首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitin pathway targets proteins for degradation through the post-translational covalent attachment of the 76 amino acid protein ubiquitin to -amino lysyl groups on substrate proteins. Two instability determinants recognized by the ubiquitin pathway in Saccharomyces cerevisiae have been identified. One is described by the N-end rule and requires specific destabilizing residues at the substrate protein N-termini along with a proximal lysyl residue for ubiquitin conjugation. The second is a linear uncleavable N-terminal ubiquitin moiety. The ability of these two determinants to function in higher plants was investigated in tobacco protoplast transient transfection assays using DNA encoding variants of well characterized reporter enzymes as substrates: firefly luciferase that is localized to peroxisomes (pxLUC), a cytosolic version of LUC (cLUC), and Escherichia coli -glucuronidase (GUS). cLUC with phenylalanine encoded at its mature N-terminus was 10-fold less abundant than cLUC with methionine at its mature N-terminus. GUS with phenylalanine encoded at its mature N-terminus was 3-fold less abundant than GUS with methionine at its mature N-terminus. The presence of a uncleavable N-terminal ubiquitin fusion resulted in 50-fold lower protein accumulation of cLUC, but had no effect on GUS. Both instability determinants had a much larger effect on cLUC than on pxLUC, suggesting that these degradation signals are either unrecognized or poorly recognized in the peroxisomes.  相似文献   

2.
Tompa P  Prilusky J  Silman I  Sussman JL 《Proteins》2008,71(2):903-909
Targeted turnover of proteins is a key element in the regulation of practically all basic cellular processes. The underlying physicochemical and/or sequential signals, however, are not fully understood. This issue is particularly pertinent in light of the recent recognition that intrinsically unstructured/disordered proteins, common in eukaryotic cells, are extremely susceptible to proteolytic degradation in vitro. The in vivo half-lives of proteins were determined recently in a high-throughput study encompassing the entire yeast proteome; here we examine whether these half-lives correlate with the presence of classical degradation motifs (PEST region, destruction-box, KEN-box, or the N-terminal residue) or with various physicochemical characteristics, such as the size of the protein, the degree of structural disorder, or the presence of low-complexity regions. Our principal finding is that, in general, the half-life of a protein does not depend on the presence of degradation signals within its sequence, even of ubiquitination sites, but correlates mainly with the length of its polypeptide chain and with various measures of structural disorder. Two distinct modes of involvement of disorder in degradation are proposed. Susceptibility to degradation of longer proteins, containing larger numbers of residues in conformational disorder, suggests an extensive function, whereby the effect of disorder can be ascribed to its mere physical presence. However, after normalization for protein length, the only signal that correlates with half-life is disorder, which indicates that it also acts in an intensive manner, that is, as a specific signal, perhaps in conjunction with the recognition of classical degradation motifs. The significance of correlation is rather low; thus protein degradation is not determined by a single characteristic, but is a multi-factorial process that shows large protein-to-protein variations. Protein disorder, nevertheless, plays a key signalling role in many cases.  相似文献   

3.
4.
The 545-residue Cln2 protein, like the other G1 cyclins of Saccharomyces cerevisiae, is a very unstable protein. This instability is thought to play a critical role in regulating cell cycle progression. The carboxyl-terminal domains of Cln2 and the other G1 cyclins contain sequences rich in Pro, Glu (and Asp), Ser, and Thr (so-called PEST motifs) that have been postulated to make up the signals that are responsible for the rapid degradation of these and other unstable proteins. To test this hypothesis, the carboxyl-terminal 178 residues of Cln2 were fused to the C terminus of a reporter enzyme, a truncated form of human thymidine kinase (hTK delta 40). The resulting chimeric protein (hTK delta 40-Cln2) retained thymidine kinase activity but was markedly less stable than hTK, hTK delta 40, or an hTK-beta-galactosidase fusion protein, as judged by enzyme assay, immunoblotting with anti-hTK antibodies, pulse-chase analysis of the radiolabeled polypeptides, and ability to support the growth of a thymidylate auxotroph (cdc21 mutant) on thymidine-containing medium. Thus, the presence of the Cln2 PEST domain was sufficient to destabilize a heterologous protein. Furthermore, the half-life of hTK delta 40-Cln2 was similar to that of authentic Cln2, and the rate of degradation of neither protein was detectably enhanced by treatments known to cause G1 arrest, including exposure of MATa haploids to alpha-factor mating pheromone and shifting cdc28ts and cdc34ts mutants to the restrictive temperature. These results suggest that the major signals responsible for Cln2 instability are confined to its C-terminal third. Because hTK delta 40-Cln2 and Cln2 were expressed from heterologous promoters yet their half-lives both in asynchronous cultures and when arrested at various cell cycle stages were always similar, the Cln2 PEST domain contains a signal for rapid protein turnover that is constitutively active and operative throughout the cell cycle. Removal of the 37 codons that encode the most prominent PEST-like segment from either hTK delta 40-Cln2 or Cln2 decreased the turnover rate of the resulting proteins, as expected; however, an hTK delta 40 chimera containing only this 37-residue segment was not detectably destabilized, suggesting that this PEST sequence, when removed from its normal context, is not a self-contained determinant of protein instability.  相似文献   

5.
Porcine circovirus type 1 (PCV1) contains two major open reading frames encoding the replication-associated proteins and the major structural capsid (Cap) protein. PCV1 Cap has an N-terminus carrying several potential monopartite or bipartite nuclear localization signals (NLS). The contribution of these partially overlapping motifs to nuclear importing was identified by expression of mutated PCVI Cap versions fused to enhanced green fluorescent protein (EGFP). The Cterminus truncated PCV1 Cap-EGFP was localized in nuclei of PK-15 cells similar to the wild-type PCV1 Cap-EGFP, whereas truncation of the N-terminus rendered the fusion protein distributed into cytoplasm, indicating that the nuclear import of PCV1 Cap was efficiently mediated by its N-terminal region. Substitutions of basic residues in stretches 9RR- RR12 or the right part of 25RRPYLAHPAFRNRYRWRRK43 resulted in a diffused distribution of the fusion protein in both nuclei and cytoplasm, indicating that the two NLSs were responsible for restricted nuclear targeting of PCV1 Cap.  相似文献   

6.
7.
Degradation of Saccharomyces cerevisiae G(1) cyclins Cln1 and Cln2 is mediated by the ubiquitin-proteasome pathway and involves the SCF E3 ubiquitin-ligase complex containing the F-box protein Grr1 (SCF(Grr1)). Here we identify the domain of Cln2 that confers instability and describe the signals in Cln2 that result in binding to Grr1 and rapid degradation. We demonstrate that mutants of Cln2 that lack a cluster of four Cdc28 consensus phosphorylation sites are highly stabilized and fail to interact with Grr1 in vivo. Since one of the phosphorylation sites lies within the Cln2 PEST motif, a sequence rich in proline, aspartate or glutamate, serine, and threonine residues found in many unstable proteins, we fused various Cln2 C-terminal domains containing combinations of the PEST and the phosphoacceptor motifs to stable reporter proteins. We show that fusion of the Cln2 domain to a stabilized form of the cyclin-dependent kinase inhibitor Sic1 (Delta N-Sic1), a substrate of SCF(Cdc4), results in degradation in a phosphorylation-dependent manner. Fusion of Cln2 degradation domains to Delta N-Sic1 switches degradation of Sic1 from SCF(Cdc4) to SCF(Grr1). Delta N-Sic1 fused with a Cln2 domain containing the PEST motif and four phosphorylation sites binds to Grr1 and is unstable and ubiquitinated in vivo. Interestingly, the phosphoacceptor domain of Cln2 binds to Grr1 but is not ubiquitinated and is stable. In summary, we have identified a small transferable domain in Cln2 that can redirect a stabilized SCF(Cdc4) target for SCF(Grr1)-mediated degradation by the ubiquitin-proteasome pathway.  相似文献   

8.
Sandhu KS  Dash D 《Proteins》2006,63(4):727-732
PEST sequences are one of the major motifs that serve as signal for the protein degradation and are also involved in various cellular processes such as phosphorylation and protein-protein interaction. In our earlier study, we found that these motifs contribute largely to eukaryotic protein disorder. This observation led us to evaluate their conformational variability in the nonredundant Protein Data Bank (PDB) structures. For this purpose, crystallographic temperature factors, structural alignment of multiple NMR models, and dihedral angle order parameters have been used in this study. The study has revealed the hypermobility of PEST motifs as compared to other regions of the protein. Conformational flexibility may allow them to participate in number of molecular interactions under different conditions. This analysis may explain the role of protein backbone flexibility in bringing about multiple cellular roles of PEST motifs.  相似文献   

9.
The cDNA sequence of rabbit motilin precursor has been determined. The predicted amino acid sequence indicates that the precursor consists of 133 amino acids and includes a 25 amino acid signal peptide followed by the 22 amino acid motilin sequence and an 86 amino acid motilin associated peptide (MAP). As in the human and porcine precursors, two lysine residues follow motilin in the rabbit sequence. Rabbit motilin shares 64% amino acid sequence identity with human and porcine motilin, and all amino acid substitutions represent conservative changes. Amino acid sequence alignments of the rabbit, human and porcine MAP sequences suggest three functional/structural motifs corresponding to a putative endoproteinase recognition site, a putative PEST site and a potential posttranslational processing recognition element.  相似文献   

10.
Singh GP  Ganapathi M  Sandhu KS  Dash D 《Proteins》2006,62(2):309-315
The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome-wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (approximately 25%). Functional classification of the PEST-containing proteins shows an over- and under-representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier.  相似文献   

11.
According to the existing model of flavivirus polyprotein processing, one of the cleavages in the amino-terminal part of the flavivirus polyprotein by host cell signalases results in formation of prM (precursor to one of the structural proteins, M) and the membrane-bound intracellular form of the viral capsid protein (Cint) retaining the prM signal sequence at its carboxy terminus. This hydrophobic anchor is subsequently removed by the viral protease, resulting in formation of the mature viral capsid protein found in virions (Cvir). We have prepared in vitro expression cassettes coding for both forms of the capsid protein, for the prM protein, for the C-prM precursor, and for the viral protease components of West Nile flavivirus and characterized their translation products. Using Cint and Cvir translation products as molecular markers, we have observed processing of the intracellular form of the West Nile capsid protein by the viral protease in vitro both upon cotranslation of the C-prM precursor and the viral protease-encoding cassette and by incubation of C-prM translation products with a detergent-solubilized extract of cells infected with a recombinant vaccinia virus expressing the active viral protease. The cleavage of Cint by the viral protease at the predicted dibasic site was verified by introduction of point mutations into the cleavage site and an adjacent region. These studies provide the first direct demonstration of processing of the intracellular form of the flavivirus capsid protein by the viral protease.  相似文献   

12.
Protein turnover is a key aspect of cellular homeostasis and proteome dynamics. However, there is little consensus on which properties of a protein determine its lifetime in the cell. In this work, we exploit two reliable datasets of experimental protein degradation rates to learn models and uncover determinants of protein degradation, with particular focus on properties that can be derived from the sequence. Our work shows that simple sequence features suffice to obtain predictive models of which the output correlates reasonably well with the experimentally measured values. We also show that intrinsic disorder may have a larger effect than previously reported, and that the effect of PEST regions, long thought to act as specific degradation signals, can be better explained by their disorder. We also find that determinants of protein degradation depend on the cell types or experimental conditions studied. This analysis serves as a first step towards the development of more complex, mature computational models of degradation of proteins and eventually of their full life cycle. Proteins 2017; 85:1593–1601. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
A putative PEST sequence was recently identified close to the N-terminus of listeriolysin O (LLO), a major virulence factor secreted by the pathogenic Listeria monocytogenes. The deletion of this motif did not affect the secretion and haemolytic activity of LLO, but abolished bacterial virulence. Here, we first tested whether the replacement of the PEST motif of LLO by two different sequences, with either a very high or no PEST score, would affect phagosomal escape, protein stability and, ultimately, the virulence of L. monocytogenes. Then, we constructed LLO mutants with an intact PEST sequence but carrying mutations on either side, or on both sides, of the PEST motif. The properties of these mutants prompted us to construct three LLO mutants carrying single amino acid substitutions in the distal portion of the PEST region (P49A, K50A and P52A; preprotein numbering). Our data demonstrate that the susceptibility of LLO to intracellular proteolytic degradation is not related to the presence of a high PEST score sequence and that the insertion of two residues immediately downstream of the intact PEST sequence is sufficient to impair phagosomal escape and abolish bacterial virulence. Furthermore, we show that single amino acid substitutions in the distal portion of the PEST motif are sufficient to attenuate bacterial -virulence significantly, unravelling the critical role of this region of LLO in the pathogenesis of L. -monocytogenes.  相似文献   

14.
Nucleolin (713 aa), a major nucleolar protein, presents two structural domains: a N-terminus implicated in interaction with chromatin and a C-terminus containing four RNA-binding domains (RRMs) and a glycine/arginine-rich domain mainly involved in pre-rRNA packaging. Furthermore, nucleolin was shown to shuttle between cytoplasm and nucleolus. To get an insight on the nature of nuclear and nucleolar localization signals, a set of nucleolin deletion mutants in fusion with the prokaryotic chloramphenicol acetyltransferase (CAT) were constructed, and the resulting chimeric proteins were recognized by anti-CAT antibodies. First, a nuclear location signal bipartite and composed of two short basic stretches separated by eleven residues was characterized. Deletion of either motifs renders the protein cytoplasmic. Second, by deleting one or more domains implicated in nucleolin association either with DNA, RNA, or proteins, we demonstrated that nucleolar accumulation requires, in addition to the nuclear localization sequence, at least two of the five RRMs in presence or absence of N-terminus. However, in presence of only one RRM the N-terminus allowed a partial targeting of the chimeric protein to the nucleolus.  相似文献   

15.
W Hunziker  C Fumey 《The EMBO journal》1994,13(13):2963-2969
An important function of the low affinity IgG Fc receptor FcRII-B2 (FcR) on macrophages is the internalization of soluble antigen-antibody complexes for lysosomal degradation. Most endocytic receptors possess tyrosine-containing cytoplasmic determinants required for endocytosis. In many proteins, signals which overlap with the endocytosis determinant and share the same critical tyrosine residue also mediate basolateral sorting in the trans-Golgi network of epithelial cells. Despite the presence of two tyrosine residues in the FcR cytosolic domain, neither one is absolutely required for coated pit localization or basolateral targeting. Nevertheless, a short domain of 13 residues containing one of the non-critical tyrosine residues mediates endocytosis and basolateral delivery. Alanine scan mutagenesis of this region now revealed a critical role of a leucine-leucine motif in both events. These findings suggest that endocytosis and basolateral sorting can be mediated by both tyrosine- and di-leucine-based signals and confirm the close relationship between the two determinants already observed for 'classical' tyrosine-dependent motifs.  相似文献   

16.
Annexins are a superfamily of calcium-dependent membrane-associated proteins which interact with phospholipids. The primary structure of Annexins I, III, VII, VIII and XI contain a region enriched in proline, glutamate, serine and threonine (PEST sequences) towards the N-terminal end while annexins II, V and VI possess PEST regions somewhat distal to the N-terminus. These PEST sequences are believed to be the signals for rapid intracellular degradation. Annexin I is known to be cleaved by calpain near its PEST region suggesting that its PEST region might be a possible calpain recognition site. Western blot analysis of annexins V and XI in rat lung homogenates suggest that these proteins are resistant to proteolysis by calpain. Annexin V was found to be stable to intrinsic lung proteases in the presence of either Ca2+ or EGTA while annexin XI was found to be partially degraded by intrinsic lung proteases in the presence of EGTA. Eight of the 10 known mammalian annexins also contain a pentapeptide sequence that is biochemically related to the KFERQ motif which is a known signal that targets protein for lysosomal proteolysis. Our data suggest that the annexins may be regulated by limited proteolysis, most likely at their N-terminal end, while most, if not all, of them might be degraded by the lysosomal pathway.  相似文献   

17.
Although neuronal axons and dendrites with their associated filopodia and spines exhibit a profound cell polarity, the mechanism by which they develop is largely unknown. Here, we demonstrate that specific palmitoylated protein motifs, characterized by two adjacent cysteines and nearby basic residues, are sufficient to induce filopodial extensions in heterologous cells and to increase the number of filopodia and the branching of dendrites and axons in neurons. Such motifs are present at the N-terminus of GAP-43 and the C-terminus of paralemmin, two neuronal proteins implicated in cytoskeletal organization and filopodial outgrowth. Filopodia induction is blocked by mutations of the palmitoylated sites or by treatment with 2-bromopalmitate, an agent that inhibits protein palmitoylation. Moreover, overexpression of a constitutively active form of ARF6, a GTPase that regulates membrane cycling and dendritic branching reversed the effects of the acylated protein motifs. Filopodia induction by the specific palmitoylated motifs was also reduced upon overexpression of a dominant negative form of the GTPase cdc42. These results demonstrate that select dually lipidated protein motifs trigger changes in the development and growth of neuronal processes.  相似文献   

18.
Protein kinases provide a platform for the integration of signal transduction networks. A key feature of transmitting these cellular signals is the ability of protein kinases to activate one another by phosphorylation. A number of kinases are predicted by sequence homology to be incapable of phosphoryl group transfer due to degradation of their catalytic motifs. These are termed pseudokinases and because of the assumed lack of phosphoryltransfer activity their biological role in cellular transduction has been mysterious. Recent structure-function studies have uncovered the molecular determinants for protein kinase inactivity and have shed light to the biological functions and evolution of this enigmatic subset of the human kinome. Pseudokinases act as signal transducers by bringing together components of signalling networks, as well as allosteric activators of active protein kinases.  相似文献   

19.
The p105 precursor protein of NF-kappaB1 acts as an NF-kappaB inhibitory protein, retaining associated Rel subunits in the cytoplasm of unstimulated cells. Tumor necrosis factor alpha (TNFalpha) and interleukin-1alpha (IL-1alpha) stimulate p105 degradation, releasing associated Rel subunits to translocate into the nucleus. By using knockout embryonic fibroblasts, it was first established that the IkappaB kinase (IKK) complex is essential for these pro-inflammatory cytokines to trigger efficiently p105 degradation. The p105 PEST domain contains a motif (Asp-Ser(927)-Gly-Val-Glu-Thr), related to the IKK target sequence in IkappaBalpha, which is conserved between human, mouse, rat, and chicken p105. Analysis of a panel of human p105 mutants in which serine/threonine residues within and adjacent to this motif were individually changed to alanine established that only serine 927 is essential for p105 proteolysis triggered by IKK2 overexpression. This residue is also required for TNFalpha and IL-1alpha to stimulate p105 degradation. By using a specific anti-phosphopeptide antibody, it was confirmed that IKK2 overexpression induces serine 927 phosphorylation of co-transfected p105 and that endogenous p105 is also rapidly phosphorylated on this residue after TNFalpha or IL-1alpha stimulation. In vitro kinase assays with purified proteins demonstrated that both IKK1 and IKK2 can directly phosphorylate p105 on serine 927. Together these experiments indicate that the IKK complex regulates the signal-induced proteolysis of NF-kappaB1 p105 by direct phosphorylation of serine 927 in its PEST domain.  相似文献   

20.
During Blastocladiella emersonii germination, the regulatory (R) and the catalytic (C) subunits of the cAMP-dependent protein kinase (PKA) are rapidly and concurrently degraded, after PKA activation in response to a transient increase in intracellular cAMP levels. The possibility that PEST sequences could be acting as proteolytic recognition signals in this process was investigated, and high score PEST sequences were found in both B. emersonii R and C subunits. Deletions in the PEST sequences were obtained by site-directed mutagenesis and the different PKA subunits were independently expressed in Escherichia coli. Proteolysis assays of the various R and C recombinant forms, using B. emersonii cell extracts as the source of proteases, showed a strong correlation between the presence of high score PEST sequences and susceptibility to degradation. Furthermore, the amino-terminal sequence of the proteolytic fragments indicated that the cleavage sites in both subunits are located at or near the PEST regions. The PEST sequence in B. emersonii C subunit, which when deleted or disrupted leads to resistance to proteolysis, is entirely contained in the 72-amino-acid extension located in the N-terminus of the protein. C subunit mutants carrying deletions in this region displayed little difference in their kinetic properties or enzyme thermostability. These results suggest that the N-terminal extension may only play a role in C subunit degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号