首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mass releases of two parasitoid species, Aphidius matricariae and Ephedrus cerasicola, may provide an alternative measure to pesticides to control the rosy apple aphid Dysaphis plantaginea in organic apple orchards. As an exploratory study, we tested if the presence of flower strips between apple tree rows could improve the action of three early parasitoid releases––and of other naturally present aphid enemies––on the control of aphid colonies and the number of aphids per tree. Apple trees located at various distances from parasitoid release points were monitored in plots with and without flower strips in an organic apple orchard over two years, along the season of aphid infestation (March to July). Our case study demonstrated that the presence of flowering plant mixes in the alleyways of the apple orchard reduced the presence of D. plantaginea by 33.4%, compared to plots without flower strips, at the infestation peak date. We also showed a negative effect of increasing the distance to parasitoid release points on aphid control. However, our results at the infestation peak date suggest that the presence of flower strips could marginally compensate for the detrimental effect of increasing distance to the release point, probably by improving the persistence and dispersal capacities of natural enemies. Despite high variations in aphid population dynamics between years, we conclude that combining flower strips with early parasitoid releases in apple orchards is promising for biological control of the rosy apple aphid, although the method merits to be further refined.  相似文献   

3.
Increasing plant diversity in agroecosystems (i.e. intercropping) has been widely accepted as a means of promoting conservation biological control of mites and insect pests. Nevertheless, the contribution from underlying mechanisms such as the provision of non‐prey alternative food (i.e. pollen and nectar) and shelter have not been properly disentangled; and additionally, it remains unexplored whether the performance of nocturnal and diurnal natural enemies is improved when provided with diverse plant communities. Using open field experiments and a greenhouse microcosm, we investigated whether intercropping collards with parsley could create shelter for natural enemies in the lower stratum (parsley), and whether or not nocturnal and diurnal natural enemies would carry out aphid biological control equally well in this increased plant diversity scenario (intercropping). The results showed that the shelter alone provided by the lower stratum/companion plants (parsley) mediated an increase in the abundance of natural enemies without involving the provision of non‐prey alternative food. However, the biological control of aphids exerted by nocturnal predators was negatively affected by intercropping. The lower stratum (parsley) appeared to hamper the ability of nocturnal predators to reach aphids more quickly on the collard host plants (higher stratum). In total, our findings indicate that intercropping non‐flowering companion plants is likely enough to mediate an increase of natural enemies via shelter provision. In addition, the results suggest that nocturnal predators, or non‐flying predators for that matter, are hampered by complex lower stratum vegetation. Thus, considering natural enemy behaviour and plant characteristics when designing polyculture systems are vital for attaining conservation biological control success.  相似文献   

4.
5.
  1. The enhancement of pest regulation service in crops depends for a large part on the capacity of agroecological practices to increase the presence of key species or functional traits in arthropod communities within fields.
  2. We investigated the effects of undestroyed strips of winter cover crops in maize fields on carabid community composition, and on the distribution of three ecological traits: diet, wing status and body size.
  3. We found that the community composition and the distribution of ecological traits in the in-field cover crop strips had commonalities with both adjacent cropped areas and field margins. Some species were recorded mostly or only in the strips indicating that strips could support carabid species and help increase local diversity from the first year of establishment.
  4. The activity-density of Poecilus cupreus and Pterostichus melanarius was higher in the cropped proximity of the strip, and the body size was influenced by the distance from the strip.
  5. Our results suggest that carabid communities are shaped by the habitat type, but the influence of such agroecological infrastructures on communities of adjacent crops is minor beyond a distance of 10 m. However, overall species abundance was increased and thus potentially provided enhanced pest regulation.
  相似文献   

6.
Diabroticina is a speciose subtribe of New World Chrysomelidae (Subfamily Galerucinae: Tribe Luperini) that includes pests such as corn rootworms, cucumber beetles and bean leaf beetles (e.g. Diabrotica, Acalymma, Cerotoma species). The evolution and spread of pesticide resistance, the European invasion of Diabrotica v. virgifera LeConte, and possible development of resistance due to the large-scale deployment of Diabrotica-active Bt maize in North America have generated a sense of urgency in developing biological control options against Diabroticina pests. In the present study, we review available knowledge on biological control options, including 290 publications on natural enemy–Diabroticina associations in the New World. Several natural enemy species or groups appear to be promising candidates for control strategies with different ecological rationales. We propose that future research should pursue: (1) development of inundative biological control products, particularly mass-produced entomopathogenic nematodes and fungi, (2) understanding of specific natural enemies of Diabroticina larvae throughout the Americas and of adults particularly in higher altitudes of Central America or northern South America including potential classical biological control agents against D. v. virgifera; (3) enhancement of natural enemies through cultural practices, i.e., reduced tillage, reduced weed control, cover crops, diversified crop rotations or soil amendments. Research and action must be coordinated to accelerate the exploration of biological control options.  相似文献   

7.
8.
A survey of the parasitoids ofIllinoia liriodendri (Monell) in northern California conducted from 1988–1990 revealed the presence of 12 primary and 14 hyper-parasitoid species. The most common primary parasitoid wasAphidius polygonaphis (Fitch), which was imported from the eastern United States in the 1970's and is now established throughout the area. New host records were noted forA. ervi Haliday,A. avenaphis (Fitch), Praon occidentale Baker,P. unicum Smith,Diaeretiella rapae M'Intosh,Lysiphlebus testaceipes (Cresson), andMonoctonus nervosus (Haliday) (all Hymenoptera: Braconidae: Aphidiinae), andAphelinus sp. nr.asychis Walker (Hymenoptera: Aphelinidae). The most common hyperparasitoid species werePachyneuron aphidis (Bouché) andAsaphes californicus Girault (both Hymenoptera: Pteromalidae). New hyperparasitoid host records were noted forPachyneuron californicum Girault on Aphidiine and Aphelinidae spp. andCoruna clavata Walker (Hymenoptera: Pteromalidae) onAphelinus sp.  相似文献   

9.
There is evidence for both positive and negative effects of generalist predators on pest populations and the various reasons for these contrasting observations are under debate. We studied the influence of a generalist predator, Pardosa lugubris (Walckenaer) (Araneae: Lycosidae), on an aphid pest species, Rhopalosiphum padi (L.) (Hemiptera: Aphididae; low food quality for the spider), and its host plant wheat, Triticum spec. (Poaceae). We focused on the role of spider density and the availability of alternative prey, Drosophila melanogaster Meigen (Diptera: Drosophilidae; high food quality). The presence of spiders significantly affected plant performance and aphid biomass. Alternative prey and spider density strongly interacted in affecting aphids and plants. High spider density significantly improved plant performance but also at low spider density plants benefited from spiders especially in the presence of alternative prey. The results suggest that generalist arthropod predators may successfully reduce plant damage by herbivores. However, their ability to control prey populations varies with predator nutrition, the control of low-quality prey being enhanced if alternative higher-quality prey is available.  相似文献   

10.
11.
Biological control of pest insects can be improved by providing natural enemies with additional food resources such as floral nectar within the production field. However, herbivores may also benefit from this practice. The aim of this 3‐year field study was to investigate if dill and buckwheat, aimed as food resources for natural enemies, could increase the densities of the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae), a severe pest on crucifers. Differences in egg density, numbers of pupae and sex ratio were compared between cabbage plots with or without flowers. Habitat manipulation by intercropping flowering plants with cabbage did not increase the overall D. radicum egg density in our 3‐year study, and there were no significant differences in egg numbers between treatments in any year. No effect on the fecundity of D. radicum was observed, most likely because of the high mobility and feeding behaviour of the female flies, combined with high abundance and diversity of other food sources around the fields during this period. Despite equal egg numbers, fewer pupae were found in plots with flowers than without in one of three studied years. This finding suggests that natural enemies attacking larvae and pupae of D. radicum were either more abundant or efficient in cabbage plots with flowers.  相似文献   

12.
The cotton aphid Aphis gossypii Glover and the green peach aphid Myzus persicae (Sulzer) are economically important pests with a worldwide distribution. We evaluated the efficacy of releasing a flightless adult strain of the multicolored Asian lady beetle Harmonia axyridis (Pallas) as a control measure against these aphids on green pepper plants in open fields. Flightless H. axyridis adults were observed on the green pepper plants in the releasing plots throughout the experimental period and were found to be effective biocontrol agents, markedly decreasing the numbers of aphids. These results suggest that adults of this flightless strain of H. axyridis are effective in controlling aphids on green pepper plants in open fields.  相似文献   

13.
Aims Successful invasive plants are often assumed to display significant levels of phenotypic plasticity. Three possible strategies by which phenotypic plasticity may allow invasive plant species to thrive in changing environments have been suggested: (i) via plasticity in morphological or physiological traits, invasive plants are able to maintain a higher fitness than native plants in a range of environments, including stressful or low-resource habitats: a 'Jack-of-all-trades' strategy; (ii) phenotypic plasticity allows the invader to better exploit resources available in low stress or favorable habitats, showing higher fitness than native ones: a 'Master-of-some' strategy and (iii) a combination of these abilities, the 'Jack-and-Master' strategy.Methods We evaluated these strategies in the successful invader Taraxacum officinale in a controlled experiment mimicking natural environmental gradients. We set up three environmental gradients consisting of factorial arrays of two levels of temperature/light, temperature/water and light/water, respectively. We compared several ecophysiological traits, as well as the reaction norm in fitness-related traits, in both T. officinale and the closely related native Hypochaeris thrincioides subjected to these environmental scenarios.Important findings Overall, T. officinale showed significantly greater accumulation of biomass and higher survival than the native H. thrincioides, with this difference being more pronounced toward both ends of each gradient. T. officinale also showed significantly higher plasticity than its native counterpart in several ecophysiological traits. Therefore, T. officinale exhibits a Jack-and-Master strategy as it is able to maintain higher biomass and survival in unfavorable conditions, as well as to increase fitness when conditions are favorable. We suggest that this strategy is partly based on ecophysiological responses to the environment, and that it may contribute to explaining the successful invasion of T. officinale across different habitats.  相似文献   

14.
15.
Aim Spatial scale is critical for understanding and managing biological invasions. In providing direction to managing alien plant invasions, much emphasis is placed on collecting spatially explicit data. However, insufficient thought is often given to how the data are to be used, frequently resulting in the incompatibility of the data for different uses. This paper explores the role of spatial scale in interpreting, managing and monitoring alien plant invasions in a large protected area. Location Kruger National Park, South Africa. Methods Using 27,000 spatially‐explicit records of invasive alien plants for the Kruger National Park (> 20,000 km2) we assessed alien plant species richness per cell at nine different scales of resolution. Results When assessing the patterns of alien plants at the various scales of resolution, almost identical results are obtained when working at scales of quarter‐degree grids and quaternary watersheds (the fourth level category in South Africa's river basin classification system). Likewise, insights gained from working at resolutions of 0.1–0.5 km and 1–5 km are similar. At a scale of 0.1 × 0.1 km cells, only 0.4% of the Kruger National Park is invaded, whereas > 90% of the park is invaded when mapped at the quarter‐degree cell resolution. Main conclusions Selecting the appropriate scale of resolution is crucial when evaluating the distribution and abundance of alien plant invasions, understanding ecological processes, and operationalizing management applications and monitoring strategies. Quarter‐degree grids and quaternary watersheds are most useful at a regional or national scale. Grid cells of 1 to 25 km2 are generally useful for establishing priorities for and planning management interventions. Fine‐scale data are useful for informing management in areas which are small in extent; they also provide the detail appropriate for assessing patterns and rates of invasion.  相似文献   

16.
17.
The potato tuber moth, Phthorimaea operculella, is the most damaging potato pest in the world and is difficult to control as the larvae are internal feeders in the foliage and tubers. Entomopathogenic fungi that colonize plants as endophytes have lethal and sublethal pathological effects on insect pests. We show that Beauveria bassiana colonizes the aerial parts of potato plants endophytically after inoculation through soil drenching. Endophytic B. bassiana persisted in potato foliage for more than 50 days postinoculation. Bioassays indicated that foliage of B. bassiana-inoculated potato plants were pathogenic against larvae of P. operculella. Sublethal experiments indicated that B. bassiana negatively affected the growth, development, and reproduction of P. operculella. Development experiments showed that the weight of P. operculella pupae reared on B. bassiana-colonized potato plants (4.25 mg) was significantly less than that of those reared on uninoculated control plants (8.89 mg). Compared with newly eclosed larvae fed on control plants, those fed on B. bassiana-inoculated plants had significantly lower survivorship, with only 17.8% developing to the adult stage. Oviposition of P. operculella females reared on B. bassiana endophytically colonized plants was significantly lower (35 eggs/female) than of those reared on uninoculated plants (115 eggs/female). This study demonstrates that endophytic B. bassiana can be a potential biological control agent for the control and management of P. operculella. Comparing pupal weights of P. operculella reared on potato plants inoculated with the B. bassiana strain GZGY-1-3 and on untreated control plants, pupae from the control plants were significantly heavier than those from treated plants.  相似文献   

18.
The effective control of highly invasive weeds in Australia is an important conservation management action. In this study, we monitored the outcome of herbicide control on high‐threat weeds in the wet forests of the Central Highlands of Victoria. Twenty‐two control (no weed control) and 32 treatment (weed control) plots were surveyed annually over 24 months. Initial results show that weed cover and frequency decreased substantially in response to weed control; however, it is too early to determine the response of native species. We recommend that herbicide control and the associated monitoring programme be continued, and depending on the outcomes, data should be used to develop a more integrated management strategy.  相似文献   

19.
1 Insecticidal proteins can be excreted in the honeydew when sap-sucking insects feed on insect-resistant transgenic plants. Honeydew can be an important source of carbohydrates, thus potentially exposing a broad range of honeydew-feeding insects to transgene products.
2 Snowdrop lectin ( Galanthus nivalis agglutinin; GNA) dissolved in a 2 m sucrose solution had no antifeedant effect on female aphid parasitoids ( Aphidius ervi ) but had a direct negative effect on their longevity.
3 When feeding on honeydew from Rhopalosiphum padi feeding on a GNA-containing artificial diet, Aphidius ervi suffered a longevity reduction that was more pronounced than was to be expected based on the detected GNA concentration in the honeydew.
4 Analysis of carbohydrate and amino acid composition revealed that a change in honeydew composition caused by a GNA-effect on the aphids could be a possible explanation for the additional reduction in parasitoid longevity.
5 When comparing the effect of honeydew from Sitobion avenae and R. padi feeding on GNA-expressing or nontransformed wheat plants on A. ervi longevity, aphid species was found to have a significant effect, whereas the wheat variety had no effect. The latter result was probably due to low GNA expression levels in the plants. Differences in nutritional suitability between honeydew from R. padi and S. avenae could be explained by differences in carbohydrate and amino acid composition.
6 This is the first study to demonstrate that GNA ingested by aphids and transported into the honeydew can negatively affect the parasitoids consuming this honeydew.
7 We recommend that honeydew should be considered as a route of exposure to transgene products in future risk assessment studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号