首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We used the Langmuir monolayers technique to study the surface properties of melittin toxin mixed with either liquid-condensed DSPC or liquid-expanded POPC phospholipids. Pure melittin peptide forms stable insoluble monolayers at the air-water interface without interacting with Thioflavin T (Th-T), a sensitive probe to detect protein amyloid formation. When melittin peptide is mixed with DSPC lipid at 50 % of peptide area proportion at the surface, we observed the formation of fibril-like structures detected by Brewster angle microscopy (BAM), but they were not observable with POPC. The nano-structures in the melittin-DSPC mixtures became Th-T positive labeling when the arrangement was observed with fluorescence microscopy. In this condition, Th-T undergoes an unexpected shift in the typical emission wavelength of this amyloid marker when a 2D fluorescence analysis is conducted.Even when reflectivity analysis of BAM imaging evidenced that these structures would correspond to the DSPC lipid component of the mixture, the interpretation of ATR-FTIR and Th-T data suggested that both components were involved in a new lipid-peptide rearrangement. These nano-fibril arrangements were also evidenced by scanning electron and atomic force microscopy when the films were transferred to a mica support. The fibril formation was not detected when melittin was mixed with the liquid-expanded POPC lipid. We postulated that DSPC lipids can dynamically trigger the process of amyloid-like nano-arrangement formation at the interface. This process is favored by the relative peptide content, the quality of the interfacial environment, and the physical state of the lipid at the surface.  相似文献   

2.
Surface pressure isotherms and structural and surface dilatational properties of three hydroxypropylmethycelluloses (HPMCs, called E4M, E50LV, and F4M) adsorbed films at the air-water interface were determined. In this work we present evidence that HPMC molecules are able to diffuse and saturate the air-water interface at very low concentrations in the bulk phase. As bulk concentration increased, structural changes at a molecular level occurred at the interface. These changes corresponded to transition from an expanded structure (structure I) to a condensed one (structure II). When the surface concentration of HPMC was high enough, the collapse of the monolayer was observed. The three HPMCs formed very elastic films at the air-water interface, even at low surface pressures. E4M showed features that make it unique. For instance it showed the highest surface activity, mainly at low bulk concentrations (<10(-4) wt %). The differences observed in surface activity may be attributed to differences in the hydroxypropyl molar substitution and molecular weight of HPMC. All three HPMCs formed films of similar viscoelasticity and elastic dilatational modulus, which can be accounted for by their similar degree of methyl substitution.  相似文献   

3.
Pulmonary surfactant maintains a putative surface-active film at the air-alveolar fluid interface and prevents lung collapse at low volumes. Porcine lung surfactant extracts (LSE) were studied in spread and adsorbed films at 23 +/- 1 degrees C using epifluorescence microscopy combined with surface balance techniques. By incorporating small amounts of fluorescent probe 1-palmitoyl-2-nitrobenzoxadiazole dodecanoyl phosphatidylcholine (NBD-PC) in LSE films the expanded (fluid) to condensed (gel-like) phase transition was studied under different compression rates and ionic conditions. Films spread from solvent and adsorbed from vesicles both showed condensed (probe-excluding) domains dispersed in a background of expanded (probe-including) phase, and the appearance of the films was similar at similar surface pressure. In quasistatically compressed LSE films the appearance of condensed domains occurred at a surface pressure (pi) of 13 mN/m. Such domains increased in size and amounts as pi was increased to 35 mN/m, and their amounts appeared to decrease to 4% upon further compression to 45 mN/m. Above pi of 45 mN/m the LSE films had the appearance of filamentous materials of finely divided dark and light regions, and such features persisted up to a pi near 68 mN/m. Some of the condensed domains had typical kidney bean shapes, and their distribution was similar to those seen previously in films of dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant. Rapid cyclic compression and expansion of LSE films resulted in features that indicated a possible small (5%) loss of fluid components from such films or an increase in condensation efficiency over 10 cycles. Calcium (5 mM) in the subphase of LSE films altered the domain distribution, decreasing the size and increasing the number and total amount of condensed phase domains. Calcium also caused an increase in the value of pi at which the maximum amount of independent condensed phase domains were observed to 45 mN/m. It also induced formation of large amounts of novel, nearly circular domains containing probe above pi of 50 mN/m, these domains being different in appearance than any seen at lower pressures with calcium or higher pressures in the absence of calcium. Surfactant protein-A (SP-A) adsorbed from the subphase onto solvent-spread LSE films, and aggregated condensed domains in presence of calcium. This study indicates that spread or adsorbed lung surfactant films can undergo expanded to condensed, and possibly other, phase transitions at the air-water interface as lateral packing density increases. These phase transitions are affected by divalent cations and SP-A in the subphase, and possibly by loss of material from the surface upon cyclic compression and expansion.  相似文献   

4.
Air-water interface films of purified cattle rhodopsin and defined phospholipids are formed by the osmotic lysis of reconstituted membrane vesicles. The interface films thus formed consist of a phospholipid monolayer containing vesicle membrane fragments. Rhodopsin molecules at the interface are restricted within the membrane fragments where they are spectrophotometrically intact and capable of undergoing photoregeneration and chemical regeneration. Multilayers of up to 8 layers can be built from these interface films. The visible absorption band of rhodopsin in these multilayers is linearly dichroic. Quantitative analysis of the linear dichroism reveals that the dipole moment of transition of the retinal chromophore in rhodopsin forms an angle of 15 degrees +/- 4 degrees with the plane of the membrane fragments in the interface film. This orientation of the chromophore relative to the plane of the membrane is essentially the same as that observed in the intact retina. Thus, the orientation of rhodopsin in the interface films is similar to that in the intact disc membranes.  相似文献   

5.
6.
7.
8.
An amyloid(1-40) solution rich in coil, turn, and alpha-helix, but poor in beta-sheet, develops monolayers with a high beta-sheet content when spread at the air-water interface. These monolayers are resistant to repeated compression-dilatation cycles and interaction with trifluoroethanol. The secondary structure motifs were detected by circular dichroism (CD) in solution and with infrared reflection-absorption spectroscopy (IRRAS) at the interface. Hydrophobic influences are discussed for the structure conversion in an effort to understand the completely unknown reason for the natural change of the normal prion protein cellular (PrP(C)) into the abnormal prion protein scrapie (PrP(Sc)).  相似文献   

9.
Jean L  Lee CF  Vaux DJ 《Biophysical journal》2012,102(5):1154-1162
The aggregation of proteins or peptides into amyloid fibrils is a hallmark of protein misfolding diseases (e.g., Alzheimer's disease) and is under intense investigation. Many of the experiments performed are in vitro in nature and the samples under study are ordinarily exposed to diverse interfaces, e.g., the container wall and air. This naturally raises the question of how important interfacial effects are to amyloidogenesis. Indeed, it has already been recognized that many amyloid-forming peptides are surface-active. Moreover, it has recently been demonstrated that the presence of a hydrophobic interface can promote amyloid fibrillization, although the underlying mechanism is still unclear. Here, we combine theory, surface property measurements, and amyloid fibrillogenesis assays on islet amyloid polypeptide and amyloid-β peptide to demonstrate why, at experimentally relevant concentrations, the surface activity of the amyloid-forming peptides leads to enriched fibrillization at an air-water interface. Our findings indicate that the key that links these two seemingly different phenomena is the surface-active nature of the amyloid-forming species, which renders the surface concentration much higher than the corresponding critical fibrillar concentration. This subsequently leads to a substantial increase in fibrillization.  相似文献   

10.
The fluorescence properties of chlorophyll a and b monomolecular films at the air-water interface were measured by a high sensitivity fluorophotometer using the photon-counting method. The fluorescence intensity of chlorophyll molecules in monomolecular films in the absence of any diluents did not decrease simply with the mean distance of chlorphyll molecules. Over the range of the mean distances from 27 to 21 A, three fluorescence components (peaks at 685, 695 and 715 nm) of chlorophyll a were observed. In the case of chlorophyll beta, two fluorescence components (peaks at 667 and 685 nm) were observed over the range of the mean distances from 34 to 24 A. When the mean distance was 18 A, the short wavelength component of chlorophyll beta disappeared, and only the long avelength component was observed.  相似文献   

11.
Hydrophobins are amphiphilic proteins produced by filamentous fungi. They function in a variety of roles that involve interfacial interactions, as in growth through the air-water interface, adhesion to surfaces, and formation of coatings on various fungal structures. In this work, we have studied the formation of films of the class II hydrophobin HFBI from Trichoderma reesei at the air-water interface. Analysis of hydrophobin aqueous solution drops showed that a protein film is formed at the air-water interface. This elastic film was clearly visible, and it appeared to cause the drops to take unusual shapes. Because adhesion and formation of coatings are important biological functions for hydrophobins, a closer structural analysis of the film was made. The method involved picking up the surface film onto a solid substrate and imaging the surface by atomic force microscopy. High-resolution images were obtained showing both the hydrophilic and hydrophobic sides of the film at nanometer resolution. It was found that the hydrophobin film had a highly ordered structure. To study the orientation of molecules and to obtain further insight in film formation, we made variants of HFBI that could be site specifically conjugated. We then used the avidin-biotin interaction as a probe. On the basis of this work, we suggest that the unusual interfacial properties of this type of hydrophobins are due to specific molecular interactions which lead to an ordered network of proteins in the surface films that have a thickness of only one molecule. The interactions between the proteins in the network are likely to be responsible for the unusual surface elasticity of the hydrophobin film.  相似文献   

12.
Monomolecular layers of whole myelin membrane can be formed at the air-water interface from vesicles or from solvent solution of myelin. The films appear microheterogeneous as seen by epifluorescence and Brewster angle microscopy. The pattern consists mainly of two coexisting liquid phases over the whole compression isotherm. The liquid nature of the phases is apparent from the fluorescent probe behavior, domain mobility, deformability and boundary relaxation due to the line tension of the surface domains. The monolayers were transferred to alkylated glass and fluorescently labeled against myelin components. The immunolabeling of two major proteins of myelin (myelin basic protein, proteolipid-DM20) and of 2′,3′-cyclic nucleotide 3′-phosphodiesterase shows colocalization with probes partitioning preferentially in liquid-expanded lipid domains also containing ganglioside GM1. A different phase showing an enrichment in cholesterol, galactocerebroside and phosphatidylserine markers is also found. The distribution of components is qualitatively independent of the lateral surface pressure and is generally constituted by one phase enriched in charged components in an expanded state coexisting with another phase enriched in non-charged constituents of lower compressibility. The domain immiscibility provides a physical basis for the microheterogeneity found in this membrane model system.  相似文献   

13.
Monomolecular layers of whole myelin membrane can be formed at the air-water interface from vesicles or from solvent solution of myelin. The films appear microheterogeneous as seen by epifluorescence and Brewster angle microscopy. The pattern consists mainly of two coexisting liquid phases over the whole compression isotherm. The liquid nature of the phases is apparent from the fluorescent probe behavior, domain mobility, deformability and boundary relaxation due to the line tension of the surface domains. The monolayers were transferred to alkylated glass and fluorescently labeled against myelin components. The immunolabeling of two major proteins of myelin (myelin basic protein, proteolipid-DM20) and of 2',3'-cyclic nucleotide 3'-phosphodiesterase shows colocalization with probes partitioning preferentially in liquid-expanded lipid domains also containing ganglioside G(M1). A different phase showing an enrichment in cholesterol, galactocerebroside and phosphatidylserine markers is also found. The distribution of components is qualitatively independent of the lateral surface pressure and is generally constituted by one phase enriched in charged components in an expanded state coexisting with another phase enriched in non-charged constituents of lower compressibility. The domain immiscibility provides a physical basis for the microheterogeneity found in this membrane model system.  相似文献   

14.
15.
The behavior of four linear gramicidins, which differ by the nature of their 9, 11, 13, and 15 aromatic residues, together with a covalent "head to tail" retro GA-DAla-GA dimer, has been examined at the air-water interface. It is shown that all four "monomers" have almost the same molecular area, which is compatible with either a single-stranded or a double-stranded helical model, whereas it is suggested that retro GA-DAla-GA could adopt another conformation. The surface potential measurements agree with those of different groups of molecules characterized by their single-channel behaviors.  相似文献   

16.
17.
A suspension of purple membrane fragments in a solution of soya phosphatidyl-choline in hexane is spread at an air-water interface. Surface pressure and surface potential measurements indicate that the membrane fragments and lipids organize at the interface as an insoluble film. Electron microscopy of shadow-cast replicas of the film reveal that in the bacteriorhodopsin to soya PC weight ratio range of 2:1 to 10:1, these films consist of nonoverlapping membrane fragments which occupy approximately 35% of the surface area and are separated by a lipid monolayer. Furthermore, the membrane fragments are oriented with their intracellular surface towards the aqueous subphase. Nearly all the bacteriorhodopsin molecules at the interface are spectroscopically intact and exhibit visible spectral characteristics identical to those in aqueous suspensions of purple membrane and in intact bacteria. In addition, bacteriorhodopsin in air-dried interface films show spectral changes upon dark-adaptation and upon flash illumination similar to those observed in aqueous suspensions of purple membrane, but with slower kinetics. The kinetics of the spectral changes in interface films can be made nearly the same as in aqueous suspension by immersing the films in water.  相似文献   

18.
19.
P. Reinach  B.B. Aubrey  S.S. Brody 《BBA》1973,314(3):360-371
Monomolecular films of bacteriochlorophyll, bacteriopheophytin and 2-desvinyl-2-acetyl chlorophyll a were prepared and studied on aqueous subphases containing pH 7.8 buffer and 4·10−4 M ascorbate. These monolayers are mechanically stable in the dark and light at 15 °C. at surface pressures below about 18 dynes/cm the slope of the surface isotherm of bacteriochlorophyll is steeper than at pressures greater than 18 dynes/cm. The surface dipole moments of bacteriochlorophyll are less than half that reported for chlorophyll a. Compression of bacteriochlorophyll or bacteriopheophytin monolayers result in changes of their absorption spectra.

Compression of bacteriochlorophyll monolayers to 18 dynes/cm results in a shift of the pigment's red peak from 787 to 749 nm as well as the appearance of a new absorption maximum at 896 nm. Continued compression to 24 dynes/cm results in a slight decrease in peak height of the 794-nm maximum and further increase in the absorbance of the 896-nm maximum. With bacteriopheophytin the red maximum at 760 nm starts to shift when the film is compressed to a surface pressure of only 2 dynes/cm; further compression yields a new absorption maximum at 846 nm. Compression of a film of 2-desvinyl-2-acetyl chlorophyll a results in only a 10-nm shift of the absorption maximum at 690 nm.

An orientation of bacteriochlorophyll at an air-water interface is proposed that is different from that for chlorophyll a. Like chlorophyll a bacteriochlorophyll monolayers are closely packed, but different in that bacteriochlorophyll allows greater interaction between pigment molecules. In compressed monolayers bacteriochlorophyll appears to aggregate differently than in other model systems.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号