首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of the zinc ion concentration is physiologically important to control the activities of a variety of cellular molecules. A BLAST search against a conserved domain of known zinc transporters identified twelve putative zinc transporter family genes in the Dictyostelium genome. Phylogenetic analysis revealed the presence of three zinc transporter subfamilies in Dictyostelium. One subfamily of proteins, consisting of the ZntA-D proteins, has weak homology to the STAT3-inducible LIV-1 protein. In addition, in situ hybridization revealed that the zntA-D genes are expressed in the pstAB cells, this expression being absent in the Dd-STATa null mutant. Thus, Dd-STATa may control stalk cell differentiation through some members of the zinc transporter family genes during Dictyostelium development.  相似文献   

2.
3.
4.
5.
A key step in the development of all multicellular organisms is the differentiation of specialized cell types. The eukaryotic microorganism Dictyostelium discoideum provides a unique experimental system for studying cell-type determination and spatial patterning in a developing multicellular organism. Unlike metazoans, which become multicellular by undergoing many rounds of cell division after fertilization of an egg, the social amoeba Dictyostelium achieves multicellularity by the aggregation of approximately 10(5) cells in response to nutrient depletion. Following aggregation, cell-type differentiation and morphogenesis result in a multicellular organism with only a few cell types that exhibit a defined patterning along the anterior-posterior axis of the organism. Analysis of the mechanisms that control these processes is facilitated by the relative simplicity of Dictyostelium development and the availability of molecular, genetic, and cell biological tools. Interestingly, analysis has shown that many molecules that play integral roles in the development of higher eukaryotes, such as PKA, STATs, and GSK-3, are also essential for cell-type differentiation and patterning in Dictyostelium. The role of these and other signaling pathways in the induction, maintenance, and patterning of cell types during Dictyostelium development is discussed.  相似文献   

6.
7.
8.
9.
10.
11.
Glycogen synthase kinase-3 (GSK-3) is a key component of several signaling pathways including those regulated by Wnt and insulin ligands. Specificity in GSK-3 signaling is thought to involve interactions with scaffold proteins that localize GSK-3 regulators and substrates. This report shows that GSK-3 forms a low affinity homodimer that is disrupted by binding to Axin and Frat. Based on the crystal structure of GSK-3, we have used surface-scanning mutagenesis to identify residues that differentially affect GSK-3 interactions. Mutations that disrupt Frat and Axin cluster at the dimer interface explaining their effect on homodimer formation. Loss of the Axin binding site blocks the ability of dominant negative GSK-3 to cause axis duplication in Xenopus embryos. The Axin binding site is conserved within all GSK-3 proteins, and its loss affects both cell motility and gene expression in the nonmetazoan, Dictyostelium. Surprisingly, we find no genetic interaction between a non-Axin-binding GSK-3 mutant and T-cell factor activity, arguing that Axin interactions alone cannot explain the regulation of T-cell factor-mediated gene expression.  相似文献   

12.
Extracellular cAMP stimulates the rapid tyrosine phosphorylation and nuclear translocation of the DICTYOSTELIUM: STAT protein Dd-STATa. Here we show that it also induces serine phosphorylation by GskA, a homologue of glycogen synthase kinase-3 (GSK-3). Tyrosine phosphorylation occurs within 10 s of stimulation, whereas serine phosphorylation takes 5 min, matching the kinetics observed for the cAMP regulation of GskA. Phosphorylation by GskA enhances nuclear export of Dd-STATa. The phosphorylated region, however, is not itself a nuclear export signal and we identify a region elsewhere in the protein that mediates nuclear export. These results suggest a biphasic regulation of Dd-STATa, in which extracellular cAMP initially directs nuclear import and then, via GskA, promotes its subsequent export. It also raises the possibility of an analogous regulation of STAT nuclear export in higher eukaryotes.  相似文献   

13.
14.
Eukaryotic cell division requires the co-ordinated assembly and disassembly of the mitotic spindle, accurate chromosome segregation and temporal control of cytokinesis to generate two daughter cells. While the absolute details of these processes differ between organisms, there are evolutionarily conserved core components common to all eukaryotic cells, whose identification will reveal the key processes that control cell division. Glycogen synthase kinase 3 (GSK-3) is a major protein kinase found throughout the eukaryotes and regulates many processes, including cell differentiation, growth, motility and apoptosis. In animals, GSK-3 associates with mitotic spindles and its inhibition causes mis-regulation of chromosome segregation. Two suppressor screens in yeast point to a more general effect of GSK-3 on cell division, however the direct role of GSK-3 in control of mitosis has not been explored outside the animal kingdom. Here we report that the Dictyostelium discoideum GSK-3 orthologue, GskA, associates with the mitotic spindle during cell division, as seen for its mammalian counterparts. Dictyostelium possesses only a single GSK-3 gene that can be deleted to eliminate all GSK-3 activity. We found that gskA-null mutants failed to elongate their mitotic spindle and were unable to divide in shaking culture, but have no chromosome segregation defect. These results suggest further conservation for the role of GSK-3 in the regulation of spindle dynamics during mitosis, but also reveal differences in the mechanisms ensuring accurate chromosome segregation.  相似文献   

15.
16.
王一铮  张敏  侯连生 《生命科学》2006,18(5):457-461
本文综述了盘基网柄菌(Dictyosteliumdiscoideum)发育过程中调控细胞分化及细胞比例的一些信号分子,包括分化诱导因子(DIF-1、SDF-2)、糖原合成酶激酶(GSK-3)、环状亮氨酸拉链蛋白(rZIP)等,介绍了这些信号分子的功能及其作用机制。  相似文献   

17.
18.
Lissencephaly is a severe brain developmental disease in human infants, which is usually caused by mutations in either of two genes, LIS1 and DCX. These genes encode proteins interacting with both the microtubule and the actin systems. Here, we review the implications of data on Dictyostelium LIS1 for the elucidation of LIS1 function in higher cells and emphasize the role of LIS1 and nuclear envelope proteins in nuclear positioning, which is also important for coordinated cell migration during neocortical development. Furthermore, for the first time we characterize Dictyostelium DCX, the only bona fide orthologue of human DCX outside the animal kingdom. We show that DCX functionally interacts with LIS1 and that both proteins have a cytoskeleton-independent function in chemotactic signaling during development. Dictyostelium LIS1 is also required for proper attachment of the centrosome to the nucleus and, thus, nuclear positioning, where the association of these two organelles has turned out to be crucial. It involves not only dynein and dynein-associated proteins such as LIS1 but also SUN proteins of the nuclear envelope. Analyses of Dictyostelium SUN1 mutants have underscored the importance of these proteins for the linkage of centrosomes and nuclei and for the maintenance of chromatin integrity. Taken together, we show that Dictyostelium amoebae, which provide a well-established model to study the basic aspects of chemotaxis, cell migration and development, are well suited for the investigation of the molecular and cell biological basis of developmental diseases such as lissencephaly.  相似文献   

19.
20.
The GSK-3 kinases, GSK-3α and GSK-3β, have a central role in regulating multiple cellular processes such as glycogen synthesis, insulin signaling, cell proliferation and apoptosis. GSK-3β is the most well studied, and was originally described for its role in regulating glycogen synthase. GSK-3β has been studied as a participant in the oncogenic process in a variety of cancers due to its intersection with the PTEN/PI3K/AKT and RAS/RAF/MEK/ERK pathways. Dysregulated signaling through the Notch family of receptors can also promote oncogenesis. Normal Notch receptor signaling regulates cell fate determination in stem cell pools. GSK-3β and Notch share similar targets such β-catenin and the WNT pathway. WNT and β-catenin are involved in several oncogenic processes including those of the colon. In addition, GSK-3β may directly regulate aspects of Notch signaling. This review describes how crosstalk between GSK-3β and Notch can promote oncogenesis, using colon cancer as the primary example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号