首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Europe, especially in Mediterranean areas, the sheep has been traditionally exploited as a dual purpose species, with income from both meat and milk. Modernization of husbandry methods and the establishment of breeding schemes focused on milk production have led to the development of “dairy breeds.” This study investigated selective sweeps specifically related to dairy production in sheep by searching for regions commonly identified in different European dairy breeds. With this aim, genotypes from 44,545 SNP markers covering the sheep autosomes were analysed in both European dairy and non-dairy sheep breeds using two approaches: (i) identification of genomic regions showing extreme genetic differentiation between each dairy breed and a closely related non-dairy breed, and (ii) identification of regions with reduced variation (heterozygosity) in the dairy breeds using two methods. Regions detected in at least two breeds (breed pairs) by the two approaches (genetic differentiation and at least one of the heterozygosity-based analyses) were labeled as core candidate convergence regions and further investigated for candidate genes. Following this approach six regions were detected. For some of them, strong candidate genes have been proposed (e.g. ABCG2, SPP1), whereas some other genes designated as candidates based on their association with sheep and cattle dairy traits (e.g. LALBA, DGAT1A) were not associated with a detectable sweep signal. Few of the identified regions were coincident with QTL previously reported in sheep, although many of them corresponded to orthologous regions in cattle where QTL for dairy traits have been identified. Due to the limited number of QTL studies reported in sheep compared with cattle, the results illustrate the potential value of selection mapping to identify genomic regions associated with dairy traits in sheep.  相似文献   

2.
S. L. Allen  D. Zeilinger    E. Orias 《Genetics》1996,144(4):1489-1496
We demonstrate a reliable method for mapping conventional loci and obtaining meiotic linkage data for the ciliated protozoan Tetrahymena thermophila. By coupling nullisomic deletion mapping with meiotic linkage mapping, loci known to be located on a particular chromosome or chromosome arm can be tested for recombination. This approach has been used to map three isozyme loci, EstA (Esterase A), EstB (Esterase B), and AcpA (Acid Phosphatase A), with respect to the ChxA locus (cycloheximide resistance) and 11 RAPDs (randomly amplified polymorphic DNAs). To assign isozyme loci to chromosomes, clones of inbred strains C3 or C2 were crossed to inbred strain B nullisomics. EstA, EstB and AcpA were mapped to chromosomes 1R, 3L and 3R, respectively. To test EstA and AcpA for linkage to known RAPD loci on their respective chromosomes, a panel of Round II (genomic exclusion) segregants from a B/C3 heterozygote was used. Using the MAPMAKER program, EstA was assigned to the ChxA linkage group on chromosome 1R, and a detailed map was constructed that includes 10 RAPDs. AcpA (on 3R), while unlinked to all the RAPDs assigned to chromosome 3 by nullisomic mapping, does show linkage to a RAPD not yet assignable to chromosomes by nullisomic mapping.  相似文献   

3.
Charcot-Marie-Tooth (CMT) neuropathy represents a genetically heterogeneous group of diseases affecting the peripheral nervous system. We report genetic mapping of the disease to chromosome 16p13.1-p12.3, in two families with autosomal dominant CMT type 1C (CMT1C). Affected individuals in these families manifest characteristic CMT symptoms, including high-arched feet, distal muscle weakness and atrophy, depressed deep-tendon reflexes, sensory impairment, slow nerve conduction velocities, and nerve demyelination. A maximal combined LOD score of 14.25 was obtained with marker D16S500. The combined haplotype analysis in these two families localizes the CMT1C gene within a 9-cM interval flanked by markers D16S519 and D16S764. The disease-linked haplotypes in these two pedigrees are not conserved, suggesting that the gene mutation underlying the disease in each family arose independently. The epithelial membrane protein 2 gene (EMP2), which maps to chromosome 16p13.2, was evaluated as a candidate gene for CMT1C.  相似文献   

4.
5.
K. S. Gill  B. S. Gill  T. R. Endo    T. Taylor 《Genetics》1996,144(4):1883-1891
We studied the distribution of genes and recombination in wheat (Triticum aestivum) group 1 chromosomes by comparing high-density physical and genetic maps. Physical maps of chromosomes 1A, 1B, and 1D were generated by mapping 50 DNA markers on 56 single-break deletion lines. A consensus physical map was compared with the 1D genetic map of Triticum tauschii (68 markers) and a Triticeae group 1 consensus map (288 markers) to generate a cytogenetic ladder map (CLM). Most group 1 markers (86%) were present in five clusters that encompassed only 10% of the group 1 chromosome. This distribution may reflect that of genes because more than half of the probes were cDNA clones and 30% were PstI genomic. All 14 agronomically important genes in group 1 chromosomes were present in these clusters. Most recombination occurred in gene-cluster regions. Markers fell at an average distance of 244 kb in these regions. The CLM involving the Triticeae consensus genetic map revealed that the above distribution of genes and recombination is the same in other Triticeae species. Because of a significant number of common markers, our CLM can be used for comparative mapping and to estimate physical distances among markers in many Poaceae species including rice and maize.  相似文献   

6.
K. S. Gill  B. S. Gill  T. R. Endo    E. V. Boyko 《Genetics》1996,143(2):1001-1012
The distribution of genes and recombination in the wheat genome was studied by comparing physical maps with the genetic linkage maps. The physical maps were generated by mapping 80 DNA and two phenotypic markers on an array of 65 deletion lines for homoeologous group 5 chromosomes. The genetic maps were constructed for chromosome 5B in wheat and 5D in Triticum tauschii. No marker mapped in the proximal 20% chromosome region surrounding the centromere. More than 60% of the long arm markers were present in three major clusters that physically encompassed <18% of the arm. Because 48% of the markers were cDNA clones and the distributions of the cDNA and genomic clones were similar, the marker distribution may represent the distribution of genes. The gene clusters were identified and allocated to very small chromosome regions because of a higher number of deletions in their surrounding regions. The recombination was suppressed in the centromeric regions and mainly occurred in the gene-rich regions. The bp/cM estimates varied from 118 kb for gene-rich regions to 22 Mb for gene-poor regions. The wheat genes present in these clusters are, therefore, amenable to molecular manipulations parallel to the plants with smaller genomes like rice.  相似文献   

7.
M. R. Mautino  S. D. Haedo    A. L. Rosa 《Genetics》1993,134(4):1077-1083
We propose a general restriction fragment length polymorphism-based strategy to analyze the distribution of meiotic crossover events throughout specific genetic intervals. We have isolated 64 recombinant chromosomes carrying independent meiotic crossover events in the genetic interval eth-1-un-2 on linkage group I of Neurospora crassa. Thirty-eight crossover events were physically mapped with reference to a 200-kb region cloned by chromosome walking, using N. crassa λ and cosmid libraries. Crossovers were homogeneously distributed at intervals of 5.0 +/- 2.3 kb along the entire cloned interval. The ratio of physical to genetic distance appears to be higher in the region than in the overall N. crassa genome, suggesting that recombinational activity is less in large chromosomes than in small ones. The present work provides a method for defining the centromeric-telomeric orientation of single cloned DNA fragments. Their physical distance can also be estimated with respect to linked loci, provided that crossover events are distributed homogeneously in the interval. This strategy overcomes typical difficulties in defining the position and direction of chromosome walking steps on conventional linkage maps.  相似文献   

8.
Analysis of meiotic tetrads is routinely used to determine genetic linkage in various fungi. Here we apply tetrad analysis to the study of genetic linkage in a vertebrate. The half-tetrad genotypes of gynogenetic diploid zebrafish produced by early-pressure (EP) treatment were used to investigate the linkage relationships of two recessive pigment pattern mutations, leopard (leo) and rose (ros). The results showed that ros is tightly linked to its centromere and leo maps 31 cM from its centromere. Analysis of half-tetrads segregating for ros and leo in repulsion revealed no homozygous ros individuals among 32 homozygous leo half-tetrads--i.e., a parental ditype (PD) to nonparental ditype (NPD) ratio of 32:0. This result shows that ros is linked to leo, a mutation previously mapped to Linkage Group I. Investigation of PCR-based DNA polymorphisms on Linkage Group I confirmed the location of ros near the centromere of this linkage group. We propose an efficient, generally useful method to assign new mutations to a linkage group in zebrafish by determining which of 25 polymerase chain reaction (PCR)-based centromere markers shows a significant excess of PD to NPD in half-tetrad fish.  相似文献   

9.
10.
The genomes of RNA viruses often contain RNA structures that are crucial for translation and RNA replication and may play additional, uncharacterized roles during the viral replication cycle. For the picornavirus family member poliovirus, a number of functional RNA structures have been identified, but much of its genome, especially the open reading frame, has remained uncharacterized. We have now generated a global RNA structure map of the poliovirus genome using a chemical probing approach that interrogates RNA structure with single-nucleotide resolution. In combination with orthogonal evolutionary analyses, we uncover several conserved RNA structures in the open reading frame of the viral genome. To validate the ability of our global analyses to identify functionally important RNA structures, we further characterized one of the newly identified structures, located in the region encoding the RNA-dependent RNA polymerase, 3Dpol, by site-directed mutagenesis. Our results reveal that the structure is required for viral replication and infectivity, since synonymous mutants are defective in these processes. Furthermore, these defects can be partially suppressed by mutations in the viral protein 3Cpro, which suggests the existence of a novel functional interaction between an RNA structure in the 3Dpol-coding region and the viral protein(s) 3Cpro and/or its precursor 3CDpro.  相似文献   

11.
Beta-glucuronidase-negative, sorbitol-nonfermenting isolates of Shiga toxin-producing Escherichia coli O157 comprise part of a clone complex of related enterohemorrhagic E. coli isolates. High-resolution genotyping shows that the O157 populations have diverged into two different lineages that appear to have different ecologies. To identify genomic regions unique to the most common human-associated genotype, suppression subtractive hybridization was used to identify DNA sequences present in two clinical strains representing the human lineage I O157:H7 strains but absent from two bovine-derived lineage II strains. PCR assays were then used to test for the presence of these regions in 10 lineage I strains and 20 lineage II strains. Twelve conserved regions of genomic difference for lineage I (CRDI) were identified that were each present in at least seven of the lineage I strains but absent in most of the lineage II strains tested. The boundaries of the lineage I conserved regions were further delimited by PCR. Eleven of these CRDI were associated with E. coli Sakai S-loops 14, 16, 69, 72, 78, 82, 83, 91 to 93, 153, and 286, and the final CRDI was located on the pO157 virulence plasmid. Several potential virulence factors were identified within these regions, including a putative hemolysin-activating protein, an iron transport system, and several possible regulatory genes. Cluster analysis based on lineage I conserved regions showed that the presence/absence of these regions was congruent with the inferred phylogeny of the strains.  相似文献   

12.
胡欣  胡昊  洪国藩  韩斌 《遗传学报》2004,31(8):822-829
基于对水稻基因组序列的注解和同源搜索的结果,用RT-PCR结合测序的方法证明了水稻中至少有10个具有转录活性的trs-like基因。这10个基因的编码产物与酵母TRAPP蛋白复合体已知10个亚基中的6个分别同源。其中4对基因是双拷贝的,另2个则是单拷贝的(基于已知的水稻基因组序列)。所有这10个基因均在不同时期的水稻组织中广泛表达,并与其他真核生物的trs-like基因在基因结构及编码蛋白质序列水平上高度保守。  相似文献   

13.
We mapped expressed tagged sequences (ESTs) corresponding to two human dynein heavy chain genes: β heavy chain of the outer dynein arm and heavy chain isotype 1B (DYH1B), by using somatic cell hybrids and radiation hybrid panels. The EST for the β heavy chain of the outer dynein arm mapped to chromosome region 7p15, and the EST for DYH1B mapped to 11q13.5. Two loci for nonsyndromic forms of deafness, DFNA5 and DFNA11, have previously been mapped to these two chromosomal regions. Including the gene for the axonemal light chain, hp28, we have mapped three different dynein genes near loci for different forms of nonsyndromic deafness. The hypothesis that mutations in some dynein genes are associated with nonsyndromic deafness should now be tested.  相似文献   

14.
Atrial fibrillation (AF) is a complex cardiac arrhythmia with high morbidity and mortality.1,2 It is the most common sustained cardiac rhythm disturbance seen in clinical practice and its prevalence is expected to increase in the coming years.3 Increased intra-atrial pressure and dilatation have been long recognized to lead to AF,1,4 which highlights the relevance of using animal models and stretch to study AF dynamics. Understanding the mechanisms underlying AF requires visualization of the cardiac electrical waves with high spatial and temporal resolution. While high-temporal resolution can be achieved by conventional electrical mapping traditionally used in human electrophysiological studies, the small number of intra-atrial electrodes that can be used simultaneously limits the spatial resolution and precludes any detailed tracking of the electrical waves during the arrhythmia. The introduction of optical mapping in the early 90''s enabled wide-field characterization of fibrillatory activity together with sub-millimeter spatial resolution in animal models5,6 and led to the identification of rapidly spinning electrical wave patterns (rotors) as the sources of the fibrillatory activity that may occur in the ventricles or the atria.7-9 Using combined time- and frequency-domain analyses of optical mapping it is possible to demonstrate discrete sites of high frequency periodic activity during AF, along with frequency gradients between left and right atrium. The region with fastest rotors activates at the highest frequency and drives the overall arrhythmia.10,11 The waves emanating from such rotor interact with either functional or anatomic obstacles in their path, resulting in the phenomenon of fibrillatory conduction.12 Mapping the endocardial surface of the posterior left atrium (PLA) allows the tracking of AF wave dynamics in the region with the highest rotor frequency. Importantly, the PLA is the region where intracavitary catheter-based ablative procedures are most successful terminating AF in patients,13 which underscores the relevance of studying AF dynamics from the interior of the left atrium. Here we describe a sheep model of acute stretch-induced AF, which resembles some of the characteristics of human paroxysmal AF. Epicardial mapping on the left atrium is complemented with endocardial mapping of the PLA using a dual-channel rigid borescope c-mounted to a CCD camera, which represents the most direct approach to visualize the patterns of activation in the most relevant region for AF maintenance. Download video file.(54M, mov)  相似文献   

15.
Head smut, caused by the fungus Sphacelotheca reiliana (Kühn) Clint, is a devastating threat to maize production. In this study, QTL mapping of head smut resistance was performed using a recombinant inbred line (RIL) population from a cross between a resistant line “QI319” and a susceptible line “Huangzaosi” (HZS) with a genetic map constructed from genotyping-by-sequencing (GBS) data and composed of 1638 bin markers. Two head smut resistance QTL were identified, located on Chromosome 2 (q2.09HR) and Chromosome 5 (q5.03HR), q2.09HR is co-localized with a previously reported QTL for head smut resistance, and the effect of q5.03HR has been validated in backcross populations. It was also observed that pyramiding the resistant alleles of both QTL enhanced the level of resistance to head smut. A genome-wide association study (GWAS) using 277 diverse inbred lines was processed to validate the mapped QTL and to identify additional head smut resistance associations. A total of 58 associated SNPs were detected, which were distributed in 31 independent regions. SNPs with significant association to head smut resistance were detected within the q2.09HR and q5.03HR regions, confirming the linkage mapping results. It was also observed that both additive and epistastic effects determine the genetic architecture of head smut resistance in maize. As shown in this study, the combined strategy of linkage mapping and association analysis is a powerful approach in QTL dissection for disease resistance in maize.  相似文献   

16.
The distribution of four X-linked mutants (G6PD, Deutan, Protan and Xg) among lowland and once highly malarial populations of Sardinia discloses a clear-cut example of linkage disequiligrium between two of them (G6PD and Protan). In the same populations the distribution of G6PD-deficiency versus colorblindness of the Deutan type and the Xg blood-group is not significantly different from that expected at equilibrium. These data suggest indirectly that the loci for G6PD and Protan may be nearer to one another than those for G6PD and Deutan.  相似文献   

17.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   

18.
Different findings suggest that alterations of chromosome 7 genes play a role in the development of Wilms tumors. To define the positions of these genes, we have accomplished a combined cytogenetic and molecular study on 11 sporadic Wilms tumors. In one case, where both chromosomes 7 were rearranged, the karyotypic picture was consistent with the presence of a tumor suppressor gene at 7p15. To test this hypothesis, a loss of heterozygosity analysis was performed using microsatellite markers. This revealed a common region of allele losses mapped to the proximal short arm of chromosome 7 and defined the position of the gene(s) involved in Wilms tumors within an interval of approximately 25 cM.  相似文献   

19.
The K homology-type splicing regulatory protein, KSRP, activates splicing through intronic splicing enhancer sequences. It is highly expressed in neural cells and is required for the neural-specific splicing of the c-src N1 exon. In this study, we mapped the gene (gene symbolsKHSRPandKhsrp) to human chromosome 19 by using radiation hybrid panels and to mouse chromosome 17 by studying an interspecific backcross panel. HumanKHSRPis a positional candidate gene for familial febrile convulsion and Cayman type cerebellar ataxia. Comparative analysis of the human and mouse genomes indicates that theKHSRPgene is located in regions of conserved synteny between the two species.  相似文献   

20.
The occurrence of hairless piebald mice trisomic for the chromosome segments of the T6M chromosome has shown that the LG III loci hr and s are not located on T6M. The T6 breakpoint in LG III is therefore in the position hr-s-T6. T6M must carry the gene Fkl, which is located on the far side of the T6 breakpoint from hr in LG III.-T6 reduces recombination in the hr-s region.-Trisomy for the chromosome segments of the T6M chromosome appears to severely reduce viability.-The gene hr has been shown to lie between the centromere and the T6 breakpoint. The order of loci in LG III is therefore: centromere-hr-s-T6.-Equations are given for the relation between the frequency of adjacent-2 segregation and the frequency of recovery of complementation zygotes for the case in which the translocation heterozygote can form either quadrivalent or univalent-trivalent configurations at meiosis.-Linkage Group III is carried on chromosome 14. LG VI is the other linkage group involved in T6, and is carried on chromosome 15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号