首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA-binding mode of antitumor and antiviral agents has been evaluated by electrochemiluminescence (ECL) of tris(1,10-phenanthroline)-ruthenium complex (Ru(phen)(3)(2+)) in the presence of oxalate ion in pH 7.3 Tris buffer solution. An emission of Ru(phen)(3)(2+) was observed repeatedly with a voltage above 1000mV subjected to a potential sweep from 0 to 1250mV. The addition of lambdaDNA into the solution containing 1 micro M of Ru(phen)(3)(2+) caused the decrease in the ECL intensity, which became half at a DNA concentration of 20 micro M. This is due to the binding of Delta-type of Ru(phen)(3)(2+) with DNA in the major groove of DNA. When the various concentrations of the drug were added to the solution containing 1& micro M Ru(phen)(3)(2+), the ECL intensity was not affected by the concentration of the drug in the absence of DNA. In the presence of DNA (10 micro M), however, two ECL emission patterns were observed when the concentration of the drug was varied. The pattern that the ECL intensity increased with increasing the drug concentration was observed for cisplatin, daunomycin, and DC92-B. This may have resulted from the DNA binding of the drug with a major groove site, where Ru(phen)(3)(2+) should bind. Ru(phen)(3)(2+) nonbinding to DNA might exist in the bulk solution and exhibits ECL emission. The drug exhibiting the drug-concentration-dependent ECL is classified as a drug with a major groove binding character. The addition of drugs, such as mitomycin C and duocarmycin SA, did not cause a change in the ECL intensity even in the presence of DNA. This result indicates that these drugs bind to DNA with minor groove binding. Since similar trends were observed for actinomycin D, distamycin A, doxorubicin, and chromomycin A3; these drugs are also considered as minor groove binding agents. All these results demonstrate that the DNA-binding mode of the drug can be evaluated easily by utilizing the ECL of Ru(phen)(3)(2+), which is used as the sensing probe.  相似文献   

2.
A novel binuclear complex [(bpy)2Ru(mu-bipp)Ru(bpy)2](ClO4)4, where bpy=2,2'-bipyridine and bipp=2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline has been synthesized. Photophysical results reveal that this complex interacts with calf-thymus DNA with intrinsic binding constant 2.6 x 10(5) M(-1) in the buffer containing 5 mM Tris and 50 mM NaCl. The fact that the intraligand transition of bipp around 370 nm decreased by up to 50% in the presence of DNA, much more pronounced than the metal to ligand charge transfer band around 445 nm indicates the bridging ligand bipp is also the intercalating ligand into DNA base pairs. The emission band around at 601 nm increased by 1.4-fold, and red shifted 14 nm when DNA was added to saturation. The emission quenching of this complex by K4[Fe(CN)6] was depressed greatly when DNA was present. Viscometric measurements also proved the intercalative binding mode.  相似文献   

3.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.  相似文献   

4.
The new mixed ligand complex [Ru(5,6-dmp)2(dppz)]Cl2 [5,6-dmp = 5,6-dimethyl-1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine] has been isolated and its DNA-binding properties studied by employing UV-visible (UV-Vis), steady-state and time-resolved emission and circular dichroism spectral methods, viscometry, thermal denaturation and cyclic/differential pulse voltammetric techniques. The complex acts as a 'molecular light-switch' on binding to DNA, but the enhancement in emission intensity is only 75% of that of the parent complex [Ru(phen)2(dppz)]2+ (phen = 1,10-phenanthroline). The emission decay curves and quenching studies suggest two different DNA-binding modes both involving intercalation of the dppz ligand of [Ru(5,6-dmp)2(dppz)]Cl2. The characteristic red-shift of the induced CD signal, which is not observed for the phen analogue, arises from exciton coupling. The hydrophobicity and polarizability of 5,6-dmp co-ligand strongly favour the formation of a stable structural and electronic scaffold on the DNA surface for the unbound molecules to couple with the DNA-bound complexes facilitating spontaneous assembly of novel extended molecular aggregates using DNA as a helical nanotemplate. This observation is consistent with the shift in Ru(II)/Ru(III) redox potential to more positive values with a dramatic drop in peak current on binding of the 5,6-dmp complex to calf thymus (CT) DNA. Equilibrium dialysis experiments monitored by CD spectroscopy unambiguously reveal the preferential binding of the delta-enantiomer to the right-handed calf thymus (CT) DNA. The 5,6-dmp complex exhibits preferential binding to [d(AT)6]2 over [d(GC)6]2 and the complex aggregates formed consist of six [Ru(5,6-dmp)2(dppz)]2+ cations per base pair of [d(AT)6]2; however, only one [Ru(phen)2(dppz)]2+ cation per base pair is involved in DNA binding.  相似文献   

5.
The new potential antitumour soluble drug K[Ru(eddp)Cl(2)].3H(2)O, (eddp=ethylenediamine-N,N'-di-3-propionate) has been isolated and characterized. The analysis of the interaction of this complex with pBR322 plasmid DNA by circular dichroism spectroscopy shows that the ruthenium complex initially induces alteration of both CD positive and negative features resembling those previously observed for monofunctional platinum complexes. Further addition of drug at r(i) higher than 0.50 suggests appreciable conformational alterations of typical secondary structure of B-type DNA, implying loss of DNA helicity and unwinding of the double helix. The results reported herein about the binding of K[Ru(eddp)Cl(2)] to the named plasmid performed by electrophoresis indicate that the Ru(III) center preferentially forms initial monofunctional adducts with this plasmid. In addition, the DNA binding data suggest that the plasmid is cleaved by K[Ru(eddp)Cl(2)] in the presence of physiological concentrations of ascorbate. These results support the hypothesis that reactive Ru(II) species may be formed from Ru(III) upon incubation with a reductant agent such as ascorbate. The testing of the cytotoxic activity of this complex against several human cancer cell lines evidenced that K[Ru(eddp)Cl(2)] complex had a remarkable and selective antiproliferative effect against the cervix carcinoma HeLa and colon adenocarcinoma HT-29, behaving in these two cases as an antineoplastic drug.  相似文献   

6.
The aim of this study was developing coordination complexes that can be used as inorganic medicinal agents. The water soluble [Pt(phen)(His)]NO(3)·3H(2)O complex in which phen=1,10-phenantheroline and His=L-histidine was synthesized and characterized using physicochemical methods. Binding interaction of this complex with calf thymus (CT) DNA was investigated by emission, absorption, circular dichroism, and viscosity measurement techniques. Upon addition of CT-DNA, changes were observed in the characteristic ultraviolet-visible (UV-Vis) bands (hypochromism) of the complex. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, K(b), was 8 ± 0.2 × 10(4) M(-1). In addition, circular dichroism (CD) study showed that the phenanthroline ligand was inserted between the base pair stack of the double-helical structure of DNA. Also, the fluorescence spectral characteristics showed an increase in fluorescence intensity of the platinum complex in the presence of increasing amounts of DNA solution. The experimental results showed that the platinum complex binds to DNA via intercalative and hydrogen bonding mode.  相似文献   

7.
Three stereoisomers of a Ru(II) complex bearing a chiral bis-phenanthroline Tr?ger's base analogue, TBphen2 (1), have been isolated from the reaction of the enantiomerically pure precursor complex Lambda- (or Delta-) cis-[Ru(phen)2(py)2]2+ (phen=1,10-phenanthroline, py=pyridine) with the racemic mixture of 1. Each stereoisomer of [Ru(phen)2TBphen2]2+ (2) has been characterized by 1H NMR and CD spectroscopy. Electrochemical studies revealed that the redox properties of 2 are not influenced by the stereochemistry, however, the electrochemical oxidation of the metallic center is irreversible because of the diazocine bridge of the TBphen2 ligand. Steady-state emission measurements in the presence of calf thymus DNA showed that the DNA binding of [Ru(phen)2TBphen2]2+ depends on the stereoisomer and is mainly controlled by the absolute configuration of the metal center of the complex. The affinity constant for the stereoisomer Delta-S-2 is 10(2) higher than that for Lambda-S-2 and rac-[Ru(phen)3]2+.  相似文献   

8.
A novel palladium(II) complex has been synthesized with hexyldithiocarbamate (Hex-dtc) and 1,10-phenanthroline (phen) by the reaction of [Pd(phen)(H(2)O)(2)](NO(3))(2) with sodium salt of hexyldithiocarbamate and a complex of type [Pd(Hex-dtc) (phen)]NO(3) has been obtained. The complex has been characterized by elemental analysis, molar conductance, (1)H NMR, IR and electronic spectroscopic studies. The dithiocarbamate ligand acts in bidentate fashion. This water-soluble complex was screened against chronic myelogenous leukemia cell line, K562, for cytotoxic effects and showed significant antitumor activity much lower than that of cisplatin. The interaction of this complex with calf thymus DNA (ctDNA) was extensively investigated by a variety of spectroscopic techniques. Absorbance titration experiments imply the interaction of 4 Pd(II) complex molecules per 1000 nucleotides on DNA with positive cooperativity in the binding process and the complex denature the DNA at very low concentration (~14.3 μM). Fluorescence titration spectra and fluorescence Scatchard plots suggest that the Pd(II) complex intercalate in DNA. The gel chromatograms obtained from Sephadex G-25 column experiments showed that the binding of metal complex with DNA is so strong that it does not readily break. Furthermore, some thermodynamic and binding parameters found in the process of UV-Visible studies are described. They may provide specificity of the compound with ctDNA.  相似文献   

9.
Spectroscopic parameters for two novel ruthenium complexes on binding to nucleic acids of varying sequences and conformations have been determined. These complexes, Ru(bpy)2dppz2+ and Ru(phen)2dppz2+ (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline; dppz = dipyrido[3,2:a-2',3':c]-phenazine) serve as "molecular light switches" for DNA, displaying no photoluminescence in aqueous solution but luminescing intensely in the presence of DNA. The luminescent enhancement observed upon binding is attributed to the sensitivity of the excited state to quenching by water; in DNA, the metal complex, upon intercalation into the helix, is protected from the aqueous solvent, thereby preserving the luminescence. Correlations between the extent of protection (depending upon the DNA conformation) and the luminescence parameters are observed. Indeed, the strongest luminescent enhancement is observed for intercalation into DNA conformations which afford the greatest amount of overlap with access from the major groove, such as in triple helices. Differences are observed in the luminescent parameters between the two complexes which also correlate with the level of water protection. In the presence of nucleic acids, both complexes exhibit biexponential decays in emission. Quenching studies are consistent with two intercalative binding modes for the dppz ligand from the major groove: one in which the metal-phenazine axis lies along the DNA dyad axis and another where the metal-phenazine axis lies almost perpendicular to the DNA dyad axis. Ru(bpy)2dppz2+ and Ru(phen)2dppz2+ are shown here to be unique reporters of nucleic acid structures and may become valuable in the design of new diagnostics for DNA.  相似文献   

10.
The interactions of a metal complex [Ru(phen)(2)PMIP](2+) {Ru=ruthenium, phen=1,10-phenanthroline, PMIP=2-(4-methylphenyl)imidazo[4,5-f]1,10-phenanthroline} with yeast tRNA and calf thymus DNA (CT DNA) have been investigated comparatively by UV-vis spectroscopy, fluorescence spectroscopy, viscosity measurements, isothermal titration calorimetry (ITC), as well as equilibrium dialysis and circular dichroism (CD). Spectroscopic studies together with ITC and viscosity measurements indicate that both binding modes of the Ru(II) polypyridyl complex to yeast tRNA and CT DNA are intercalation and yeast tRNA binding of the complex is stronger than CT DNA binding. ITC experiments show that the interaction of the complex with yeast tRNA is driven by a moderately favorable enthalpy decrease in combination with a moderately favorable entropy increase, while the binding of the complex to CT DNA is driven by a large favorable enthalpy decrease with a less favorable entropy increase. The results from equilibrium dialysis and CD suggest that both interactions are enantioselective and the Delta enantiomer of the complex may bind more favorably to both yeast tRNA and CT DNA than the Lambda enantiomer does, and that the complex is a better candidate for an enantioselective binder to yeast tRNA than to CT DNA. Taken together, these results indicate that the structures of nucleic acids have significant effects on the binding behaviors of metal complexes.  相似文献   

11.
A series of mixed-ligand ruthenium(II) complexes of the type [Ru(en)(2)bpy](2+) (bpy=2,2-bipyridine; 1), [Ru(en)(2)phen](2+) (phen=1,10-phenantroline; 2), [Ru(en)(2)IP](2+) (IP=imidazo[4,5-f][1,10]phenanthroline; 3), and [Ru(en)(2)PIP](2+) (PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline; 4) have been isolated and characterized by UV/VIS, IR, and (1)H-NMR spectral methods. The binding of the complexes with calf thymus DNA has been investigated by absorption, emission spectroscopy, viscosity measurements, DNA melting, and DNA photo-cleavage. The spectroscopic studies together with viscosity measurements and DNA melting studies support that complexes 1 and 2 bind to CT DNA (=calf thymus DNA) by groove mode. Complex 2 binds more avidly to CT DNA than complex 1, complexes 3 and 4 bind to CT DNA by intercalation mode, 4 binds more avidly to CT DNA than 3. Noticeably, the four complexes have been found to be efficient photosensitisers for strand scissions in plasmid DNA.  相似文献   

12.
In order to examine whether chiral metal complexes can be used to discriminate between right- and left-handed DNA conformational states we have studied the enantioselective interactions of Fe(phen)3(2+) and Ru(phen)3(2+) (phen = 1,10-phenanthroline) with poly(dGm5dC) under B- and Z-form conditions. With the inversion-labile Fe(phen)3(2+), enantioselectivity leads to shifts in the diastereomeric binding equilibria. This effect, known as the "Pfeiffer effect" (1-4), is monitored as slowly emerging circular dichroism of the solution, corresponding to a net excess of the favoured enantiomer. With Ru(phen)3(2+), which is stable to intramolecular inversion, the difference in DNA-binding strengths of the enantiomers results in an excess of the less favoured enantiomer in the bulk solution. This excess is detected in the dialysate of the DNA/metal complex solution. With both complexes we find that the delta-enantiomer is favoured when the polynucleotide adopts the B-form, as previously shown, but also when it initially adopts the Z-form conformational state. This observation, together with evidence from UV-circular dichroism and binding data, indicates that the binding of these metal complexes induces a Z- to B-form transition in Z-form poly(dGm5dC). Consequently, neither of the studied chiral DNA-binders can easily be used to discriminate the DNA handedness.  相似文献   

13.
The binding of the ruthenium(II) complexes of [Ru(bpy)2(CAIP)]Cl2 and [Ru(bpy)2(HCIP)]Cl2 (where bpy=2,2'-bipyridine, CAIP=4-carboxyl-imidado[4,5-f][1,10]-phenanthroline, HCIP=3-hydroxyl-4-carboxyl-imidado[4,5-f][1,10]-phenanthroline) to calf thymus DNA (ct-DNA) has been investigated with UV-visible and emission spectroscopy, steady-state emission quenching, and viscosity measurements. The experimental results indicate that the two complexes bind to ct-DNA through an intercalative mode and [Ru(bpy)2(HCIP)]2+ intercalates into DNA more deeply than [Ru(bpy)2(CAIP)]2+ does.  相似文献   

14.
A new Ru(II) complex, [Ru(bpy)(2)(dhipH3)](ClO4)(2) (in which bpy=2,2'-bipyridine, dhipH(3)=3,4-dihydroxy-imidado[4,5-f][1,10]-phenanthroline), was synthesized and characterized, and the pH effect on the emission spectra of the complex was studied. The interaction of the complex with calf thymus DNA was investigated by UV-visible and emission spectroscopy, and viscosity measurements. The results suggest that the complex acted as a sensitive luminescent pH sensor and a strong ct-DNA intercalator with an intrinsic binding constant of (4.0+/-0.7) x 10(5) M(-1) in buffered 50 mM NaCl.  相似文献   

15.
A series of mixed ligand Ru(II) complexes of 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) as primary ligand and 1,10-phenanthroline (phen), 2,2′-bipyridine (bpy), pyridine (py) and NH3 as co-ligands have been prepared and characterized by X-ray crystallography, elemental analysis and 1H NMR and electronic absorption spectroscopy. The X-ray crystal structure of the complex [Ru(phen)2(bpy)]Cl2 reveals a distorted octahedral coordination geometry for the RuN6 coordination sphere. The DNA binding constants obtained from the absorption spectral titrations decrease in the order, tris(5,6-dmp)Ru(II) > bis(5,6-dmp)Ru(II) > mono(5,6-dmp)Ru(II), which is consistent with the trend in apparent emission enhancement of the complexes on binding to DNA. These observations reveal that the DNA binding affinity of the complexes depend upon the number of 5,6-dmp ligands and hence the hydrophobic interaction of 5,6-dimethyl groups on the DNA surface, which is critical in determining the DNA binding affinity and the solvent accessibility of the exciplex. Among the bis(5,6-dmp)Ru(II) complexes, those with monodentate py (4) or NH3 (5) co-ligands show DNA binding affinities slightly higher than the bpy and phen analogues. This reveals that they interact with DNA through the co-ligands while both the 5,6-dmp ligands interact with the exterior of the DNA surface. All these observations are supported by thermal denaturation and viscosity measurements. Two DNA binding modes - surface/electrostatic and strong hydrophobic/partial intercalative DNA interaction - are suggested for the mixed ligand complexes on the basis of time-resolved emission measurements. Interestingly, the 5,6-dmp ligands promote aggregation of the complexes on the DNA helix as a helical nanotemplate, as evidenced by induced CD signals in the UV region. The ionic strength variation experiments and competitive DNA binding studies on bis(5,6-dmp)Ru(II) complexes reveal that EthBr and the partially intercalated and kinetically inert [Ru(phen)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) complexes revert the CD signals induced by exciton coupling of the DNA-bound complexes with the free complexes in solution.  相似文献   

16.
The luminescence intensity of the Delta- and Lambda-enantiomer of [Ru(phen)2DPPZ]2+ ([Ru(phenanthroline)2 dipyrido[3,2-a:2',3'-c]phenazine]2+) complex enhanced upon binding to double stranded DNA, which has been known as "light switch effect". The enhancement of the luminescence required the intercalation of the large ligand between DNA base pairs. In this study, we report the enhancement in the luminescence intensity when the metal complexes bind to single stranded oligonucleotides, indicating that the "light switch effect" does not require intercalation of the large DPPZ ligand. Oligonucleotides may provide a hydrophobic cavity for the [Ru(phen)2DPPZ]2+ complex to prevent the quenching by the water molecule. In the cavity, the metal complex is in contact with DNA bases as is evidenced by the observation that the excited energy of the DNA bases transfer to the bound metal complex. However, the contact of the metal complex with DNA bases is different from the stacking of DPPZ in the intercalation pocket. In addition to the normal two luminescence lifetimes, a short lifetime in the range of 1-2 ns was found for both the delta- and lambda-enantiomer of [Ru(phen)2DPPZ]2+ when complexed with single stranded oligonucleotides, which may be assigned to the metal complex that is outside of the cavity, interacting with phosphate groups of DNA.  相似文献   

17.
Mixed ligand ruthenium(II) complexes containing an amino acid (AA) and 1,10-phenanthroline (phen), i.e. [Ru(AA)(phen)2]n+ (n=1,2, AA=glycine (gly), l-alanine (l-ala), l-arginine (l-arg)) have been synthesized. The interactions of these complexes and [Ru(phen)3]2+ with DNA have been examined by absorption, luminescence, and circular dichroism spectroscopic methods. Absorption spectral properties revealed that [Ru(AA)(phen)2]+ (AA=gly, l-ala) interacted with CT-DNA by the electrostatic binding mode. [Ru(l-arg)(phen)2]2+ exhibited the greatest hypochromicity, red shift, and binding constant, indicating that this complex may partially intercalate into the base-pairs of DNA. These results were also suggested by luminescence spectroscopy. CD spectral properties have been examined to understand the detailed interactions of the ruthenium(II) complexes with artificial DNA. In the case of Δ-[Ru(l-arg)(phen)2]2+, the solution on adding [poly(dG-dC)]2 exhibited two well-defined positive peaks, which the shorter and longer wavelength peaks were assigned as originating from the major and the minor groove binding modes, respectively. Then, the solution on adding [poly(dA-dT)]2 exhibited only one positive peak, which was assigned as a peak corresponding to the minor groove binding mode.  相似文献   

18.
A binuclear complex [(phen)Cu(mu-bipp)Cu(phen)](ClO(4))(4), where phen=1,10-phenanthroline and bipp=2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline, has been synthesized and its interaction with calf-thymus DNA in the buffer containing 5mM Tris and 50mM NaCl has been studied by means of electronic absorption titration, luminescence titration and viscometric measurements. The absorbance of the complex in the range of 320-400 nm, which is mainly based on bipp showed no obvious change upon addition of DNA, while the peak at 270 nm, which is determined by both phen and bipp decreased by up to 18%. The emission band of the complex around 360 nm decreased remarkably in presence of DNA. The emission quenching of this complex by [Fe(CN)(6)](4-) was depressed greatly when bound to DNA. The relative viscosity of DNA was increased by this complex more significantly than a bipp directed intercalating reagent. These results suggest that this complex binds to calf thymus DNA by intercalation of the two phenanthrolinecopper terminals. The apparent intrinsic binding constant of the complexes with DNA was 1.6 x 10(4)M(-1) as determined by UV-visible titration.  相似文献   

19.
Lee BW  Moon SJ  Youn MR  Kim JH  Jang HG  Kim SK 《Biophysical journal》2003,85(6):3865-3871
The binding site of Delta- and Lambda-[Ru(phenanthroline)2L]2+ (L being phenanthroline (phen), dipyrido[3,2-a:2'3'-c]phenazine (DPPZ), and benzodipyrido[3,2-a:2'3'-c]phenazine (benzoDPPZ)), bound to poly[d(A-T)2] in the presence and absence of 4',6-diamidino-2-phenylindole (DAPI) was investigated by circular dichroism and fluorescence techniques. DAPI binds at the minor groove of poly[d(A-T)2] and blocks the groove. The circular dichroism spectrum of all Ru(II) complexes are essentially unaffected whether the minor groove of poly[d(A-T)2] is blocked by DAPI or not, indicating that the Ru(II) complexes are intercalated from the major groove. When DAPI and Ru(II) complexes simultaneously bound to poly[d(A-T)2], the fluorescence intensity of DAPI decreases upon increasing Ru(II) complex concentrations. The energy of DAPI at excited state transfers to Ru(II) complexes across the DNA via the F?rster type resonance energy transfer. The efficiency of the energy transfer is similar for both [Ru(phen)2DPPZ]2+ and [Ru(phen)2benzoDPPZ]2+ complexes, whereas that of [Ru(phen)3]2+ is significantly lower. The distance between DAPI and [Ru(phen)3]2+ is estimated as 0.38 and 0.64 F?rster distance, respectively, for the Delta- and Lambda-isomer.  相似文献   

20.
The electrochemiluminescence (ECL) behavior of ruthenium complex/tripropylamine (TPA) systems at DNA-modified gold electrode was studied to understand the possible mechanism and to develop new detection platforms. DNA strand, especially double-stranded DNA (ds-DNA), can preconcentrate TPA and acts as the acceptor of the protons released from TPAH(+), therefore the improved ECL emission and the low potential ECL were observed. The intercalation of Ru(phen)(3)(2+) into ds-DNA was confirmed to be a sensitive and label-free DNA-related detection platform. The above results were validated by the analysis of lysozyme using anti-lysozyme aptamer-modified electrode. This work opens a new field by the use of DNA-modified electrode to develop novel sensing platforms, such as low potential ECL biosensors and Ru(phen)(3)(2+) intercalation-based ECL biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号