首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel, root-associated Pseudomonas and Burkholderia strains with biological control and plant growth-promoting (PGP) traits are being sought for biotechnological application in agriculture. We present a new isolation approach for recovery of rhizoplane and/or endophytic Pseudomonas and Burkholderia spp. with desirable biocontrol and PGP phenotypes. The method may enable better targeted biodiscovery of these two important genera.  相似文献   

2.
In this study, more than 150 bacteria showing antagonistic properties against bacterial and fungal pathogens of the tomato plant were isolated and characterized. The most efficient agents against these phytopathogenic microorganisms belong to the genus Bacillus: the best biocontrol isolates were representatives of Bacillus subtilis, B. mojavensis and B. amyloliquefaciens species. They intensively produced fengycin or/and surfactin depsipeptide antibiotics and also proved to be excellent protease secretors. It was proved, that the selected strains were able to use ethylenethiourea (ETU) as sole nitrogen source. These antagonistic and ETU-degrading Bacillus strains can be applied as biocontrol and also as bioremediation agents.  相似文献   

3.
In Uttarakhand, the Organic State of India, where soils in most farming situations are deficient in nutrients and loss of crops due to soil- and seed-borne pathogens is rampant, use of native plant growth-promoting rhizobacteria (PGPRs) possessing biocontrol (BC) activities holds promise. In view of this, 600 native cold-tolerant rhizospheric bacterial isolates were collected from Uttarakhand Himalayas, of which 336 were confirmed as fluorescent Pseudomonas spp. On the basis of specific biochemical tests, these were characterized into three major groups: P. fluorescens (308 isolates), P. aeruginosa (20 isolates), and P. putida (8 isolates). Most of the isolates could grow at 8°C after 12 h of incubation, confirming their cold tolerance. In vitro biocontrol assays revealed that of 336 isolates, 74 were antagonistic to Rhizoctonia solani and 91 to Fusarium solani, the two major pathogens associated with root-rot complex in vegetables widespread in the region. Simultaneously, good HCN producers (33 isolates), siderophore producers (80 isolates), and P solubilizers (49 isolates) were also identified, which could increase the biocontrol and plant growth-promoting efficacies of the putative PGPRs. Among the different species and biovars, P. fluorescens biovar-I had the maximum number of potential isolates with BC and plant growth-promoting (PGP) activities. In French bean, under polyhouse and field conditions, five isolates (Pf-173, Pf-193, Pf-547, Pf-551, and Pf-572) showed good BC and PGP activities as up to 93% reduction in root rot was achieved. A combination of all five isolates was found to be best with respect to BC and PGP activities. In a set of 59 fluorescent Pseudomonas isolates, RAPD-PCR analysis, using three random oligodecamer primers, revealed high diversity and formed ten distinct clusters, corresponding to the host of origin (annual or perennial) or habitat (farming situations) of the isolates. The amount of diversity revealed in the set of fluorescent Pseudomonas isolates could represent enormous diversity that exists in the wild that could be exploited for improved BC and PGP activities of the PGPRs. For the first time, this study led to a large-scale characterization and repositioning of fluorescent pseudomonads from the Indian Himalayas.  相似文献   

4.
The aim of the present study was to isolate a variety of quorum quenching bacteria (QB) from the rhizosphere and phyllosphere of three agricultural plants using minimal medium (MM)- and non-minimal medium (NM)-based methods. The members of the Pseudomonas genus constituted the most abundant QB genus, particularly in the rhizospheres of all plant samples and showed the highest quorum quenching (QQ) activity according to a screening assay using a biosensor and 3-oxo-C6-HSL (as an important quorum sensing signal in many phytopathogenic bacteria). In addition, QQ-Pseudomonas were recognised as versatile biocontrol agents against non-bacterial and bacterial plant pathogens, such as Pectobacterium carotovorum subsp. carotovorum (Pcc). Three types of quenching activities, including intracellular and extracellular enzymatic and non-enzymatic activities, were observed in QQ-Pseudomonas. Pseudomonas strains, particularly NM-isolated strains with extracellular activity, are the strongest QQ-based biocontrol agents.  相似文献   

5.
Development of protection tools targeting Dickeya species is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against several Dickeya sp. and/or Pectobacterium sp. pathogens. Most of them belonged to the Pseudomonas and Bacillus genera. In vitro assays revealed a fitness decrease of the tested Dickeya sp. and Pectobacterium sp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated with Dickeya dianthicola revealed that a mix of three biocontrol agents, namely, Pseudomonas putida PA14H7 and Pseudomonas fluorescens PA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission of D. dianthicola to the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused by D. dianthicola on potato plants and tubers.  相似文献   

6.
Bacillus and Pseudomonas are the dominant groups of bacteria known for their antagonistic potential against many plant and animal pathogens. Presently, exploration of these genera with antagonistic property for disease management of aquaculture system is gaining more importance to overcome the use of antibiotics and related resistance issues. Rapid screening and identification of these genera from diverse bacterial populations by conventional methods is laborious, cost-intensive, and time-consuming. To overcome these limiting factors, in the present study, a colony multiplex PCR (cmPCR) method was developed and evaluated for the rapid detection of Bacillus and Pseudomonas. The technique amplifies the partial 16S rRNA gene of Bacillus and Pseudomonas with a product size of ~1,100 and ~375 bp, respectively, using single forward (BSF2) and two reverse primers (PAGSR and BK1R). Reliability of the cmPCR method was confirmed by screening 472 isolates obtained from ten different eco-stations, of which 133 isolates belonged to Bacillus and 32 to Pseudomonas. The cmPCR method also helped to identify six different Pseudomonas spp. and 14 different Bacillus spp. from environmental samples. Of the total 472 isolates studied, 46 showed antagonistic activity, among which 63 % were Bacillus and 17.4 % were Pseudomonas. Thus, the newly developed molecular approach provides a quick, sensitive, and potential screening tool to detect novel, antagonistically important Bacillus and Pseudomonas genera for their use in aquaculture. Further, it can also act as a taxonomic tool to understand the distribution of these genera from wide ecological niches and their exploitation for diverse biotechnological applications.  相似文献   

7.
Aim: This study was undertaken to study bacterial strains obtained directly for their efficient direct control of the avocado white root rot, thus avoiding prescreening by any other possible mechanism of biocontrol which could bias the selection. Methods and Results: A collection of 330 bacterial isolates was obtained from the roots and soil of healthy avocado trees. One hundred and forty‐three representative bacterial isolates were tested in an avocado/Rosellinia test system, resulting in 22 presumptive protective strains, all of them identified mainly as Pseudomonas and Bacillus species. These 22 candidate strains were screened in a more accurate biocontrol trial, confirming protection of some strains (4 out of the 22). Analyses of the potential bacterial traits involved in the biocontrol activity suggest that different traits could act jointly in the final biocontrol response, but any of these traits were neither sufficient nor generalized for all the active bacteria. All the protective strains selected were antagonistic against some fungal root pathogens. Conclusions: Diverse bacteria with biocontrol activity could be obtained by a direct plant protection strategy of selection. All the biocontrol strains finally selected in this work were antagonistic, showing that antagonism is a prevalent trait in the biocontrol bacteria selected by a direct plant protection strategy. Significance and Impact of the Study: This is the first report on the isolation of biocontrol bacterial strains using direct plant protection strategy in the system avocado/Rosellinia. Characterization of selected biocontrol bacterial strains obtained by a direct plant protection strategy showed that antagonism is a prevalent trait in the selected strains in this experimental system. This suggests that antagonism could be used as useful strategy to select biocontrol strains.  相似文献   

8.
Endophytic bacteria live inside plant tissues without causing disease and not only promote plant growth but can also protect plants against plant pathogens. During 2010–2011 crop years, some endophytic bacteria were collected and are then biochemically and molecularly identified (16srRNA) from bean farms of East Azarbaijan, Iran. Among these bacteria isolates, four isolates from Bacillus genera and four isolates from Streptomyces genera were selected for evaluation of their ability for biocontrol of Sclerotium rolfsii in laboratory and glasshouse conditions. Except one isolate named Streptomyces parvus, the rest of isolates could significantly inhibit mycelial growth in dual culture on PDA medium. All seven selected isolates showed significant inhibition in disease treatments in glasshouse experiments. Biological traits, such as length, wet and dry weight of roots and stems in endophytic bacterial treatment showed no differences with healthy control.  相似文献   

9.
A study was carried out to test direct and indirect antagonistic effect against Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (FOC), and plant growth-promoting (PGP) traits of bacteria isolated from rhizosphere soils of chickpea (Cicer arietinum L.). A total of 40 bacterial isolates were tested for their antagonistic activity against FOC and of which 10 were found to have strong antagonistic potential. These were found to be Streptomyces spp. (five isolates) and Bacillus spp. (five isolates) in the morphological and biochemical characterisation and 16S rDNA analysis. Under both greenhouse and wilt sick field conditions, the selected Streptomyces and Bacillus isolates reduced disease incidence and delayed expression of symptoms of disease, over the non-inoculated control. The PGP ability of the isolates such as nodule number, nodule weight, shoot weight, root weight, grain yield and stover yield were also demonstrated under greenhouse and field conditions over the non-inoculated control. Among the ten isolates, Streptomyces sp. AC-19 and Bacillus sp. BS-20 were found to have more potential for biocontrol of FOC and PGP in chickpea. This investigation indicates that the selected Streptomyces and Bacillus isolates have the potential to control Fusarium wilt disease and to promote plant growth in chickpea.  相似文献   

10.
In this study, Pseudomonas species were isolated from the rhizospheres of two plant hosts: rice (Oryza sativa cultivar Pathum Thani 1) and maize (Zea mays cultivar DK888). The genotypic diversity of isolates was determined on basis of amplified rDNA restriction analysis (ARDRA). This analysis showed that both plant varieties selected for two distinct populations of Pseudomonas. The actual biocontrol and plant promotion abilities of these strains was confirmed by bioassays on fungal (Verticillum sp., Rhizoctonia solani and Fusarium sp.) and bacterial (Ralstonia solanacearum and Bacillus subtilis) plant pathogens, as well as indole-3-acetic acid (IAA) production and carbon source utilization. There was a significant difference between isolates from rice and maize rhizosphere in terms of biological control against R.  solanacearum and B.  subtilis. Interestingly, none of the pseudomonads isolated from maize rhizosphere showed antagonistic activity against R.  solanacearum. This study indicated that the percentage of pseudomonad isolates obtained from rice rhizosphere which showed the ability to produce fluorescent pigments was almost threefold higher than pseudomonad isolates obtained from maize rhizosphere. Furthermore, the biocontrol assay results indicated that pseudomonad isolated from rice showed a higher ability to control bacterial and fungal root pathogens than pseudomonad isolates obtained from maize. This work clearly identified a number of isolates with potential for use as plant growth-promoting and biocontrol agents on rice and maize.  相似文献   

11.
There is a pressing need to understand and optimize biological control so as to avoid over‐reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol‐strain, Bacillus sp. JC12GB43, and potato‐pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near‐complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out‐perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth‐rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2‐M glycerol) by up to 570%. Culture‐based assays involving macromolecule‐stabilizing (kosmotropic) compatible solutes provided proof‐of‐principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field‐relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode‐of‐behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain.  相似文献   

12.
Plant-associated microorganisms fulfill important functions for plant growth and health. Direct plant growth promotion by microbes is based on improved nutrient acquisition and hormonal stimulation. Diverse mechanisms are involved in the suppression of plant pathogens, which is often indirectly connected with plant growth. Whereas members of the bacterial genera Azospirillum and Rhizobium are well-studied examples for plant growth promotion, Bacillus, Pseudomonas, Serratia, Stenotrophomonas, and Streptomyces and the fungal genera Ampelomyces, Coniothyrium, and Trichoderma are model organisms to demonstrate influence on plant health. Based on these beneficial plant–microbe interactions, it is possible to develop microbial inoculants for use in agricultural biotechnology. Dependent on their mode of action and effects, these products can be used as biofertilizers, plant strengtheners, phytostimulators, and biopesticides. There is a strong growing market for microbial inoculants worldwide with an annual growth rate of approximately 10%. The use of genomic technologies leads to products with more predictable and consistent effects. The future success of the biological control industry will benefit from interdisciplinary research, e.g., on mass production, formulation, interactions, and signaling with the environment, as well as on innovative business management, product marketing, and education. Altogether, the use of microorganisms and the exploitation of beneficial plant–microbe interactions offer promising and environmentally friendly strategies for conventional and organic agriculture worldwide.  相似文献   

13.
A total of 137 bacterial isolates from surface sterilized root, stem, and nodule tissues of soybean were screened for their antifungal activity against major phytopathogens like Rhizoctonia bataticola, Macrophomina phaseolina, Fusarium udam, and Sclerotium rolfsii. Nine bacterial endophytes suppressed the pathogens under in vitro plate assay. These were characterized biochemically and identified at the genus level based on their partial sequence analysis of 16S rDNA. Eight of the isolates belonged to Bacillus and one to Paenibacillus. The phylogenetic relationship among the selected isolates was studied and phylogenetic trees were generated. The selected isolates were screened for biocontrol traits like production of hydrogen cyanide (HCN), siderophore, hydrolytic enzymes, antibiotics, and plant growth promoting traits like indole 3-acetic acid production, phosphate solubilization, and nitrogen fixation. A modified assessment scheme was used to select the most efficient biocontrol isolates Paenibacillus sp. HKA-15 (HKA-15) and Bacillus sp. HKA-121 (HKA-121) as potential candidates for charcoal rot biocontrol as well as soybean plant growth promotion.  相似文献   

14.
烟草根际可培养微生物多样性及防病促生菌的筛选   总被引:1,自引:0,他引:1  
【背景】根际微生物在植物根部生态系统中扮演着重要角色,影响着植物的营养吸收和健康生长。【目的】了解常年不发病烟田烤烟品种K326根际可培养微生物的多样性,筛选具有防病促生功能的菌株,为烟草病害绿色防控提供资源。【方法】采用传统培养方法对烟草根际土壤中的细菌和真菌进行分离鉴定,评价菌株的促生特性及病原菌拮抗能力,并进一步验证典型菌株对盆栽烟苗的促生效果。【结果】共获得261株微生物菌株,包括160株细菌和101株真菌。经分子鉴定,细菌中以变形菌门(Proteobacteria)和厚壁菌门(Firmicutes)为主要类群;真菌中以子囊菌门(Ascomycota)和毛霉菌门(Mucoromycota)为主要类群。在属水平上,细菌以假单胞菌属(Pseudomonas)和芽孢杆菌属(Bacillus)为主,真菌以曲霉属(Aspergillus)和青霉属(Penicillium)为主。从不同种水平上进一步选择44株细菌为代表菌株,发现它们均具有不同程度的吲哚-3-乙酸(Indole-3-Acetic Acid,IAA)产生能力,9株能够溶解有机磷,16株能够溶解无机磷,13株产生铁载体,14株产...  相似文献   

15.
Agricultural crops are severely damaged by root-knot nematodes causing extensive financial losses globally. Historically, agrochemicals have been the preferred method to combat these pests; however, threats to humans and the environment posed by these agrochemicals led to the need for developing new biocontrol agents. Importantly, the latter should adhere to biosafety regulations while being highly effective. Root-knot nematodes live in soil and thus the use of rhizobacteria such as Bacillus for biocontrol development have shown potential. Although various Bacillus species have been tested in this capacity, little is known about their secondary metabolites and the mechanisms of action responsible for their nematicidal activity. If these secondary metabolites can be qualitatively and quantitatively characterised, metabolic features could be synthetically engineered and used to combat root-knot nematodes. Although there is great potential for bionematicides, the commercialisation and development of such products can be difficult. This review summarises the importance of Bacillus species as natural antagonists of root-knot nematodes through the production of secondary metabolites. It provides an overview of the significance of root-knot nematodes in agriculture and the advances of chemical nematicides in recent years. The potential of Bacillus species as biocontrol agents, the known mechanisms of action responsible for the nematicidal activity demonstrated by Bacillus species, non-target effects of biocontrol agents and the commercialisation of Bacillus-based bionematicides are discussed.  相似文献   

16.
Maize (Zea mays L.), a major crop in Argentina and a staple food around the world, is affected by the emergence and re-emergence of foliar diseases. Agrochemicals are the main control strategy nowadays; however, they can cause resistance in insects and microbial pathogens and have negative effects on the environment and human health. An emerging alternative is the use of living organisms, i.e. microbial biocontrol agents, to suppress plant pathogen populations. This is a risk-free approach when the organisms acting as biocontrol agents come from the same ecosystem as the foliar pathogens they are meant to antagonize. Some epiphytic microorganisms may form biofilm by becoming aggregated and attached to a surface, as is the case of spore-forming bacteria from the genus Bacillus. Their ability to sporulate and their tolerance to long storage periods make them a frequently used biocontrol agent. Moreover, the biofilm that they create protects them against different abiotic and biotic factors and helps them to acquire nutrients, which ensures their survival on the plants they protect. This review analyzes the interactions that the phyllosphere-inhabiting Bacillus genus establishes with its environment through biofilm, and how this lifestyle could serve to design effective biological control strategies.  相似文献   

17.
Fungal infection represents a severe problem that decreases the yield and market value of fruit crops. The use of fungicides is a conventional method to control infections but it is associated with disadvantages, such as hazardous impact on public health, environmental contamination, resistance development among pathogens and high cost of agrochemicals. Biological control is an alternative approach for the treatment of fungal infections. The species of Bacillus, Pseudomonas, Enterobacter, Pantoea, Burkholderia, Lysobacter and Serratia have been successfully used in the control of fungal infections. The mechanisms involved in biocontrol are hyperparasitism or predation, production of antibiotics, lytic enzymes and induction of host resistance. Lactic acid bacteria have been used as biopreservative organisms in food and feed systems. They are a cluster of Gram-positive bacteria and include species of the genera Enterococcus, Lactobacillus, Leuconostoc, Lactococcus and Pediococcus. The ability to produce several antibacterial and antifungal substances confers biopreservation potential to lactic acid bacteria. Many have ‘generally regarded as safe’ status and are considered as safe from both human and environmental points of view. Their isolation is reported from vegetables, aerial plant surfaces, pickled cabbage, grass silage, malted cereals and also from soil. They produce antifungal substances, such as cyclic dipeptides, proteinaceous compounds, organic acids, fatty acids and reuterin. The biocontrol potential of lactic acid bacteria is demonstrated in the prevention of fungal infections of fruits, such as apples and grapes. Thus, living cells or product formulations of antifungal lactic acid bacteria may be prepared and used as an alternative biocontrol technology.  相似文献   

18.
Non-pathogenic soil bacteria living in association with roots of higher plants enhance their adaptive potential and thus could be beneficial for their growth. Here, we present the current status of the use of Bacillus subtilis in biocontrol. Rhizobacteria are found in the rhizosphere. Plant growth promoting rhizobacteria (PGPR) strains, such as Bacillus and Pseudomonas, were isolated by using Nutreint dextrose Agar medium or Potato Dextrose Agar medium. The selection of PGPR strains was done by duel culture methods against the potato pathogens. The interaction of PGPR (Bacillus) with potato seeds or vegetative parts show promising antagonism by virtue of producing siderophore and antibiotics against black scurf and stem canker diseases of potato caused by Rhizoctonia solani, thereby resulting in increase of potato yield. The effectiveness of PGPR strain (Bacillus spp.) in improving the yield of potato in greenhouse conditions and in the field was observed.  相似文献   

19.
Recent and substantial yield losses of Styrian oil pumpkin (Cucurbita pepo L. subsp. pepo var. styriaca Greb.) are primarily caused by the ascomycetous fungus Didymella bryoniae but bacterial pathogens are frequently involved as well. The diversity of endophytic microbial communities from seeds (spermosphere), roots (endorhiza), flowers (anthosphere), and fruits (carposphere) of three different pumpkin cultivars was studied to develop a biocontrol strategy. A multiphasic approach combining molecular, microscopic, and cultivation techniques was applied to select a consortium of endophytes for biocontrol. Specific community structures for Pseudomonas and Bacillus, two important plant-associated genera, were found for each microenvironment by fingerprinting of 16S ribosomal RNA genes. All microenvironments were dominated by bacteria; fungi were less abundant. Of the 2,320 microbial isolates analyzed in dual culture assays, 165 (7%) were tested positively for in vitro antagonism against D. bryoniae. Out of these, 43 isolates inhibited the growth of bacterial pumpkin pathogens (Pectobacterium carotovorum, Pseudomonas viridiflava, Xanthomonas cucurbitae); here only bacteria were selected. Microenvironment-specific antagonists were found, and the spermosphere and anthosphere were revealed as underexplored reservoirs for antagonists. In the latter, a potential role of pollen grains as bacterial vectors between flowers was recognized. Six broad spectrum antagonists selected according to their activity, genotypic diversity, and occurrence were evaluated under greenhouse conditions. Disease severity on pumpkins of D. bryoniae was significantly reduced by Pseudomonas chlororaphis treatment and by a combined treatment of strains (Lysobacter gummosus, P. chlororaphis, Paenibacillus polymyxa, and Serratia plymuthica). This result provides a promising prospect to biologically control pumpkin diseases.  相似文献   

20.
Until recently, the majority of research on the biological control of aerial plant diseases was focused on control of bacterial pathogens. Such research led to the commercialization of the biocontrol agent Pseudomonas fluorescens A506, as BlightBan A506™, for control of fire blight of pear. In contrast, chemical fungicides typically have provided adequate control of most foliar fungal pathogens. However, fungicide resistance problems, concerns regarding pesticide residues and revocation of registration of certain widely used fungicides have led to increased activity in the development of biocontrol agents of foliar fungal pathogens. Much of this activity has centered around the use of Trichoderma spp and Gliocladium spp to control Botrytis cinerea on grape and strawberry. The biocontrol agent Trichoderma harzianum T39 is commercially available in Israel, as Trichodex ™, for control of grey mold in grapes and may soon be registered for use in the US. Also targeted primarily against a foliar disease of grapes, in this case powdery mildew caused by Uncinula necator, is the biocontrol agent Ampelomyces quisqualis AQ10, marketed as AQ10  TM biofungicide. Another promising development in the area of foliar disease control, though one which is not yet commercialized, is the use of rhizobacteria as seed treatments to induce systemic resistance in the host plant, a strategy which can protect the plant against a range of bacterial and fungal pathogens. Received 06 February 1997/ Accepted in revised form 05 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号