首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L. Alibardi 《Acta zoologica》2007,88(2):101-117
This ultrastructural study on the regenerating feathers of quail describes the cellular organization of the barb ridges responsible for the ramification of adult feathers. Bilateral symmetry of the barb ridges determines the organization of feather cells into feather branching. The length of the barb ridges, derived from the number of cells associated to form the barbule plates, determines the length of the barbule branching. Long chains of barb cells form long barbs that branch from the rachis with an increase of feather size. Supportive cells function as spacers between the barbule cells. New cells derive from stem cells localized in the collar region of the feather follicle, as indicated from the re‐organization of collar cells into barb ridges (a morphogenetic process inherited from that of embryonic feathers), production of an embryonic type of keratin (feather keratin), permanence of periderm granules (typical embryonic organelles) in barb vane ridge cells. Variations in the process of barb ridge morphogenesis allow the fusion of ridges into a rachis. The differentiation of hooklets contributes to the origin of planar feathers. Separation between rachis and merging barb ridges is by supportive cells, derived from the marginal plates of the barb ridges. Speculations on the evolution and diversification of feathers are presented.  相似文献   

2.
Bird tails are extraordinarily variable in length and functionality. In some species, males have evolved exaggeratedly long tails as a result of sexual selection. Changes in tail length should be associated with changes in feather structure. The study of the evolution of feather structure in bird tails could give insight to understand the causes and means of evolution in relation to processes of sexual selection. In theory, three possible means of tail length evolution in relation to structural components might be expected: (1) a positive relationship between the increase in length and size of structural components maintaining the mechanical properties of the feather; (2) no relationship; that is, enlarging feather length without changes in the structural components; and (3) a negative relationship; that is, enlarging feather length by reducing structural components. These hypotheses were tested using phylogenetic analyses to examine changes in both degree of exaggeration in tail length and structural characteristics of tail feathers (rachis width and density of barbs) in 36 species, including those dimorphic and nondimorphic in tail length. The degree of sexual dimorphism in tail length was negatively correlated with both rachis width and density of barbs in males but not in females. Reinforcing this result, we found that dimorphism in tail length was negatively associated with dimorphism in tail feather structure (rachis width and density of barbs). These results support the third hypothesis, in which the evolution of long feathers occurs at the expense of making them simpler and therefore less costly to produce. However, we do not know the effects of enfeeblement on the costs of bearing. If the total costs increased, the enfeeblement of feathers could be explained as a reinforcement of the honesty of the signal. Alternatively, if total costs were reduced, the strategy could be explained by cheating processes. The study of female preferences for fragile tail feathers is essential to test these two hypotheses. Preferences for fragile tails would support the evolution of reinforcement of honesty, whereas female indifference would indicate the existence of cheating in certain stages of the evolutionary process.  相似文献   

3.
Thermal activation analysis of plastic deformation of peacock tail feathers, by temperature changes and stress relaxation, gave for the keratin cortex an activation enthalpy of 1.78 ± 0.89?eV and an activation volume of 0.83 ± 0.13?nm3, for both the blue and the white subspecies. These values suggest that breaking of electrostatic bonds is responsible for plasticity in feather keratin. These might be bonds between keratin and nonkeratinous matrix or keratin-keratin cross-links. The mechanical properties of the rachis cortex are surprisingly uniform along the length of the feathers.  相似文献   

4.
Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an α-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms.  相似文献   

5.
To transmit aerodynamic forces to the body, tail feathers should be stiff to resist lift forces with minimum deformation. Because aerodynamic theory predicts that such feathers do not produce lift forces beyond the point of the maximum continuum width of the tail, species with deeply forked tails should not require stiff outer rectrices distal to that point. I tested this prediction by comparing the relative thickness of the outer rectrix rachis between species with deeply forked tails to those with triangular or shallowly forked tails. Eleven pairs of closely related species belonging to families Fregatidae, Phalacrocoracidae, Accipitridae, Sternidae, Caprimulgidae, Trochilidae, Coraciidae, Tyrannidae, Cotingidae, and Hirundinidae were compared. All but one of the phylogenetically independent comparisons showed that the species with triangular or shallowly forked tails have higher relative rachis thickness than their deeply forked relatives. In addition, nine out of eleven of the species with deeply forked tails showed a proportionately greater increase in relative rachis thickness from distal to proximal parts of the feather. In contrast, triangular and shallowly forked tails showed an approximately linear relation between relative rachis thickness and relative rachis length. These results considered together are consistent with the idea that the distal part of outer rectrix rachis in species with deeply forked tails has not been selected to resist lift forces and may be adaptively reduced to attenuate the costs of a hypertrophied ornament.  相似文献   

6.
Feathers are composed of a structure that, whilst being very light, is able to withstand the large aerodynamic forces exerted upon them during flight. To explore the contribution of molecular orientation to feather keratin mechanical properties, we have examined the nanoscopic organisation of the keratin molecules by X-ray diffraction techniques and have confirmed a link between this and the Young's modulus of the feather rachis. Our results indicate that along the rachis length, from calamus to tip, the keratin molecules become more aligned than at the calamus before returning to a state of higher mis-orientation towards the tip of the rachis. We have also confirmed the general trend of increasing Young's modulus with distance along the rachis. Furthermore, we report a distinct difference in the patterns of orientation of beta-keratin in the feathers of flying and flightless birds. The trend for increased modulus along the feathers of volant birds is absent in the flightless ostrich.  相似文献   

7.
In this special issue on the Evo-Devo of amniote integuments, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss the molecular and developmental biological experiments using chicken integuments as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From this evidence, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proximal follicle for proximo-distal growth mode; 2) forming hierarchical branches of rachis, barbs, and barbules, with barbs formed by differential cell death and bilaterally or radially symmetric; 3) having a follicle structure, with mesenchyme core during development; 4) when mature, consisting of epithelia without mesenchyme core and with two sides of the vane facing the previous basal and supra-basal layers, respectively; and 5) having stem cells and dermal papilla in the follicle and hence the ability to molt and regenerate. A model of feather evolution from feather bud --> barbs --> barbules --> rachis is presented, which is opposite to the old view of scale plate --> rachis --> barbs --> barbules (Regal, '75; Q Rev Biol 50:35).  相似文献   

8.
9.
Summary Two species of feather mites, Alloptes (A.) sp. and Laronyssus martini, coexisted on the flight feathers of kittiwakes, while Alloptes (C.) sp. occurred alone on murres. All three species were found mostly on the ventral surface of mid-wing regions. On individual feathers, the mites were attached to the distal sides of barbs on the trailing vanes. The two species coexisted on kittiwakes but occupied different portions of feathers. The results suggest that the two species compete for the attachment site on the feather and Alloptes (A.) sp. is excluded by L. martini from the preferred microhabitat.  相似文献   

10.
Aparicio JM  Bonal R 《Heredity》2002,89(2):139-144
Certain characters are more susceptible to increased fluctuating asymmetry (FA) than others. This trait-specific susceptibility has normally been attributed to different degrees of developmental stability, which could be caused by different modes of selection, functionality, or the stress experienced during the development process. Recently, it has also been suggested that the expression of FA not only depends on developmental stability, but also on the cost of growth of the trait, defined as the amount of structural components necessary to form a unit of length of a given character. In accordance with this argument, a trait with more structural components per unit of length should show lower asymmetry than a simpler one. To test this hypothesis, we examine the structure (number of barbs, barb length, and rachis width) and asymmetry of the longest tail feathers in 26 bird species. Regression analyses using phylogenetically independent contrasts show that FA is negatively correlated with the number of barbs and feather rachis width in males (including species with elongated tails subjected to sexual selection), and with rachis width in females, whose tails supposedly evolve by natural selection. Moreover, the negative correlation between FA and rachis width persisted when taking only the males of non-dimorphic species. These results confirm the hypothesis, suggesting that a trait's susceptibility to express developmental instability by fluctuating asymmetry depends on its structural composition.  相似文献   

11.
The impact of feather‐degrading bacilli on feathers depends on the presence or absence of melanin. In vitro studies have demonstrated that unmelanized (white) feathers are more degradable by bacteria than melanized (dark) ones. However, no previous study has looked at the possible effect of feather‐degrading bacilli on the occurrence of patterns of unmelanized patches on otherwise melanized feathers. The pied flycatcher Ficedula hypoleuca Pallas, 1764 is a sexually dimorphic passerine with white wing bands consisting of unmelanized patches on dark flight feathers. These patches are considered to be a sexually selected trait in Ficedula flycatchers, especially in males, where the patches are more conspicuous (larger and possibly whiter) than in females. Using in vitro tests of feather bacterial degradation, we compared the degradability of unmelanized and melanized areas of the same feather for 127 primaries collected from the same number of individuals in a population breeding in central Spain (58 males and 69 females). In addition, we also looked for sex differences in feather degradability. Based on honest signalling theory and on the fact that there is stronger sexual selection for males to signal feather quality than in females, we predicted that unmelanized areas should be more degradable by bacteria than melanized ones within the same feather, and that these unmelanized areas should also be more degradable in males than in females. We confirmed both predictions. Microstructural differences between cross‐section dimensions of unmelanized and melanized barbs, but not differences in the density of barbs within unmelanized and melanized areas of feathers in males and females, could partly explain differences in degradability. This is the first study to show differences in bacterial degradability among markings on the same feather and among unmelanized feather patches between males and females as predicted by sexual selection theory. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 409–419.  相似文献   

12.
In order to transmit aerodynamic forces to the rest of the body, tail feathers need to be stiff to resist lift forces with minimum deformation. Because delta-wing theory predicts that such feathers do not produce lift forces beyond the point of the maximum continuum width of the tail, species with pintails should not require stiff central rectrices distal to that point. We tested this prediction by comparing the relative thickness of the central rectrix rachis in taxa with pintails and triangular tails. Fourteen pairs of closely related species or species groups belonging to the families Phaethontidae, Phalacrocoracidae, Anatidae, Stercorariidae, Psittacidae, Trochilidae, Alcedinidae, Momotidae, Meropidae, Bucerotidae, Tyrannidae, Pipridae and Nectariniidae were compared. Twelve of the phylogenetically independent comparisons showed that the taxa with triangular tails have higher relative rachis thickness (RRT) than their pintailed relatives just behind the point of the maximum continuum width of the tail. In contrast, two taxa with pintails showed proportionately higher RRT than their triangular-tailed relatives. Triangular tails showed an approximately linear relationship between RRT and relative rachis length, which contrasts with a proportionately greater increase in RRT from distal to proximal parts of the feather in 12 pintailed taxa. These results show that in most of the pintailed taxa studied the distal part of the central rectrix rachis has not been selected to resist lift forces and may be adaptively reduced to attenuate the costs of a hypertrophied ornament. However, the presence of distally reinforced rachices in Eumomota superciliosa and Colonia colonus suggests that a different explanation may be required to account for the design of pintail structure in other taxa.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 477–485.  相似文献   

13.
The feather aerofoil is unequalled in nature. It is comprised of a central rachis, serial paired branches or barbs, from which arise further branches, the barbules. Barbs and barbules arise from the significantly thinner lateral walls (the epicortex) of the rachis and barbs respectively, as opposed to the thicker dorsal and ventral walls (the cortex). We hypothesized a microstructural design of the epicortex that would resist the vertical or shearing stresses. The microstructures of the cortex and epicortex of the rachis and barbs were investigated in several bird species by microbe-assisted selective disassembly and conventional methods via scanning electron microscopy. We report, preeminent of the finds, a novel system of crossed fibres (ranging from ∼100–800 nm in diameter), oppositely oriented in alternate layers of the epicortex in the rachis and barbs. It represents the first cross-fibre microstructure, not only for the feather but in keratin per se. The cortex of the barbs is comprised of syncitial barbule cells, definitive structural units shown in the rachidial cortex in a related study. The structural connection between the cortex of the rachis and barbs appears uninterrupted. A new model on feather microstructure incorporating the findings here and in the related study is presented. The helical fibre system found in the integument of a diverse range of invertebrates and vertebrates has been implicated in profound functional strategies, perhaps none more so potentially than in the aerofoil microstructure of the feather here, which is central to one of the marvels of nature, bird flight.  相似文献   

14.
Avian feathers are a complex evolutionary novelty characterized by structural diversity and hierarchical development. Here, I propose a functionally neutral model of the origin and evolutionary diversification of bird feathers based on the hierarchical details of feather development. I propose that feathers originated with the evolution of the first feather follicle-a cylindrical epidermal invagination around the base of a dermal papilla. A transition series of follicle and feather morphologies is hypothesized to have evolved through a series of stages of increasing complexity in follicle structure and follicular developmental mechanisms. Follicular evolution proceeded with the origin of the undifferentiated collar (stage I), barb ridges (stage II), helical displacement of barb ridges, barbule plates, and the new barb locus (stage III), differentiation of pennulae of distal and proximal barbules (stage IV), and diversification of barbule structure and the new barb locus position (stage V). The model predicts that the first feather was an undifferentiated cylinder (stage I), which was followed by a tuft of unbranched barbs (stage II). Subsequently, with the origin of the rachis and barbules, the bipinnate feather evolved (stage III), followed then by the pennaceous feather with a closed vane (stage IV) and other structural diversity (stages Va-f). The model is used to evaluate the developmental plausibility of proposed functional theories of the origin of feathers. Early feathers (stages I, II) could have functioned in communication, defense, thermal insulation, or water repellency. Feathers could not have had an aerodynamic function until after bipinnate, closed pennaceous feathers (stage IV) had evolved. The morphology of the integumental structures of the coelurisaurian theropod dinosaurs Sinosauropteryx and Beipiaosaurus are congruent with the model's predictions of the form of early feathers (stage I or II). Additional research is required to examine whether these fossil integumental structures developed from follicles and are homologous with avian feathers. J. Exp. Zool. (Mol. Dev. Evol.) 285:291-306, 1999.Copyright 1999 Wiley-Liss, Inc.  相似文献   

15.
Migration causes temporal and energetic constraints during plumage development, which can compromise feather structure and function. In turn, given the importance of a good quality of flight feathers in migratory movements, selection may have favoured the synthesis of feathers with better mechanical properties than expected from a feather production constrained by migration necessities. However, no study has assessed whether migratory behaviour affects the relationship between the mechanical properties of feathers and their structural characteristics. We analysed bending stiffness (a feather mechanical property which is relevant to birds’ flight), rachis width and mass (two main determinants of variation in bending stiffness) of wing and tail feathers in migratory and sedentary blackcaps Sylvia atricapilla. Migratory blackcaps produced feathers with a narrower rachis in both wing and tail, but their feathers were not significantly lighter; in addition, bending stiffness was higher in migratory blackcaps than in sedentary blackcaps. Such unexpected result for bending stiffness remained when we statistically controlled for individual variation in rachis width and feather mass, which suggests the existence of specific mechanisms that help migratory blackcaps to improve the mechanical behaviour of their feathers under migration constraints.  相似文献   

16.
Feathers are the most complex epidermal derivatives among vertebrates. The present review deals with the origin of feathers from archosaurian reptiles, the cellular and molecular aspects of feather morphogenesis, and focus on the synthesis of keratins and associated proteins. Feathers consist of different proteins among which exists a specialized group of small proteins called beta-keratins. Genes encoding these proteins in the chick genome are distributed in different chromosomes, and most genes encode for feather keratins. The latter are here recognized as proteins associated with the keratins of intermediate filaments, and functionally correspond to keratin-associated proteins of hairs, nails and horns in mammals. These small proteins possess unique properties, including resistance and scarce elasticity, and were inherited and modified in feathers from ancestral proteins present in the scales of archosaurian progenitors of birds. The proteins share a common structural motif, the core box, which was present in the proteins of the reptilian ancestors of birds. The core box allows the formation of filaments with a different molecular mechanism of polymerization from that of alpha-keratins. Feathers evolved after the establishment of a special morphogenetic mechanism gave rise to barb ridges. During development, the epidermal layers of feathers fold to produce barb ridges that produce the ramified structure of feathers. Among barb ridge cells, those of barb and barbules initially accumulate small amounts of alpha-keratins that are rapidly replaced by a small protein indicated as “feather keratin”. This 10 kDa protein becomes the predominant form of corneous material of feathers. The main characteristics of feather keratins, their gene organization and biosynthesis are similar to those of their reptilian ancestors. Feather keratins allow elongation of feather cells among supportive cells that later degenerate and leave the ramified microstructure of barbs. In downfeathers, barbs are initially independent and form plumulaceous feathers that rest inside a follicle. Stem cells remain in the follicle and are responsible for the regeneration of pennaceous feathers. New barb ridges are produced and they merge to produce a rachis and a flat vane. The modulation of the growth pattern of barb ridges and their fusion into a rachis give rise to a broad variety of feather types, including asymmetric feathers for flight. Feather morphogenesis suggests possible stages for feather evolution and diversification from hair-like outgrowths of the skin found in fossils of pro-avian archosaurians.  相似文献   

17.
Thin sections of the rachis of regenerating follicles of pigmented fowl feathers and of mature non-pigmented seagull feather rachis, embedded in methacrylate and Araldite respectively, were studied in the electron microscope. The late stages of development of keratin fibrils were examined in OsO4-fixed follicle material, and after poststaining with lead hydroxide the keratin aggregates were found to be composed of fine microfibrils approximately 30 A in diameter apparently embedded in a matrix material which had absorbed the lead stain. The centre-to-centre separation of the microfibrils was of the order of 35 A. After bulk treatment by reduction with thioglycollic acid, OsO4 staining, and poststaining with lead hydroxide, a similar microfibrillar fine structure was observed in mature rachis. Only after lead staining could the microfibrils be delineated, and their diameter and separation were similar to that found in the keratin of the follicle. It is suggested that feather keratin resembles α-keratins in consisting of microfibrils embedded in an amorphous protein matrix. However, in comparison with α-keratins, the microfibrils are much smaller in diameter, their arrangement is less orderly, and on the basis of the reactions towards the electron staining procedures, the cystine content of the matrix appears to be not greatly different from that of the microfibrils. The significance of a microfibrillar constitution of feather keratin is discussed in relation to current structural models for this fibrous protein deduced from x-ray diffraction studies. The boundaries between the component cells of feather rachis are desmosomal in character and similar to those of related keratinous structures and a number of different types of cells; the melanin granules are dissimilar to those of mammalian epidermis in their apparent lack of melanin-protein lamellae.  相似文献   

18.
19.
Summary The spongy structure in medullary cells responsible for the colour of blue barbs in rump feathers of Agapornis roseicollis and back feathers of Cotinga maynana is studied with the scanning and the transmission electron microscope. The Agapornis structure is an irregular three-dimensional network of connected keratin rods which in many places form rings with outer diameters 0.25–0.3 . The air-filled space likewise consists of an irregular network of connected channels. The Cotinga structure consists of spherical cavities fairly evenly distributed in a keratin matrix.Earlier spectrophotometric measurements on the Agapornis structure have shown that the colour production has to be ascribed to the interference of light, not to Rayleigh (Tyndall) scattering as previously held. The optical path lengths corresponding to the outer diameter of the Agapornis rings and to the Cotinga cavities including their horny walls both are c. 0.4 . It is suggested that the colours are produced by the interference of light reflected from the front and rear surfaces of the rings, respectively the spherical cavities.I wish to thank Miss Annelise Nørgaard Jensen, Institute of Historical Geology and Palaeontology, University of Copenhagen, for operating the scanning electron microscope for me.  相似文献   

20.
In all owl species, the facial plumage forms a parabolic dish, the facial ruff, which is most conspicuous in the the barn owl (Tyto alba). The center of the ruff is formed by auricular feathers. Such feathers are also found on the preaural flaps which cover the ear openings, and in the region of the beak. In this study, we compare the different types of auricular feathers of the barn owl with contour feathers from the neck. Auricular feathers are characterised by an open vane structure and fewer barbs as compared to contour feathers. Auricular feathers also have fewer distal and proximal barbules than contour feathers. The open vane of the auricular feather results from an acute angle between the barb and the basis of the barbules, and from the extension of the pennula parallel to the barbs. These reductions are differently expressed in the three different types of auricular feathers investigated here and correspond with their function (protecting the ruff from dust).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号