首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed the effect of two biological control agents, the mirid Eccritotarsus catarinensis (Carvalho) and the weevil Neochetina eichhorniae (Warner), singly or in combination, on the competitive ability of their host plant, water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub., grown in a screen house, in competition with another aquatic plant (Pistia stratiotes L.). Water hyacinth plant growth characteristics measured included fresh weight, leaf and petiole lengths, number of inflorescences produced, and new shoots. Without herbivory, water hyacinth was 18 times more competitive than water lettuce (across all experimental combinations of initial plant densities), as estimated from fresh weights. Both insect species, singly or in combination, reduced water hyacinth plant growth characteristics. E. catarinensis alone was less damaging than the weevil and under normal conditions, i.e., floating water hyacinth, is not expected to increase control of water hyacinth beyond that of the weevil. When combined with the weevil, half the inoculum of weevils and half the inoculum of mirids produced the same growth reduction as the full inoculum of the weevil. Under conditions where the weevils are not effective because water hyacinths are seasonally rooted in mud, the mirid, which lives entirely on leaves, should become a useful additional biological control agent. Handling Editor: John Scott.  相似文献   

2.
Insect–insect interactions can have implications for biological control programmes when multiple agent species are released. In many cases there is an increase in the efficacy when more than one species is used; however, there is a possibility that releasing an additional species into a programme could have a negative effect. The interactions between three arthropod agents of water hyacinth Eichhornia crassipes (Martius) Solms-Laubach, Eccritotarsus catarinensis (Carvalho), Neochetina bruchi Hustache and Neochetina eichhorniae Warner were investigated in an experiment to measure the impact that pairwise combinations of the insects may have on their performance. There was a significant interaction between the mirid E. catarinensis and the weevil N. eichhorniae, with significantly fewer weevil feeding scars when in combination with the mirid (approximately 0.2 scars per cm2) than when alone (approximately 0.4 scars per cm2). There were also slightly fewer petioles mined by N. eichhorniae when in combination with the mirid. Interestingly there was a negative interaction between the two weevil species when in combination, with the number of feeding scars being significantly lower per individual when the two species were in combination. None of the insects performed significantly better when in combination with another insect, however, the mirid was never negatively affected by the presence of either weevil species. The interactions observed between the insects tested were identifiable but subtle and are unlikely to have implications on establishment or performance of the insects in the introduced range, South Africa.  相似文献   

3.
Water hyacinth [Eichhornia crassipes (Mart.) Solms (Pontederiaceae)] is the most damaging aquatic weed in South Africa, where five arthropod biological control agents have been released against it. The most recent introduction of Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) has failed to establish permanent populations at a number of sites in South Africa where water hyacinth is a problem. Cold winter temperatures at these sites are assumed to be the reason for these establishment failures. This assumption was tested by investigating the thermal physiology of the mirid, then incorporating these data into various predictive distribution models. Degree‐day models predict 3–14 generations per year at different localities in South Africa, and five generations at a Johannesburg site where the mirid failed to overwinter. The inability to develop sufficiently rapidly during winter months may hinder overwintering of this insect, which was predicted to develop through only one generation during the winter months of April to August in Johannesburg. A CLIMEX model also showed that cold stress limits the mirid's ability to overwinter in the interior of the country, while determination of the lower lethal limit (–3.5 °C) and critical thermal minimum (1.2 ± 1.17 °C) also indicated that extreme temperatures will limit establishment at certain sites. It is concluded that E. catarinensis is limited in its distribution in South Africa by low winter temperatures.  相似文献   

4.
Azolla filiculoides (red waterfern) is a small, floating fern native to South America, that has invaded aquatic habitats, predominantly water resevoirs in southern Africa. A frond-feeding weevil, Stenopelmus rufinasus Gyllenhal (Coleoptera: Curculionidae), was imported from Florida, USA, and released as a biological control agent against this weed in South Africa at the end of 1997. To date, 24,700 weevils have been released, which has resulted in local extinction of red waterfern at 81% of the 112 release sites. The weevil has not failed to control a single site. Several sites were, however, lost due to flooding or drainage of dams. The surface area of weed controlled totalled 203.5 ha. On average, A. filiculoides was controlled in infested sites in 6.9 (±4.3) months. The weed recolonized at 22 of the sites (through either spore germination or dispersal by waterfowl), but the weevils subsequently spread to all of these sites and successfully caused local extinction of the weed at 18 of the sites. Five years after the release of the weevil, the weed no longer poses a threat to aquatic systems in southern Africa. In comparison to other biological control programs of aquatic weeds, the program against A. filiculoides in southern Africa ranks among the most successful cases anywhere in the world.  相似文献   

5.
Between one and seven biological control agents have been released against water hyacinth (Eichhornia crassipes (Mart.) Solms) in at least 30 countries, with varied success. A mirid, Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae), the most recent agent released, is damaging to the plant on the African continent. It could be useful in the USA where water hyacinth remains a problem, but its introduction remains in doubt because during host specificity trials, it developed on Pontederia cordata L. (pickerelweed), indigenous to the USA. However, it did not establish on pickerelweed monocultures during South African field trials, and only light spillover feeding occurred where the two plants coexisted suggesting that the use of P. cordata as a host is a laboratory artefact and it may be suitable for use in the USA, if its thermal physiology allows establishment. We reran models developed for South Africa using CLIMEX to predict whether the mirid will establish where water hyacinth and pickerelweed co-occur, but not where pickerelweed occurs in the absence of water hyacinth. The models suggest that the mirid's distribution will be limited by cold winter temperatures and insufficient thermal accumulation to the southern states of the USA, within the main distribution of water hyacinth. Even though some spillover feeding on pickerelweed might result where the two plants co-occur, the risk of population level effects seems minimal and the risk to more northern pickerelweed negligible. The benefits, including improved habitat for pickerelweed, associated with further suppression of water hyacinth, outweigh the minimal risk of collateral damage to pickerelweed.  相似文献   

6.
The discovery that cryptic species are more abundant than previously thought has implications for weed biological control, as there is a risk that cryptic species may be inadvertently released with consequences for the safety of the practice. A cryptic species of a biological control agent released for the control of the invasive alien macrophyte, water hyacinth, Eichhornia crassipes (C. Mart.) Solms. (Pontederiaceae), was recently discovered in South Africa. The two species were considered a single species prior to genetic analysis and interbreeding experiments. The original biological control agent retains the name Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) whereas the new species has been described as Eccritotarsus eichhorniae Henry. In this study, we compared the host specificity, efficacy, and thermal physiologies of the two species. The host specificity of the two species within the Pontederiaceae was very similar and both are safe for release in South Africa. Comparison of the per capita impact of the two species indicated that E. eichhorniae was the more damaging species but this is likely to be influenced by temperature, with E. catarinensis being more effective under lower temperatures and E. eichhorniae being more effective under higher temperatures. Releasing the correct species for the thermal environment of each release site will improve the level of control of water hyacinth in South Africa. This example highlights the need to keep populations of biological control agents from different native range collection localities separate, and to screen for host specificity and efficacy.  相似文献   

7.
8.
Eutrophication contributes to the proliferation of alien invasive weed species such as water hyacinth Eichhornia crassipes. Although the South American moth Niphograpta albiguttalis was released in South Africa in 1990 as a biological control agent against water hyacinth, no post-release evaluations have yet been conducted here. The impact of N. albiguttalis on water hyacinth growth was quantified under low-, medium- and high-nutrient concentrations in a greenhouse experiment. Niphograpta albiguttalis was damaging to water hyacinth in all three nutrient treatments, but significant damage in most plant parameters was found only under high-nutrient treatments. However, E. crassipes plants grown in high-nutrient water were healthier, and presumably had higher fitness, than plants not exposed to herbivory at lower-nutrient levels. Niphograpta albiguttalis is likely to be most damaging to water hyacinth in eutrophic water systems, but the damage will not result in acceptable levels of control because of the plant's high productivity under these conditions. Niphograpta albiguttalis is a suitable agent for controlling water hyacinth infestations in eutrophic water systems, but should be used in combination with other biological control agents and included in an integrated management plan also involving herbicidal control and water quality management.  相似文献   

9.
This paper contributes to the relatively sparse literature on the effects of insect herbivory on the population dynamics of plants and is probably unique in that it reports the long-term effects of combinations of three insect herbivore species on the population densities of a moderately long-lived tree species. The tree is Sesbania punicea, a leguminous perennial from South America that has been the target of a biological control programme in South Africa for almost 20 years. Sixteen infestations of the weed have been monitored for periods of up to 10 years to determine changes in the density of the mature, reproductive plants under the influence of different combinations of three biological control agents (i.e. with one, two or three of the agent species present in the weed infestation). The three biological control agents, all weevil species, include Trichapion lativentre, which primarily destroys the flower-buds, Rhyssomatus marginatus, which destroys the developing seeds, and Neodiplogrammus quadrivittatus, whose larvae bore into the trunk and stems of the plants. While T. lativentre occurs throughout the range of the weed in South Africa, the other two species are less mobile, more recent introductions and are largely confined to the vicinity of selected release sites. There has been a significant decline in the density of mature S. punicea in areas where two or more of the agents are established. The decline of the weed has been most evident where N. quadrivittatus is active and particularly so where both of the other two weevil species are also present. Received: 2 April 1997 / Accepted: 30 November 1997  相似文献   

10.
ABSTRACT

Water hyacinth, Pontederia crassipes (Martius) [≡Eichhornia crassip es (Martius) Solms-Laubach] (Pontederiaceae), is native to South America, but has expanded its range to many other regions of the world including South Africa. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released as a biological control agent and has established in several regions. Recently, the indigenous species Echthrodelphax migratorius Benoit, (Hymenoptera: Dryinidae) was discovered in South Africa parasitising M. scutellaris. This newly discovered relationship might have repercussions for the efficacy of biological control of water hyacinth by the delphacid. The wasp may negatively impact M. scutellaris populations making it difficult for the agent to successfully manage the invasive weed. Contrarily, the parasitoid may be beneficial by keeping the M. scutellaris populations stable, serving as a natural enemy.  相似文献   

11.
Sagittaria platyphylla (Engelmann) J.G. Smith (Alismataceae) was first recorded in South Africa in 2008 and is considered to be an emerging weed with naturalised populations occurring throughout the country. A biological control programme was initiated in Australia and surveys conducted between 2010 and 2012 yielded potential agents, including the crown feeding weevil, Listronotus sordidus Gyllenhal (Coleoptera: Curculionidae). The potential of L. sordidus as a candidate biological control agent against S. platyphylla in South Africa was examined. Although adult feeding was recorded on a number of plant species, oviposition and larval development indicated a narrow host range restricted to the Alismataceae. In South Africa, S. platyphylla populations are primarily found in inundated systems. However, laboratory studies showed that L. sordidus did not oviposit on inundated plants, potentially nullifying the impact of the insect on South African populations. It is suggested that even though L. sordidus is a damaging, specific agent, its limited impact on inundated plant populations in South Africa does not justify the inherent risk associated with the release of a biological control agent.  相似文献   

12.
South Africa has some of the most eutrophic aquatic systems in the world, as a result of the adoption of an unnecessarily high 1 mg l−1 phosphorus (P) standard for all water treatment works in the 1970 s. The floating aquatic macrophyte, water hyacinth (Eichhornia crassipes (Mart.) Solms (Pontederiaceae)), has taken advantage of these nutrient rich systems, becoming highly invasive and damaging. Despite the implementation of a biological control programme in South Africa, water hyacinth remains the worst aquatic weed. A meta-analysis of published and unpublished laboratory studies that investigated the combined effect of P and nitrogen (N) water nutrient concentration and control agent herbivory showed that water nutrient status was more important than herbivory in water hyacinth growth. Analysis of long-term field data collected monthly from 14 sites around South Africa between 2004 and 2005 supported these findings. Therefore the first step in any water hyacinth control programme should be to reduce the nutrient status of the water body.  相似文献   

13.
Eichhornia crassipes Mart. Solms-Laubach (Pontederiaceae), water hyacinth, continues to be the world's worst aquatic weed. In South Africa, considerable research has been conducted on biological control agents associated with water hyacinth, with the release of six arthropods and one fungus, but little is known about the occurrence and impacts of native phytopathogenic fungi. Nation-wide surveys were conducted in 2010 and 2011 on various aquatic bodies of South Africa to identify the fungal pathogens associated with water hyacinth. Diseased plant parts were collected and fungi were isolated and identified. Some 250 isolates belonging to more than 25 genera were collected. Some of these represent new host records, as well as undescribed taxa. Isolates of Acremonium zonatum (Sawada) Gams, Alternaria eichhorniae Nag Raj and Ponnappa, Bipolaris hawaiiensis (M.B. Ellis) Uchida and Aragaki, Fusarium Link, Myrothecium roridum Tode ex Fr. and Ulocladium sp., showed the highest pathogenicity and have the potential to be useful in complementing the ongoing biocontrol programme on water hyacinth in South Africa.  相似文献   

14.
Meteorological weather station data are often used in climate matching studies to predict potential distributions of biological control agents, yet, this does not take into account the effects of microclimates experienced by the agents. Comparisons of the number of generations that the mirid, Eccritotarsus catarinensis, a biological control agent of water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub (Pontederiaceae), was predicted to complete using meteorological weather station data, on site air temperature and water hyacinth canopy microclimate temperatures recorded over two years showed that there were no significant differences between the temperature data sources. Therefore, meteorological weather station data used in degree-day models of biological control agents are useful in explaining broad establishment patterns.  相似文献   

15.
Taosa longula Remes Lenicov (Hemiptera: Dictyopharidae), a planthopper native to South America, is a candidate for the biological control of water hyacinth, Eichhornia crassipes (Mart.) Solms-Laubach (Pontederiaceae), a serious weed worldwide. Biological control requires agents that are not only specific but also effective. Damage caused by sap-sucking insects is difficult to assess. In this work we designed an experimental and analytical procedure to evaluate the potential damage of T. longula on water hyacinth. The damage that T. longula causes to the clonal reproduction, biomass production, and growth of water hyacinth was studied through a paired greenhouse trial with floating cages. The performance of the plant, starting from two plants per treatment, was evaluated at different insect densities (5, 10, 15 and 20 nymphs per cage) until all the nymphs moulted to adults. The tests showed that individual growth and biomass production of water hyacinth was reduced due to the effect of the insect feeding above five nymphs per cage. The number of new plants produced by clonal reproduction was only significantly different above 15 nymphs per cage. These results suggest that this planthopper could be an effective agent for the biological control of water hyacinth.  相似文献   

16.
A mirid,Eccritotarsus catarinensis(Carvalho), was studied as a potentially damaging natural enemy for water hyacinth, (Eichhornia crassipes(Mart.) Solms-Laub.), in South Africa. In the laboratory, eggs were inserted into the leaf tissue parallel to the leaf surface. The four nymphal instars fed gregariously with the adults mainly on the undersurface of the leaves, causing severe chlorosis at high population levels. The duration of immature stages (egg and nymphs) was approximately 23 days, while the adults survived for approximately 50 days. Favorable biological characteristics ofE. catarinensisincluded a high rate of increase, gregarious habits, long-lived and mobile adults, and several generations per year. Laboratory host range of the mirid was determined by adult choice trials on 67 plant species in 36 families and adult no-choice trials on five species in the Pontederiaceae. Feeding was recorded on all Pontederiaceae tested and oviposition on four of the five species. However, these plant species proved to be inferior hosts forE. catarinensisin comparison to water hyacinth, suggesting thatE. catarinensiswould be an acceptable natural enemy for water hyacinth in South Africa.  相似文献   

17.
A sub-lethal dose of a herbicide under field conditions was applied to determine if it stimulates an increase in water hyacinth nutrients, thereby increasing feeding intensity by Neochetina spp. weevils used as biocontrol agents of the weed. Nitrogen (N) and carbon (C) were measured and compared between sprayed plants and control plants. At one site (Delta Park), N levels were lower in the sprayed plants compared to the control plants both in the leaves and the crown. At the second site (Farm Dam), leaf N was also lower in the sprayed plants than in the control plants, while no difference was found in crown N. Mean number of feeding scars per cm2 at Delta Park was significantly higher on the sprayed plants compared to the control plants, while no significant difference was found at Farm Dam. At Delta Park, there was no correlation, however, between the number of weevil feeding scars and leaf N or C:N ratio in sprayed plants. In conclusion, the sub-lethal dose of glyphosate did not directly result in an increase in weevil feeding intensity but it can be recommended in an integrated control system to retard water hyacinth growth while conserving the weevil population.  相似文献   

18.
Abstract:  Classical biological control of insect pests and weeds may lead to potential conflicts, where insect pests are closely related to weed biological control agents. Such a conflict may occur in the classical biological control of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) in North America, which belongs to the same subfamily, Ceutorhynchinae, as a number of agents introduced or proposed for introduction against non-indigenous invasive weed species. We propose a step-by-step procedure to select non-target species and thereby to develop a non-target species test list for screening candidate entomophagous biological control agents of a herbivore pest insect in a way that would simultaneously evaluate non-target potential on weed biological control agents and other non-target species. Using these recommendations, we developed a non-target test list for host specificity evaluations in the area of origin (Europe) and the area of introduction (North America) for cabbage seedpod weevil parasitoids. Scientifically based predictions on expected host–parasitoid interactions and ecological information about the ecological host range in the area of origin can help avoid conflicts, while still allowing the introduction of safe and effective agents against both insect pests and weeds.  相似文献   

19.
Water hyacinth Eichhornia crassipes is considered the most damaging aquatic weed in the world. However, few studies have quantified the impact of this weed economically and ecologically, and even fewer studies have quantified the benefits of its control. This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year’s Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, medium and low. A conservative raw agriculture value of R 0.26 per m3 was used to calculate the benefits derived by the water saved. The present benefit and cost values were determined using 10% and 5% discount rates. The benefit/cost ratio at the low evapotranspiration rate was less than one, implying that biological control was not economically viable but, at the higher evapotranspiration rates, the return justified the costs of biological control. However, at the marginal value product of water, the inclusion of the costs of damage to infrastructure, or the adverse effects of water hyacinth on biodiversity, would justify the use of biological control, even at the low transpiration rate.  相似文献   

20.
R.J. Kluge  A.J. Gordon 《BioControl》2004,49(3):341-355
The hakea bud weevil, Dicomada rufa (Curculionidae), is a promising candidate for the biological control of the weed Hakea sericea (Proteaceae) in South Africa. Because D. rufa could not be successfully cultured on potted plants in quarantine, most of theconventional methods for host range determination were not suitable. A type of open-field testing method, the fixed plot survey method, was developed to show that D. rufa is host specific to H. sericea. The trial was conducted in three 1–2 ha plots at three localities in New SouthWales, Australia, involving 41 test plantspecies. This result was combined with otherconventional considerations to apply for therelease of D. rufa in South Africa. Theseincluded a multiple choice feeding trial inquarantine in South Africa, during which 10test species from seven genera of South AfricanProteaceae were not accepted for feeding. AllSouth African Proteaceae, except Brabejumstellatifolium, are phylogenetically distinctfrom H. sericea. Also, there are norecords of D. rufa interacting withcommercially important plants in Australia,including commercially cultivated South AfricanProteaceae. Dicomada rufa adult andlarval feeding destroys buds, flowers, smallfruits and succulent shoots. It is expectedthat this damage will supplement that of thetwo seed-feeding biological control agentsalready established in South Africa and furtherreduce the reproductive potential of the weed,particularly that of young plants regeneratingafter fires. Without compromising safety, thefixed plot survey method may also contribute toreducing the time and cost normally associatedwith conventional host specificity testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号