSY cells endogenously expressed TRPC1, TRPC3, and TRPC4 but not TRPC5 or TRPC6. Immunoprecipitation of TRPC1 pulled down TRPC3 but not TRPC4. Conversely, TRPC1 co-immunoprecipitated with TRPC3. Expression of antisense TRPC1 decreased (i) Tg- and OAG-stimulated currents and Ca2+ entry and (ii) the level of endogenous TRPC1 but not TRPC4. Antisense TRPC3 similarly reduced Ca2+ entry and endogenous TRPC3. Yeast two-hybrid analysis revealed an interaction between NTRPC1 and NTRPC3 (CTRPC1-CTRPC3, CTRPC3-CTRPC1, or CTRPC1-NTRPC3 did not interact), which was confirmed by glutathione S-transferase (GST) pull-down assays (GST-NTRPC3 pulled down TRPC1 and vice versa). Expression of NTRPC1 or NTRPC3 induced similar dominant suppression of Tg- and OAG-stimulated Ca2+ entry. NTRPC3 did not alter surface expression of TRPC1 or TRPC3 but disrupted TRPC1-TRPC3 association. In aggregate, our data demonstrate that TRPC1 and TRPC3 co-assemble, via N-terminal interactions, to form a heteromeric store-operated non-selective cation channel in HSY cells. Thus selective association between TRPCs generate distinct store-operated channels. Diversity of store-operated channels might be related to the physiology of the different cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号