首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is the first enzyme of the degradation path of stored triacylglycerols (TAGs). In olive fruits, lipase may determine the increase of free fatty acids (FFAs) which level is an important index of virgin olive oil quality. However, despite the importance of virgin olive oil for nutrition and human health, few studies have been realized on lipase activity in Olea europaea fruits. In order to characterize olive lipase, fruits of the cv. Ogliarola, widely diffused in Salento area (Puglia, Italy), were harvested at four stages of ripening according to their skin colour (green, spotted I, spotted II, purple). Lipase activity was detected in the fatty layer obtained after centrifugation of the olive mesocarp homogenate. The enzyme exhibited a maximum activity at pH 5.0. The addition of calcium in the lipase assay medium leads to an increment of activity, whereas in the presence of copper the activity was reduced by 75%. Furthermore, mesocarp lipase activity increases during olive development but declined at maturity (purple stage). The data represent the first contribution to the biochemical characterization of an olive fruit lipase associated to oil bodies.  相似文献   

2.
Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.  相似文献   

3.
Physiological regulation of extracellular lipase activity by a newly-isolated, thermotolerant strain of Pseudomonas aeruginosa (strain EF2) was investigated by growing the organism under various conditions in batch, fed-batch and continuous culture. Lipase activity, measured as the rate of olive oil (predominantly triolein) hydrolysis, was weakly induced by general carbon and/or energy limitation, strongly induced by a wide range of fatty acyl esters including triglycerides, Spans and Tweens, and repressed by long-chain fatty acids including oleic acid. The highest lipase activities were observed during the stationary phase of batch cultures grown on Tween 80, and with Tween 80-limited fed-batch and continuous cultures grown at low specific growth rates. The lipase activity of Tween 80-limited continuous cultures was optimized with respect to pH and temperature using response surface analysis; maximum activity occurred during growth at pH 6.5, 35.5 degrees C, at a dilution rate of 0.04 h-1. Under these conditions the culture exhibited a lipase activity of 39 LU (mg cells)-1 and a specific rate of lipase production (qLipase) of 1.56 LU (mg cells)-1 h-1 (1 LU equalled 1 mumol fatty acid released min-1). Esterase activity, measured with p-nitrophenyl acetate as substrate, varied approximately in parallel with lipase activity under all growth conditions, suggesting that a single enzyme may catalyse both activities.  相似文献   

4.
The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value.  相似文献   

5.
This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA.  相似文献   

6.
Biosurfactant production by Pseudomonas aeruginosa A41, a strain isolated from seawater in the gulf of Thailand, was examined when grown in defined medium containing 2% vegetable oil or fatty acid as a carbon source in the presence of vitamins, trace elements and 0.4% NH(4)NO(3), at pH 7 and 30 degrees C with 200 rpm-shaking for 7 days. The yield of biosurfactant steadily increased even after a stationary phase. Under such conditions the surface tension of the medium was lowered from 55-70 mN/m to 27.8-30 mN/m with every carbon source tested. However, types of carbon sources were found to affect biosurfactant yield. The yields of rhamnolipid biosurfactant were 6.58 g/L, 2.91 g/L and 2.93 g/L determined as rhamnose content when olive oil, palm oil and coconut oil, respectively, were used as a carbon source. Among them, biosurfactant obtained from palm oil was the best in lowering surface tension of the medium. Increase in biosurfactant activities in terms of oil displacement test and rhamnose content were observed to be higher with shorter chain fatty acids than that of the longer chains (C12>C14>C16). In addition, we found that C18:2, highly unsaturated fatty acid, showed higher oil displacement activity and rhamnose content than that of C18:1. The optimal oil displacement activity was found at pH 7-9 and in the presence of 0.5-3% NaCl. The oil displacement activity was stable to temperatures up to 100 degrees C for 15 h. Surface tension reduction activity was relatively stable at pH 2-12 and 0-5% of NaCl. Emusification activity tested with various types of hydrocarbons and vegetable oils showed similarity of up to 60% stability. The partially purified biosurfactant via TLC and silica gel column chromatography gave three main peaks on HPLC with mass spectra of 527, 272, and 661 m/z respectively, corresponding to sodium-monorhamnodecanoate, hydroxyhexadecanoic acid and an unknown compound, respectively.  相似文献   

7.
The influence on lipase induction in Mucor hiemalis of different types of triglycerides containing mainly oleic acid (olive oil), erucic acid (mustard oil), or saturated fatty acids of 8 to 16 carbons (coconut oil) was studied. The fungus was grown in shake flasks in a fermentation medium containing peptone, minerals, and glucose or one of the oils as the carbon source. Maximum lipase was produced when the initial pH of the fermentation medium was kept at 4.0. Addition of Ca2+ to the medium did not increase lipase production. The optimum pH for activity of both the mycelial and extracellular lipases was found to be 7.0. The fungus produced a significant amount of lipase in the presence of glucose, but the lipase activity increased markedly when olive oil was added to the medium at the beginning of the fermentation. Addition of olive oil at a later stage did not induce as much enzyme. Studies with washed mycelia showed that a greater amount of lipase was released when olive oil was present than when glucose was present. Among the various types of triglycerides used as the carbon source, olive oil was found to be most effective in inducing the lipase. Olive oil and mustard oil fatty acids inhibited the lipase more than those of coconut oil. The lipase induced by a particular type of triglyceride did not seem to be specific for the same triglyceride, nor was it inhibited specifically by it. Irrespective of the triglyceride used in the fermentation medium, the lipase produced was most active against coconut oil triglyceride, and this specificity, as shown by lipase activities in an n-heptane system, was not found to be due to a better emulsification of this oil. The lipase of M. hiemalis can be considered to be both constitutive and inducible.  相似文献   

8.
In this study, we attempted the efficient production of monoacylglycerols (MAG) via the lipase-catalyzed esterification of glycerol with fatty acids obtained from sardine oil. The reaction factors that influenced MAG synthesis were the glycerol to fatty acid mole ratio, amount of enzyme, organic solvent, temperature, and the type of lipase used. Porcine pancreas lipase was selected to catalyze this reaction. The optimum conditions we determined for MAG synthesis were a glycerol to fatty acid mole ratio of 1∶6, 100 mg/mL of lipase, and 30°C in dioxane. Under these conditions, the MAG content was 68% (w/w) after 72 h of reaction. The MAGs synthesized via the lipase-catalyzed esterification of glycerol with fatty acids included monomyristin, monopamiltin, and monoolein, as identified by GCMS.  相似文献   

9.
Shock and multiple organ failure remain primary causes of late-stage morbidity and mortality in victims of trauma. During shock, the intestine is subject to extensive cell death and is the source of inflammatory factors that cause multiorgan failure. We (34) showed previously that ischemic, but not nonischemic, small intestines and pancreatic protease digested homogenates of normal small intestine can generate cytotoxic factors capable of killing naive cells within minutes. Using chloroform/methanol separation of rat small intestine homogenates into lipid fractions and aqueous and sedimented protein fractions and measuring cell death caused by those fractions, we found that the cytotoxic factors are lipid in nature. Recombining the lipid fraction with protein fractions prevented cell death, except when homogenates were protease digested. Using a fluorescent substrate, we found high levels of lipase activity in intestinal homogenates and cytotoxic levels of free fatty acids. Addition of albumin, a lipid binding protein, prevented cell death, unless the albumin was previously digested with protease. Homogenization of intestinal wall in the presence of the lipase inhibitor orlistat prevented cell death after protease digestion. In vivo, orlistat plus the protease inhibitor aprotinin, administered to the intestinal lumen, significantly improved survival time compared with saline in a splanchnic arterial occlusion model of shock. These results indicate that major cytotoxic mediators derived from an intestine under in vitro conditions are free fatty acids. Breakdown of free fatty acid binding proteins by proteases causes release of free fatty acids to act as powerful cytotoxic mediators.  相似文献   

10.
The degradation of triglycerides in oil palm fruit due to an endogenous lipase in the pulp is the main reason for acidification of palm oil, which causes major economic losses and is currently mainly associated with the FLL1 gene. We designed this study to identify all the major genes controlling differences in acidity and lipase activity in the oil palm fruit mesocarp and determine a molecular markers kit to allow marker-assisted selection of commercial varieties with low acidity. Not only one gene (FLL1) but three closely linked genes including FLL1 were found and characterized in LM2T_EgCIR184O12c, a bacterial artificial chromosome sequence of 231 kb. Intra-gene PCR-based markers were designed for these genes. A QTL gene co-localization analysis for oil acidity (percentage of fatty acids released) was performed on two mapping populations. It evidenced a single major QTL at our lipase gene loci, explaining 84 to 92% of phenotypic variation, and validating the main genetic control of palm oil acidification by FLL1 and/or by the two new lipase genes. The three lipase genes had high homology to demonstrated triacylglycerol lipases. While FLL1 shows the highest expression levels, the two other genes may also contribute to oil acidity. Our molecular markers of lipase genes and the associated major QTL is an important step towards marker-assisted selection of commercial varieties with low acidity.  相似文献   

11.
以1株分解麻风树油的脂肪酶产生菌Pseudomonas sp. LP-1为出发菌株, 通过麻疯树油定向驯化筛选获得1株酶活较高且产酶稳定的菌株P. sp. X-2-45, 其水解酶活为29.79 U/mL, 比原始菌株提高了288%。对P. sp. X-2-45生长与产酶特征、对植物油脂水解能力及在有机相中催化脂肪酸和有机醇间的酯化反应研究发现, 该菌株生长速率和产酶速率明显加快, 培养30 h时生物量和酶活达到最大, 稳定期延长, 培养过程中脂肪酶在培养基中的稳定性提高。以麻疯树油诱导合成的P. sp. X-2-45脂肪酶对麻疯树油的水解能力比原始菌株提高了378%, 说明采用麻风树油定向驯化可提高脂肪酶对相应底物的水解能力。X-2-45脂肪酶可以催化月桂酸与正丁醇、正辛醇、月桂醇和丙三醇之间, 棕榈酸、硬脂酸与甲醇、正辛醇、月桂醇和丙三醇之间, 油酸与甲醇、正丁醇、正辛醇、月桂醇和丙三醇之间发生酯化反应。  相似文献   

12.
The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).  相似文献   

13.
The ability of three commercially available lipases to mediate the hydrolysis of the soybean oil to yield concentrated of essential fatty acids was evaluated. The tested lipases were from microbial (Candida rugosa and Thermomyces lanuginosa) and animal cells (Porcine pancreatic lipase). In terms of free fatty acids, microbial lipases were more effective to promote the enzymatic hydrolysis of the soybean oil (over 70%) than the porcine pancreatic lipase (24%). In spite of this, porcine pancreatic lipase (PPL) showed the most satisfactory specificity towards both essential fatty acids and was, therefore, chosen to carry out additional studies. An experimental design was performed taking into consideration the enzyme and NaCl amounts as independent variables. The main effects were fitted by multiple regression analysis to a linear model and maximum fatty acids concentration could be obtained using 3.0 wt% of lipase and 0.08 wt% of NaCl. The mathematical model representing the hydrolysis degree was found to describe adequately the experimental results. Under these conditions, concentrations of 29.5 g/L and 4.6 g/L for linoleic and linolenic acids, respectively, were obtained.  相似文献   

14.
Triacylglycerol lipase with maximal activity at pH 5 was present in adult and fetal lung. The activity was inhibited by serum concentrations used to measure lipoprotein lipase and by 0.5 M NaCl. The activity in homogenates from fetal lung was about 40% of the activity in adult lung homogenates. The activity increased to 80% of the adult levels during the first 24–48 h following birth. Acidic triacylglycerol lipase was present in all subcellular fractions from adult lung. However, the major amount of activity appeared to be associated with lysosomes. Fetal lung contained significantly more activity in the cytosolic fraction compared to the adult. The reaction produced free fatty acids (65%), 1,2(2,3)-diacylglycerol (22%) and 2-monoacylglycerol (12%). Minimal amounts of 1,3-diacylglycerol and 1(3)-monoacylglycerol were formed. Diacylglycerol lipase and monoacylglycerol hydrolase activities at pH 5 were independently determined and both were higher than the triacylglycerol lipase activity. The subcellular distribution of diacylglycerol lipase and monoacylglycerol hydrolase differed from that of triacylglycerol lipase. Overall, the results indicated that the lung has considerable intracellular lipase activity and therefore could readily hydrolyze intracellular triacylglycerol to free fatty acids. The reaction also produced significant amounts of 1,2-diacylglycerol which suggests that triacylglycerol could be a direct source of diacylglycerol for phospholipid synthesis.  相似文献   

15.
Summary The entomopathogenic fungus,Beauveria bassiana, produces an extracellular lipase when grown on a yeast extract-peptone-dextrose broth (YPD) medium. The time course of lipase production in the presence of olive oil was studied and which was shown to induce lipase. The addition of fatty acids, such as, myristic, palmitic, stearic, oleic, linoleic and arachidic acids, inhibited both growth and lipase production. Lipase production was also assessed on YPD and glucose minimal salts (GMS) medium. The addition of olive oil increased the lipase induction much more on, YPD than on the GMS. The effect of the divalent metal ions; iron, copper and magnesium, on lipase activity was studied. Whereas the iron and copper inhibited lipase activity, magnesium slightly increased lipase activity. Compounds containing a hydrolyzable ester group, such as Tweens, were found to inhibit lipase activity.  相似文献   

16.
Summary The utilisation of palm oil and its fractions by Penicillium chrysogenum for growth and penicillin production is strain-dependent. Strain H1107 could utilise crude palm oil, its liquid (palm olein) and solid (palm stearin) fractions and its component fatty acids (oleic, palmitic, stearic and myristic) as the main carbon source; strain M223 could not. Cell-bound lipase activity was higher in H1107 than in M223. Offprint requests to: I. K. P. Tan  相似文献   

17.
Rhizopus oryzae lipase (ROL) was displayed on the cell surface of Saccharomyces cerevisiae via the Flo1 N-terminal region (1100 amino acids), which corresponds to a flocculation functional domain. The activity of lipase-displaying yeast whole-cell biocatalysts was enhanced 7.3-fold by incubation of the yeast cells at 20 degrees C in distilled water for 8 days after 8 day cultivation. The amount of lipase molecules present in cell wall and intracellular fractions was found to be increased 4.5- and 1.8-fold, respectively, by incubation, which proves that ROL molecules are expressed during incubation. The ROL-displaying yeast whole-cell biocatalyst with enhanced activity was successfully catalyzed by optical resolution of the pharmaceutical precursor (R,S)-1-benzyloxy-3-chloro-2-propyl monosuccinate. Moreover, it showed stable activity through at least eight reaction cycles. These results demonstrate that ROL-displaying yeast cells with enhanced activity by incubation in distilled water are very effective in industrial bioconversion processes.  相似文献   

18.
The properties of the alkaline lipase activity (EC 3.1.1.3) that was recovered almost completely from a microsomal membrane fraction of 4-d-old rapeseed (Brassica napus L.) cotyledons were studied employing a titrimetric test procedure. The apparent KM was 6.5 mmol l-1, with emulgated sunflower oil as the substrate. The products of triglyceride hydrolysis in vitro were glycerol, free fatty acids, and minor amounts of mono- and diglycerides. Maximum lipase activity depended on the preincubation of the lipolytic membrane fraction in 0.15 mol l-1 NaCl and on the presence of at least 0.1 mol l-1 NaCl in the test mixture. Desoxycholate and up to 0.1 mol l-1 CaCl2 also activated the enzyme while EDTA and detergents such as trito x-100, digitonin, tween 85, and sodium dodecylsulfate were inhibitory. The rapeseed lipase displayed a conspicuous substrate selectivity among different plant triglycerides; the activity was inversely correlated with the oleic acid content of the oils. Water-soluble triacetin and the phospholipid lecithin were not hydrolyzed. Increasing amounts of free fatty acids reduced lipase activity; erucic acid, a major component of rapeseed oil, exhibited the strongest effect, suggesting a possible role in the regulation of lipase activity in vivo. The data demonstrate that the lipolytic membrane fraction houses a triglyceride lipase with properties similar to other plant and animal lipases. It can both qualitatively and quantitatively account for the fat degradation in rapeseed cotyledons. The evidence that provides further reason to acknowledge the membranous appendices of the spherosomes as the intracellular site of lipolysis is discussed.  相似文献   

19.
Previous studies on an arachidonic acid-producing fungus, Mortierella alliacea YN-15, suggested that its intracellular lipase plays an important role in the metabolism of exogenous and storage lipids. The lipase purified in this study through acetone precipitation and three-step chromatography was estimated to be about 11 kDa in size by SDS-PAGE and mass spectrometry, and it tended to form large aggregates in aqueous solution. The purified lipase retained its activity over wide ranges of pH (2-12) and temperature (20-80 °C). Its activity was enhanced by the Ca(2+) ion and reduced by some heavy metal ions, such as Zn(2+) and Hg(2+), and diethylpyrocarbonate. Among the various substrates tested, monoacylglycerols containing long-chain unsaturated fatty acids and phosphatidylcholine were preferentially hydrolyzed over triacylglycerols and fatty acid methyl esters. The lipase strongly hydrolyzed the sn-1/3 ester bonds and weakly hydrolyzed the sn-2 ester bonds of triolein, and it also catalyzed the acylglycerol synthesis reaction in a solvent-free two-phase system. The results indicate that triacylglycerol may be formed via 2-monoacylglycerol. Thus, the highly stable M. alliacea lipase may be useful for the synthesis of structured lipids, particularly acylglycerols containing functional unsaturated fatty acids at the sn-2 position.  相似文献   

20.
Characterization of Purified Staphylococcal Lipase   总被引:1,自引:0,他引:1       下载免费PDF全文
Purified staphylococcal lipase had an optimal pH of 8.3 for activity at 37 C, and an optimal temperature of 45 C at pH 8.0. During storage, the enzyme lost less than 10% of the activity over a period of 21 days at 4 and -23 C. The enzyme retained 93% of the activity when heated for 30 min at 50 C and was 95% destroyed in 30 min at 70 C. The purified lipase was capable of hydrolyzing a variety of natural fats and oils. However, the enzyme was three times more active on nonhydrogenated soybean oil than on hydrogenated soybean oil with an iodine value of <3.0. The enzyme was also capable of hydrolyzing fatty acids on the alpha, beta, and alpha' positions of a synthetic mixed triglyceride. In general, the presence of oxidizing agents increased the activity and the presence of reducing agents decreased the activity of the lipase enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号