首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been growing evidence that phase I metabolizing enzymes cytochromes P450 (CYPs) are not only located in the endoplasmic reticulum but also in other subcellular compartments and particularly in mitochondria. The presence of CYPs in these organelles raises questions regarding their metabolic role and their possible deleterious effects on the respiratory chain complexes and mitochondrial DNA. This review will focus on one particular CYP, CYP2E1, which represents a significant source of reactive oxygen species and is involved in the metabolism of small molecule substrates including ethanol, drugs and carcinogens. Since hepatic CYP2E1 expression is increased in different physiopathological situations such as type 2 diabetes, obesity and ethanol intoxication, the presence of significant levels of this CYP within the mitochondria could have major deleterious effects. This review recalls the main data that brought to the fore the presence of CYP2E1 in mitochondria and the mechanism of its targeting in this organelle. The potential pathological consequences linked to the presence of CYP2E1 in mitochondria will be subsequently discussed.  相似文献   

2.
Human NADPH : cytochrome P450 oxidoreductase (POR) is encoded by a single gene on chromosome 7q11.2. This flavoprotein donates electrons derived from NADPH to a variety of acceptor proteins, including squalene monooxygenase, heme oxygenase, cytochrome b5, and many microsomal cytochromes P450 (CYPs), which are involved in oxidative drug metabolism, steroidogenesis, and other functions. Numerous aspects related to cellular POR expression have not been systematically investigated. Interestingly, POR expression is lower compared to CYPs and may thus be limiting for monooxygenase activities, but conversely, POR knock‐out in mice resulted in compensatory upregulation of CYPs. POR may also influence intracellular cholesterol and lipid homeostasis. To systematically investigate such effects, we developed specific POR gene silencing in cell lines and primary human hepatocytes by RNA interference using small interfering RNAs (siRNAs). In HepG2 cells, POR mRNA could be reduced by 95% over 4 days accompanied by reduced protein content and activity. In primary human hepatocytes, POR mRNA knock‐down was less effective and more variable. Analysis of CYPs indicated induction of CYP3A4 but not CYP1A2 or CYP2D6. These results demonstrate that POR can be efficiently and almost completely silenced in HepG2 cells and, at least partially, in primary human hepatocytes. This will allow systematic studies of various consequences of POR variability in human cells.  相似文献   

3.
Cytochromes P450 (CYPs) play an important role in the metabolism of endogenic and xenobiotic substances, especially drugs. In addition, many CYPs may serve as targets for disease treatment. However, due to the presence of a common heme, the hydrophobicity of the CYP binding cavity, and the high homology within the binding pocket, most CYP inhibitors lack selectivity, which often leads to drug-drug interactions. Therefore, it is meaningful to develop highly selective CYP inhibitors. In this review, we summarize some of the strategies that have been used to develop highly selective CYP inhibitors, such as the weakening of the heme-binding group interaction, reduction of molecular lipophilicity and introduction of small structural changes within compounds.  相似文献   

4.
In the present study we describe the complete cytochrome P450 complement, the "CYPome," of Streptomyces coelicolor A3(2). Eighteen cytochromes P450 (CYP) are described, in contrast to the absence of CYPs in Escherichia coli, and the twenty observed in Mycobacterium tuberculosis. Here we confirm protein identity as cytochromes P450 by heterologous expression in E. coli and measurement of reduced carbon monoxide difference spectra. We also report on their arrangement in the linear chromosome and relatedness to other CYPs in the superfamily. The future development of manipulation of antibiotic pathways and the use of streptomycetes in bioremediation and biotransformations will involve many of the new CYP forms identified here.  相似文献   

5.
6.
The cytochromes P450 (CYPs) play a central role in many biologically important oxidation reactions, including the metabolism of drugs and other xenobiotic compounds. Because they are often assayed as both drug targets and anti-targets, any tools that provide: (a) confirmation of active site binding and (b) structural data, would be of great utility, especially if data could be obtained in reasonably high throughput. To this end, we have developed an analog of the promiscuous heme ligand, cyanide, with a 13CH3-reporter attached. This 13C-methyl isocyanide ligand binds to bacterial (P450cam) and membrane-bound mammalian (CYP2B4) CYPs. It can be used in a rapid 1D experiment to identify binders, and provides a qualitative measure of structural changes in the active site. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Mechanism-based inactivators such as bergamottin are useful chemical tools for identifying the functions of specific active-site amino acid residues in the reactions catalyzed by cytochromes P450 (CYPs or P450s), which are responsible for the metabolism of a wide variety of drugs and endogenous substrates. In clinical settings, mechanism-based inactivation of P450s involved in xenobiotic metabolism has the potential to lead to adverse drug-drug interactions, and assays to identify and characterize drug candidates as P450 inactivators are important in drug discovery and development. Here we present a quantitative high-throughput protocol for investigating cytochrome P450 mechanism-based inactivators; we use the example of CYP2B6 and bergamottin to illustrate the finer points of this protocol. This protocol details the adaptation of a 7-ethoxytrifluoromethyl coumarin O-deethylation fluorescence activity assay to a 96-well microtiter plate format and uses a plate reader to detect the fluorescence of the product. Compared with previous methods, this protocol requires less P450 and takes significantly less time while greatly increasing throughput. The protocol as written takes ~2 h to complete. The principles and procedures outlined in this protocol can be easily adapted to other inactivators, P450 isoforms, substrates and plate readers.  相似文献   

8.
Cytochromes P450 (CYPs) catalyse diverse reactions and are key enzymes in fungal primary and secondary metabolism, and xenobiotic detoxification. CYP enzymatic properties and substrate specificity determine the reaction outcome. However, CYP-mediated reactions may also be influenced by their redox partners. Filamentous fungi with numerous CYPs often possess multiple microsomal redox partners, cytochrome P450 reductases (CPRs). In the plant pathogenic ascomycete Cochliobolus lunatus we recently identified two CPR paralogues, CPR1 and CPR2. Our objective was to functionally characterize two endogenous fungal cytochrome P450 systems and elucidate the putative physiological roles of CPR1 and CPR2. We reconstituted both CPRs with CYP53A15, or benzoate 4-hydroxylase from C. lunatus, which is crucial in the detoxification of phenolic plant defence compounds. Biochemical characterization using RP-HPLC shows that both redox partners support CYP activity, but with different product specificities. When reconstituted with CPR1, CYP53A15 converts benzoic acid to 4-hydroxybenzoic acid, and 3-methoxybenzoic acid to 3-hydroxybenzoic acid. However, when the redox partner is CPR2, both substrates are converted to 3,4-dihydroxybenzoic acid. Deletion mutants and gene expression in mycelia grown on media with inhibitors indicate that CPR1 is important in primary metabolism, whereas CPR2 plays a role in xenobiotic detoxification.  相似文献   

9.
The mammalian olfactory mucosa (OM) is unique among extrahepatic tissues in having high levels, and tissue-selective forms, of cytochrome P450 (CYP) enzymes. These enzymes may have important toxicological implications, as well as biological functions, in this chemosensory organ. In addition to a tissue-selective, abundant expression of CYP1A2, CYP2A, and CYP2G1, some of the OM CYPs are also known to have an early developmental expression, a resistance to xenobiotic inducers, and a lack of responsiveness to circadian rhythm. Efforts to fully characterize the regulation of CYP expression in the OM, and to identify the underlying mechanisms, are important for our understanding of the physiological functions and toxicological significance of these biotransformation enzymes, and may also shed unique light on the general mechanisms of CYP regulation. The aim of this mini-review is to provide a summary of current knowledge of the various modes of regulation of CYPs expressed in the OM, an update on our mechanistic studies on tissue-selective CYP expression, and a review of the literature on xenobiotic inducibility of OM CYPs. Our goal is to stimulate further studies in this exciting research area, which is of considerable importance, in view of the constant exposure of the human nasal tissues to inhaled, as well as systemically derived, chemicals, the prevalence of olfactory system damage in individuals with neurodegenerative diseases, and the current uncertainty in risk assessments for potential olfactory toxicants.  相似文献   

10.
Models capable of predicting the possible involvement of cytochromes P450 in the metabolism of drugs or drug candidates are important tools in drug discovery and development. Ideally, functional information would be obtained from crystal structures of all the cytochromes P450 of interest. Initially, only crystal structures of distantly related bacterial cytochromes P450 were available-comparative modeling techniques were used to bridge the gap and produce structural models of human cytochromes P450, and thereby obtain some useful functional information. A significant step forward in the reliability of these models came four years ago with the first crystal structure of a mammalian cytochrome P450, rabbit CYP2C5, followed by the structures of two human enzymes, CYP2C8 and CYP2C9, and a second rabbit enzyme, CYP2B4. The evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism, is presented as a case study.  相似文献   

11.
Mammalian hepatic cytochromes P450 (P450s) are endoplasmic reticulum (ER)-anchored hemoproteins engaged in the metabolism of numerous xeno- and endobiotics. P450s exhibit widely ranging half-lives, utilizing both autophagic-lysosomal (ALD) and ubiquitin-dependent 26S proteasomal (UPD) degradation pathways. Although suicidally inactivated hepatic CYPs 3A and "native" CYP3A4 in Saccharomyces cerevisiae are degraded via UPD, the turnover of native hepatic CYPs 3A in their physiological milieu has not been elucidated. Herein, we characterize the degradation of native, dexamethasone-inducible CYPs 3A in cultured primary rat hepatocytes, using proteasomal (MG-132 and MG-262) and ALD [NH4Cl and 3-methyladenine (3-MA)] inhibitors to examine their specific degradation route. Pulse-chase with immunoprecipitation analyses revealed a basal 52% 35S-CYP3A loss over 6 h, which was stabilized by both proteasomal inhibitors. By contrast, no corresponding CYP3A stabilization was detected with either ALD inhibitor NH4Cl or 3-MA. Furthermore, MG-262-induced CYP3A stabilization was associated with its polyubiquitylation, thereby verifying that native CYPs 3A were also degraded via UPD. To identify the specific participants in this process, cellular proteins were cross-linked in situ with paraformaldehyde (PFA) in cultured hepatocytes. Immunoblotting analyses of CYP3A immunoprecipitates after PFA-cross-linking revealed the presence of p97, a cytosolic AAA ATPase instrumental in the extraction and delivery of ubiquitylated ER proteins for proteasomal degradation. Such native CYP3A-p97 interactions were greatly magnified after CYP3A suicidal inactivation (which accelerates UPD), and/or proteasomal inhibition, and were confirmed by proteomic and confocal immunofluorescence microscopic analyses. These findings clearly reveal that native CYPs 3A undergo UPD and implicate a role for p97 in this process.  相似文献   

12.
The cytochromes P450 (CYPs) are very efficient catalysts of foreign compound metabolism and are responsible for the major part of metabolism of clinically important drugs. The enzymes are important in cancer since they (a) activate dietary and environmental components to ultimate carcinogens, (b) activate or inactivate drugs used for cancer treatment, and (c) are potential targets for anticancer therapy. The genes encoding the CYP enzymes active in drug metabolism are highly polymorphic, whereas those encoding metabolism of precarcinogens are relatively conserved. A vast amount of literature is present where investigators have tried to link genetic polymorphism in CYPs to cancer susceptibility, although not much conclusive data have hitherto been obtained, with exception of CYP2A6 polymorphism and tobacco induced cancer, to a great extent because of lack of important functional polymorphisms in the genes studied. With respect to anticancer treatment, the genetic CYP polymorphism is of greater importance, where treatment with tamoxifen, but also with cyclophosphamide and maybe thalidomide is influenced by CYP genetic variants. In the present review we present updates on CYP genetics, cancer risk and treatment and also epigenetic aspects of interindividual variability in CYP expression and the use of these enzymes as targets for cancer therapy. We conclude that the CYP polymorphism does not predict cancer susceptibility to any large extent but that this polymorphism might be an important factor for optimal cancer therapy using selected anticancer agents.  相似文献   

13.
14.
15.
The cytochrome P450 proteins (CYPs) are a family of haem proteins resulting from expression of a gene super-family that currently contains around 1000 members in species ranging from bacteria through to plants and animals. In humans, about 40 different CYPs are present and these play critical roles by catalyzing reactions in: (a) the metabolism of drugs, environmental pollutants and other xenobiotics; (b) the biosynthesis of steroid hormones; (c) the oxidation of unsaturated fatty acids to intracellular messengers; and (d) the stereo- and regio-specific metabolism of fat-soluble vitamins. This review deals with aspects of cytochrome P450s of relevance to human physiology, biochemistry, pharmacology and medicine. Topics reviewed include: pharmacogenetics of CYPs, induction and inhibition of these haem proteins, their role in metabolism of endogenous compounds such as steroids and eicosanoids, the effect of disease on CYP function, CYPs and cancer, and CYPs as targets of antibodies in immune-mediated diseases.  相似文献   

16.
The genus Streptomyces produces about two-thirds of naturally occurring antibiotics and a wide array of other secondary metabolites, including antihelminthic agents, antitumor agents, antifungal agents, and herbicides. The newly completed genome sequence of the avermectin-producing bacterium Streptomyces avermitilis contains 33 cytochromes p450 (CYPs), many more than the 18 observed in Streptomyces coelicolor A3(2). Some of the likely metabolic functions are reported together with their genomic location and bioinformatic analysis. Seven entirely new CYP families were found together with close homologues of some forms observed in S. coelicolor A3(2). The presence of unusual CYP forms associated with conservons is revealed and of these, CYP157 forms in both S. avermitilis and S. coelicolor A3(2) deviate from the previously accepted rule for an EXXR motif within the K-helix of CYPs. Amongst this range of CYPs are forms associated with avermectin, filipin, geosmin, and pentalenolactone biosynthesis as well as unknown pathways of secondary metabolism.  相似文献   

17.
The response of mosquito larvae to plant toxins found in their breeding sites was investigated by using Aedes aegypti larvae and toxic arborescent leaf litter as experimental models. The relation between larval tolerance to toxic leaf litter and cytochrome P450 monooxygenases (P450s) was examined at the toxicological, biochemical and molecular levels. Larvae pre-exposed to toxic leaf litter show a higher tolerance to those xenobiotics together with a strong increase in P450 activity levels. This enzymatic response is both time- and dose-dependent. The use of degenerate primers from various P450 genes (CYPs) allowed us to isolate 16 new CYP genes belonging to CYP4, CYP6 and CYP9 families. Expression studies revealed a 2.3-fold over-expression of 1 CYP gene (CYP6AL1) after larval pre-exposure to toxic leaf litter, this gene being expressed at a high level in late larval and pupal stages and in fat bodies and midgut. The CYP6AL1 protein has a high level of identity with other insect's CYPs involved in xenobiotic detoxification. The role of CYP genes in tolerance to natural xenobiotics and the importance of such adaptive responses in the capacity of mosquitoes to colonize new habitats and to develop insecticide resistance mechanisms are discussed.  相似文献   

18.
This study aimed to express two major drug-metabolizing human hepatic cytochromes P450 (CYPs), CYP2D6 and CYP3A4, together with NADPH-cytochrome P450 oxidoreductase (OxR) in Escherichia coli and to evaluate their catalytic activities. Full length cDNA clones of both isoforms in which the N-terminus was modified to incorporate bovine CYP17α sequence were inserted into a pCWori+ vector. The modified CYP cDNAs were subsequently expressed individually, each together with OxR by means of separate, compatible plasmids with different antibiotic selection markers. The expressed proteins were evaluated by immunoblotting and reduced CO difference spectral scanning. Enzyme activities were examined using high performance liquid chromatography (HPLC) assays with probe substrates dextromethorphan and testosterone for CYP2D6 and CYP3A4, respectively. Results from immunoblotting demonstrated the presence of both CYP proteins in bacterial membranes and reduced CO difference spectra of the cell preparations exhibited the characteristic absorbance peak at 450 nm. Co-expressed OxR also demonstrated an activity level comparable to literature values. Kinetic parameters, Km and Vmax values determined from the HPLC assays also agreed well with literature values. As a conclusion, the procedures described in this study provide a relatively convenient and reliable means of producing catalytically active CYP isoforms suitable for drug metabolism and interaction studies.  相似文献   

19.
Although they have several important limitations primary human hepatocytes still represent the in vitro gold standard model for xenobiotic metabolism and toxicity studies. The large use of human liver cell lines either from tumoral origin or obtained by oncogenic immortalisation is prevented by the loss of various liver-specific functions, especially many cytochrome P450 (CYP)-related enzyme activities. We review here recent results obtained with a new human hepatoma cell line, named HepaRG, derived from a human hepatocellular carcinoma. These cells exhibit unique features: when seeded at low density they acquire an elongated undifferentiated morphology, actively divided and after having reached confluency formed typical hepatocyte-like colonies surrounded by biliary epithelial-like cells. Moreover contrary to other human hepatoma cell lines including HepG2 cells, HepaRG cells express various CYPs (CYP1A2, 2B6, 2C9, 2E1, 3A4) and the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) at levels comparable to those found in cultured primary human hepatocytes. They also express various other functions such phase 2 enzymes, apical and canalicular ABC transporters and basolateral solute carrier transporters, albumin, haptoglobin as well as aldolase B that is a specific marker of adult hepatocytes. HepaRG cells could represent a surrogate to primary human hepatocytes for xenobiotic metabolism and toxicity studies and even more, a unique model system for analysing genotoxic compounds.  相似文献   

20.
Mammals express multiple cytochromes P450 simultaneously in a variety of tissues, including the liver, kidney, lung, adrenal, gonads, brain, and most others. For cytochromes P450 that are expressed in many tissues or cell types, the tissue/cell type-specific expression might be associated with their special physiological roles. Several cytochrome P450 enzymes are found not only in different cell types and tissues, but also in different subcellular compartments. Generally, all mammalian cytochrome P450 enzymes are membrane bound. The two major groups are represented by microsomal cytochromes P450 that reside in the endoplasmic reticulum, and mitochondrial cytochromes P450, that reside in the inner mitochondrial membrane. However, the outer nuclear membrane, different Golgi compartments, peroxisomes and the plasma membrane are also sites where cytochromes P450 were observed. For example, CYP51 is an ER enzyme in majority of tissues but in male germ cells it trafficks through the Golgi to acrosome, where it is stabilized for several weeks. Surprisingly, in brains of heme synthesis deficient mice, a soluble form of CYP1A1 was detected whose activity has been restored by the addition of heme. In the majority of cases each cytochrome P450 enzyme resides in a single subcellular compartment in a certain cell, however, examples of simultaneous localization in different subcellular compartments have also been described, such as endoplasmic reticulum, Golgi and plasma membrane for CYP2E1. This review will focus on the physiological importance of mammalian cytochrome P450 expression and localization in different tissues or cell types and subcellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号