首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibiotic resistance among bacterial pathogens is a serious problem for human and veterinary medicine, which necessitates the development of novel therapeutics and antimicrobial strategies. Some plant-derived compounds, e.g. pentacyclic triterpenoids such as oleanolic acid (OA) and ursolic acid (UA), have potential as a new class of antibacterial agents as they are active against many bacterial species, both Gram-positive and Gram-negative, and specifically target the cell envelope. The aim of the present study was to investigate the influence of OA and UA on the susceptibility of four bacterial pathogens (Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus and Staphylococcus epidermidis) to the β-lactam antibiotics ampicillin (Ap) and oxacillin (Ox). Antimicrobial assays were conducted with bacteria growing in liquid suspension cultures (planktonic cells) or as biofilms. Using FICI value estimation and the time-kill method it was demonstrated that in some combinations, the tested compounds acted in synergy to lower the susceptibility of S. aureus, S. epidermidis and L. monocytogenes to ampicillin and oxacillin, but no synergy was observed for P. aeruginosa. These results indicate that OA and UA may be useful when administered in combination with β-lactam antibiotics to combat bacterial infections caused by some Gram-positive pathogens.  相似文献   

2.
In this article, we look at how ursolic and oleanolic acids can be used for the purpose of quality control of natural products used in dermatocosmetology as well as of various other therapeutic preparations. Ursolic acid (UA) and oleanolic acid (OA) are pentacyclic triterpenes and they are constituents of many medicinal herbs. In this study, we analyzed the cytotoxic and anti-proliferative activity of OA and UA against normal human skin fibroblasts (HSF). Additionally, the scavenging activity of free radicals of both acids was analyzed. The sensitivity of cells to OA and UA activity was determined using a standard spectrophotometric (MTT) assay. The free radical scavenging activity of OA and UA was measured using the DPPH? test. The F-actin cytoskeletal proteins organization was analyzed using TRITC-phalloidine fluorescent staining. The cytotoxic activity of the analyzed acids was determined using Neutral Red (NR) uptake assay. Of the two isomeric compounds, UA showed a higher cytotoxic activity against HSF cells than did OA. Our investigations showed that OA, in view of its non-toxic nature, may be used as a supplementary factor for dermal preparations.  相似文献   

3.
The increasing incidence of multidrug resistant bacterial infection renders an urgent need for the development of new antibiotics. To develop small molecules disturbing FtsZ activity has been recognized as promising approach to search for antibacterial of high potency systematically. Herein, a series of novel quinolinium derivatives were synthesized and their antibacterial activities were investigated. The compounds show strong antibacterial activities against different bacteria strains including MRSA, VRE and NDM-1 Escherichia coli. Among these derivatives, a compound bearing a 4-fluorophenyl group (A2) exhibited a superior antibacterial activity and its MICs to the drug-resistant strains are found lower than those of methicillin and vancomycin. The biological results suggest that these quinolinium derivatives can disrupt the GTPase activity and dynamic assembly of FtsZ, and thus inhibit bacterial cell division and then cause bacterial cell death. These compounds deserve further evaluation for the development of new antibacterial agents targeting FtsZ.  相似文献   

4.
Ursolic acid (UA) and oleanolic acid (OA) are triterpenoid compounds found in food, medicinal herbs and various other plants in free form or bound to glycosides. Both substances are known for their antimicrobial, hepatoprotective, anti-inflammatory, antiallergic, antiviral and cytotoxic activities. In the present study, we evaluated the antimutagenic potential of UA and OA using the micronucleus test in peripheral blood and bone marrow of Balb/c mice. The animals were divided into 10 treatment groups: mice treated with UA (80 mg/kg b.w.); OA (80 mg/kg b.w.); a mixture of UA and OA (80 mg/kg b.w.); the antineoplastic agent doxorubicin (DXR, 90 mg/kg b.w.); DMSO and DXR; UA and DXR; OA and DXR; UA, OA and DXR, and negative and solvent controls. UA, OA and a mixture of UA and OA were administered to the animals by gavage, followed by the intraperitoneal injection of DXR. The results showed a significant reduction in micronucleus frequency in the groups concomitantly treated with the triterpenoid compounds and DXR compared to that treated with DXR alone. The present results demonstrate the antimutagenic activity of UA and OA under the experimental conditions used in this study.  相似文献   

5.
Kim KA  Lee JS  Park HJ  Kim JW  Kim CJ  Shim IS  Kim NJ  Han SM  Lim S 《Life sciences》2004,74(22):2769-2779
Oleanolic acid (OA) and ursolic acid (UA), triterpene acids having numerous pharmacological activities including anti-inflammatory, anti-cancer, and hepato-protective effects, were tested for their ability to modulate the activities of several cytochrome P450 (CYP) enzymes using human liver microsomes. OA competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation and CYP3A4-catalyzed midazolam 1-hydroxylation, the major human drug metabolizing CYPs, with IC50 (Ki) values of 143.5 (74.2) microM and 78.9 (41.0) microM, respectively. UA competitively inhibited CYP2C19-catalyzed S-mephenytoin 4'-hydroxylation with an IC50 (Ki) value of 119.7 (80.3) microM. However, other CYPs tested showed no or weak inhibition by both OA and UA. The present study demonstrates that OA and UA have inhibitory effects on CYP isoforms using human liver microsomes. It is thus likely that consumption of herbal medicines containing OA or UA, or administration of OA or UA, can cause drug interactions in humans when used concomitantly with drugs that are metabolized primarily by CYP isoforms. In addition, it appears that the inhibitory effect of OA on CYP1A2 is, in part, related to its anti-inflammatory and anticancer activities.  相似文献   

6.
In the search for antibacterial agents with a novel mode-of-action (MOA) many targeted cellular and cell-free assays are developed and used to screen chemical and natural product libraries. Frequently, hits identified by the primary screens include compounds with nonspecific activities that can affect the integrity and function of bacterial membrane. For a rapid dereplication of membrane-active compounds, a simple method was established using a commercially available Live/Dead(R) Bacterial Viability Kit. This method utilized two fluorescent nucleic acid stains, SYTO9 (stains all cells green) and propidium iodide (stains cells with damaged membrane red) for the drug-treated bacterial cells. The cells were then either examined visually by fluorescence microscopy or their fluorescence emissions were recorded using a multi-label plate reader set to measure emissions at two different wavelengths. The ratio of green versus red was compared to a standard curve indicating the percentage of live versus dead bacteria. Nine known antibiotics and 14 lead compounds from various antibacterial screens were tested with results consistent with their MOA.  相似文献   

7.
Protective effects of ursolic acid and oleanolic acid in leukemic cells   总被引:5,自引:0,他引:5  
Ursolic acid (UA) and oleanolic acid (OA) have similar chemical structures but differ in the position of one methyl group on the ring E. We investigated protective effects of these two triterpenoic acids against H2O2-induced DNA damage in leukemic L1210, K562 and HL-60 cells using single-cell gel electrophoresis (SCGE). We compared their protective effects (antioxidant activities) with respect to the different position of the methyl group in their chemical structures. After 24 h pre-treatment of cells both compounds investigated inhibited significantly the incidence of DNA single strand breaks induced by H2O2. The concentration range of UA and OA was in all experiments 2.5–10 μmol/l. The antioxidant activity of OA determined by SCGE was significantly higher compared to UA in L1210 (+P < 0.05) and K562 cells (+++P < 0.001). Significant difference of the antioxidant activities of the two compounds was evidently connected with the different position of the methyl group. The protective effect of OA was in HL-60 cells slightly lower compared to the activity of UA, but the difference between the protective effects of UA and OA was not significant. In conclusion we can say that both natural pentacyclic triterpenoic acids investigated, UA and OA, manifested potent antioxidant effects. The different position of one methyl group in their chemical structures caused moderately different biological activities of these compounds on three leukemic cell lines. To explore their mechanisms of action further investigation seems to be therefore worthwhile.  相似文献   

8.
The cardiotonic and antidysrhythmic effects of four triterpenoid derivatives, namely oleanolic acid (OA), ursolic acid (UA), and uvaol (UV), isolated from the leaves of African wild olive (Olea europaea, subsp. africana) as well as methyl maslinate (MM) isolated from the leaves of Olea europaea (Cape cultivar) were examined. The derivatives showed low toxicity on brine shrimp test. They displayed significant, dose-response vasodepressor effect and sinus bradicardia, most prominent for OA and MM. The derivatives acted as beta-adrenergic antagonists, blocking the effect of adrenaline and isoprenaline. The established positive inotropic and dromotropic effects were most distinctive for OA and MM. The antidysrhythmic effects were evaluated on CaCl2- and adrenaline-induced chemical arrhythmias, and on ischemia-reperfusion arrhythmia. OA and UA displayed antidysrhythmic effects on both types of chemical arrhythmia; OA and UV in dose 40 mg/kg conferred significant antidysrhythmic activity on ischemia and reperfusion arrhythmias. The effect was comparable to that of propranolol and suggestive of beta-adrenergic antagonistic activity. On the basis of the vasodepressor, cardiotonic and antidysrhythmic effects of these compounds, it was concluded that OA and UV isolated from wild African olive leaves, or crude extract containing all components, can provide a cheap and accessible source of additive to conventional treatment of hypertension, complicated by stenocardia and cardiac failure.  相似文献   

9.
A series of peptide and Schiff bases (PSB) were synthesized by reacting salicylic acid, primary diamines with salicylaldehyde or its derivatives, and 40 of which were newly reported. The inhibitory activities against Escherichia coli β-ketoacyl-acyl carrier protein synthase III (ecKAS III) were investigated in vitro and molecular docking simulation also surveyed. Top 10 PSB compounds which posses both good inhibitory activity and well binding affinities were picked out, and their antibacterial activities against Gram-negative and Gram-positive bacterial strains were tested, expecting to exploit potent antibacterial agent with broad-spectrum antibiotics activity. The results demonstrate compound N-(3-(5-bromo-2-hydroxybenzylideneamino)propyl)-2-hydroxybenzamide (2d) can be as a potential antibiotics agent, displaying minimal inhibitory concentration values in the range of 0.39–3.13 μg/mL against various bacteria.  相似文献   

10.
The literature pertaining to the use of registered antibacterial agents in Mediterranean finfish farming is reviewed, with an emphasis on the Greek fish-farming industry. This review provides a scientific resource dedicated to the design of future antibacterial dosing regimes in Mediterranean fish farming, where insufficient supporting information is currently available. This paper addresses the paucity in knowledge concerning pharmacokinetics and the efficacy and environmental impact of commonly used antibacterials needed to direct future research and promote good practices in the euryhaline fish farming industry. Several registered antibacterials are currently available for combating bacterial infections, including tetracyclines, (fluoro) quinolones, potentiated sulfa, penicillin and chloramphenicol derivatives. Based on the available data, oxytetracycline (OTC) and quinolone drugs (oxolinic acid – OA and flumequine – FLU) are the most widely used in Mediterranean aquaculture. As a result these drugs have received the most extensive studies, whereas, there is considerable paucity of reliable data on pharmacokinetic and the depletion characteristics of other drugs used, particularly potentiated sulfa, penicillin derivatives and florfenicol. We find there is incomplete data on drug efficacy and minimum inhibitory concentrations (MIC) for common antibacterials used against the major bacterial pathogens of Mediterranean fish species. Furthermore, a considerable lack of data on environmental drug concentrations around Mediterranean fish farms was also identified, highlighting the need for more extensive environmental studies to monitor contamination in environmental components i.e., water and sediment, and in non-target species (flora and fauna). Prudent selection and use of antibacterials can encourage lower dosage applications, enhance treatment efficacy, and help to minimize contamination of the environment. Selection of readily bioavailable drugs which have low environmental persistence, low aquatic toxicity and high antibacterial efficacy is advised, to reduce potential losses to the environment and associated toxic effects on target species and the development of bacterial resistance. Lack of present data made it impossible to provide thorough and accurate guidance on selection and use of antibacterials and approaches for minimizing environmental impacts for the treatment of major euryhaline aquaculture species.  相似文献   

11.
A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery.  相似文献   

12.
Several marine bacterial strains, which were isolated from seawater off the island Dokdo, Korea, were screened to find new bioactive compounds such as antibiotics. Among them, Donghaeana dokdonensis strain DSW-6 was found to produce antibacterial agents, and the agents were then purified and analyzed by LC-MS/MS and 1D- and 2D-NMR spectrometries. The bioactive compounds were successfully identified as cholic acid and glycine-conjugated glycocholic acid, the 7alpha-dehydroxylated derivatives (deoxycholic acid and glycodeoxycholic acid) of which were also detected in relatively small amounts. Other masine isolates, taxonomically different from DSW-6, were also able to produce the compounds in a quite different production ratio from DSW-6. As far as we are aware of, these bile acids are produced by specific members of the genus Streptomyces and Myroides, and thought to be general secondary metabolites produced by a variety of bacterial taxa that are widely distributed in the sea.  相似文献   

13.
Vancomycin is mainly used as an antibacterial agent of last resort, but recently vancomycin-resistant bacterial strains have been emerging. Although new antimicrobials have been developed in order to overcome drug-resistant bacteria, many are structurally complex beta-lactams or quinolones. In this study, we aimed to create new anti-drug-resistance antibacterials which can be synthesized in a few steps from inexpensive starting materials. Since sulfa drugs function as p-aminobenzoic acid mimics and inhibit dihydropteroate synthase (DHPS) in the folate pathway, we hypothesized that sulfa derivatives would act as folate metabolite-mimics and inhibit bacterial folate metabolism. Screening of our sulfonanilide libraries, including benzenesulfonanilide-type cyclooxygenase-1-selective inhibitors, led us to discover benzenesulfonanilides with potent anti-methicillin-resistant Staphylococcus aureus (MRSA)/vancomycin-resistant Enterococcus (VRE) activity, that is, N-3,5-bis(trifluoromethyl)phenyl-3,5-dichlorobenzenesulfonanilide (16b) [MIC=0.5microg/mL (MRSA), 1.0microg/mL (VRE)], and 3,5-bis(trifluoromethyl)-N-(3,5-dichlorophenyl)benzenesulfonanilide (16c) [MIC=0.5microg/mL (MRSA), 1.0microg/mL (VRE)]. These compounds are more active than vancomycin [MIC=2.0microg/mL (MRSA), 125microg/mL (VRE)], but do not possess an amino group, which is essential for DHPS inhibition by sulfa drugs. These results suggested that the mechanism of antibacterial action of compounds 16b and 16c is different from that of sulfa drugs. We also confirmed the activity of these compounds against clinical isolates of Gram-positive bacteria.  相似文献   

14.
Triterpene acids (ursolic, oleanoic, gypsogenic, and sumaresinolic acids) isolated from Miconia species, along with a mixture of ursolic and oleanolic acids and a mixture of maslinic and 2-a-hydroxyursolic acids, as well as ursolic acid derivatives were evaluated against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) during the evaluation of the antibacterial activity. All the isolated compounds, mixtures, and semi-synthetic derivatives displayed activity against all the tested bacteria, showing that they are promising antiplaque and anticaries agents. Ursolic and oleanolic acids displayed the most intense antibacterial effect, with MIC values ranging from 30 microg/mL to 80 microg/mL. The MIC values of ursolic acid derivatives, as well as those obtained for the mixture of ursolic and oleanolic acids showed that these compounds do not have higher antibacterial activity when compared with the activity observed with either ursolic acid or oleanolic acid alone. With regard to the structure-activity relationship of triterpene acids and derivatives, it is suggested that both hydroxy and carboxy groups present in the triterpenes are important for their antibacterial activity against oral pathogens.  相似文献   

15.
As a key precursor of coenzyme A (CoA) biosynthesis, pantothenic acid has proven to be a useful backbone to elaborate probes of this biosynthetic pathway, study CoA-utilizing systems, and design molecules with antimicrobial activity. The increasing prevalence of bacterial strains resistant to one or more antibiotics has prompted a renewed interest for molecules with a novel mode of antibacterial action such as N-substituted pantothenamides. Although numerous derivatives have been reported, most are varied at the terminal N-substituent, and fewer at the β-alanine moiety. Modifications at the pantoyl portion are limited to the addition of an ω-methyl group. We report a synthetic route to N-substituted pantothenamides with various alkyl substituents replacing the geminal dimethyl groups. Our methodology is also applicable to the synthesis of pantothenic acid, pantetheine and CoA derivatives. Here a small library of new N-substituted pantothenamides was synthesized. Most of these compounds display antibacterial activity against sensitive and resistant Staphylococcus aureus. Interestingly, replacement of the ProR methyl with an allyl group yielded a new N-substituted pantothenamide which is amongst the most potent reported so far.  相似文献   

16.
The aim of this work was to use in vivo models to evaluate the analgesic and anti-inflammatory activities of ursolic acid (UA) and oleanoic acid (OA), the major compounds isolated as an isomeric mixture from the crude methylene chloride extract of Miconia albicans aerial parts in an attempt to clarify if these compounds are responsible for the analgesic properties displayed by this plant. Ursolic acid inhibited abdominal constriction in a dose-dependent manner, and the result obtained at a content of 40 mg kg(-1) was similar to that produced by administration of acetylsalicylic acid at a content of 100 mg kg(-1). Both acids reduced the number of paw licks in the second phase of the formalin test, and both of them displayed a significant anti-inflammatory effect at a content of 40 mg kg(-1). It is noteworthy that the administration of the isolated mixture, containing 65% ursolic acid/35% oleanolic acid, did not display significant analgesic and anti-inflammatory activities. On the basis of the obtained results, considering that the mixture of UA and OA was poorly active, it is suggested that other compounds, rather than UA and OA, should be responsible for the evaluated activities in the crude extract, since the crude extract samples displayed good activities.  相似文献   

17.

Background

Although plants produce many secondary metabolites, currently none of these are commercial antibiotics. Insects feeding on specific plants can harbour bacterial strains resistant to known antibiotics suggesting that compounds in the plant have stimulated resistance development. We sought to determine whether the occurrence of antibiotic-resistant bacteria in insect guts was a widespread phenomenon, and whether this could be used as a part of a strategy to identify antibacterial compounds from plants.

Results

Six insect/plant pairs were selected and the insect gut bacteria were identified and assessed for antibiotic susceptibilities compared with type strains from culture collections. We found that the gut strains could be more or less susceptible to antibiotics than the type strains, or show no differences. Evidence of antibacterial activity was found in the plant extracts from five of the six plants, and, in one case Catharanthus roseus (Madagascar Periwinkle), compounds with antibacterial activity were identified.

Conclusion

Bacterial strains isolated from insect guts show a range of susceptibilities to antibiotics suggesting a complex interplay between species in the insect gut microbiome. Extracts from selected plants can show antibacterial activity but it is not easy to isolate and identify the active components. We found that vindoline, present in Madagascar Periwinkle extracts, possessed moderate antibacterial activity. We suggest that plant-derived antibiotics are a realistic possibility given the advances in genomic and metabolomic methodologies.
  相似文献   

18.
BackgroundThe corosolic acid (CA), also known as plant insulin, is a pentacyclic triterpenoid extracted from plants such as Lagerstroemia speciosa. It has been shown to have anti-diabetic, anti-inflammatory and anti-tumor effects. Its structural analogs ursolic acid (UA), oleanolic acid (OA), maslinic acid (MA), asiatic acid (AA) and betulinic acid (BA) display similar individual pharmacological activities to those of CA. However, there is no systematic review documenting pharmacological activities of CA and its structural analogues. This study aims to fill this gap in literature.PurposeThis systematic review aims to summarize the medical applications of CA and its analogues.MethodsA systematic review summarizes and compares the extraction techniques, pharmacokinetic parameters, and pharmacological effects of CA and its structural analogs. Hypoglycemic effect is one of the key inclusion criteria for searching Web of Science, PubMed, Embase and Cochrane databases up to October 2020 without language restrictions. ‘corosolic acid’, ‘ursolic acid’, ‘oleanolic acid’, ‘maslinic acid’, ‘asiatic acid’, ‘betulinic acid’, ‘extraction’, ‘pharmacokinetic’, ‘pharmacological’ were used to extract relevant literature. The PRISMA guidelines were followed.ResultsAt the end of the searching process, 140 articles were selected for the systematic review. Information of CA and five of its structural analogs including UA, OA, MA, AA and BA were included in this review. CA and its structural analogs are pentacyclic triterpenes extracted from plants and they have low solubilities in water due to their rigid scaffold and hydrophobic properties. The introduction of water-soluble groups such as sugar or amino groups could increase the solubility of CA and its structural analogs. Their biological activities and underlying mechanism of action are reviewed and compared.ConclusionCA and its structural analogs UA, OA, MA, AA and BA are demonstrated to show activities in lowering blood sugar, anti-inflammation and anti-tumor. Their oral absorption and bioavailability can be improved through structural modification and formulation design. CA and its structural analogs are promising natural product-based lead compounds for further development and mechanistic studies.  相似文献   

19.
The spread of multidrug-resistant (MDR) strains of bacteria necessitates the discovery of new classes of antibacterials and compounds that inhibit these resistance mechanisms. At present, there are no single chemical entity plant-derived antibacterials used clinically, and this chemically diverse group deserves consideration as a source for two major reasons. First, plants have exceptional ability to produce cytotoxic agents and second there is an ecological rationale that antimicrobial natural products should be present or synthesised de novo in plants following microbial attack to protect the producer from pathogenic microbes in its environment. We have been characterising plant-derived products that are either antibacterial in their own right, or modulators of resistance in bacterial strains possessing multidrug efflux mechanisms. These efflux transporters are responsible for resistance to certain antibiotics and antiseptics and occur in strains of methicillin-resistant Staphylococcus aureus (MRSA), a major clinical problem at present. We are also investigating plant sources for compounds with activity against mycobacteria with a view to discovering drug leads with potential activity toward tuberculosis (TB) producing species. This paper will briefly review the literature on plant derived bacterial resistance modifying agents and antibacterials. Examples in this area from our own work will be given. The activities of plant-derived antibacterials show that there are many potential new classes of antibacterial agents which should undergo further cytotoxicity, microbial specificity and preclinical studies.  相似文献   

20.
Emerging multidrug‐resistant (MDR) bacteria are an enormous threat to human life because of their resistance to currently available antibiotics. The genes encoding antibacterial peptides have been studied extensively and are excellent candidates for a new generation of antibiotic drugs to fight MDR bacteria. In contrast to traditional antibiotics, antibacterial peptides, which do not cause drug resistance, have an unparalleled advantage. However, because most antibacterial peptides originate in species other than humans, the hetero‐immunological rejection of antibacterial peptides is a key disadvantage that limits their clinical application. In this study, we identify hGlyrichin as a potential human antibacterial polypeptide. The hGlyrichin polypeptide kills a variety of bacteria including the MDR bacteria methicillin‐resistant Staphylococcus aureus, MDR Pseudomonas aeruginosa, and MDR tubercle bacillus. A 19 amino acid peptide (pCM19) at positions 42–60 of hGlyrichin is crucial for its antibacterial activity. The hGlyrichin polypeptide kills bacteria through the destruction of the bacterial membrane. In addition, all peptides that are homologous to hGlyrichin have antibacterial activity and can penetrate the bacterial membrane. Importantly, hGlyrichin does not cause hemolytic side effects in vitro or in vivo. Therefore, based on the virtues of hGlyrichin, i.e., the absence of hetero‐immunological rejection and hemolytic side effects and the unambiguous efficacy of killing pathogenic MDR bacteria, we propose hGlyrichin as a potential human antibacterial polypeptide. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号