首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
大团囊虫草是一类寄生型真菌,绝大多数以大团囊菌为宿主,只有3个种寄生在甲虫和蝉的幼虫体内。我们从采集自中国五个省份和南极长城站的42份地衣标本中分离得到了64株大团囊虫草属真菌菌株,系统发育学分析表明,这些真菌可能不是相同的种类,显示有多个种类的大团囊虫草属真菌广泛定植于地衣体中。与高等植物共生的内生真菌通常对宿主的生长起到促进作用,然而,由于地衣内生真菌生长所需营养物质来源于地衣共生真菌或光合共生物,因此地衣内生真菌与共生真菌之间很有可能是寄生关系或竞争关系。本研究发现大团囊虫草广泛伴生在地衣体内,部分证实了这一假说的正确性。  相似文献   

2.
讨论了菌物、真菌和地衣的概念,它们的生物多样性,地衣型真菌的系统生物学及其三大存取系统.同时,对地衣资源研究进行了展望.  相似文献   

3.
《真菌系统》为中国科学院微生物研究所真菌地衣系统学开放研究实验室年报, 是报导关于地衣型与非地衣型真菌系统与演化研究论文的定期出版物.  相似文献   

4.
《菌物系统》2008,27(2):I0001
中国科学院真菌、地衣系统学重点实验室是1985年成立的中国科学院第一批开放实验室之一,是我国唯一对真菌地衣进行全面的分类学和系统学研究的科研机构。实验室在我国生物多样性研究的基础上,开展真菌地衣重要类群的分类、系统和进化生物学研究,揭示真菌地衣的物种起源与演化的基本规律,真菌与其它生物间的相互作用和协同进化机制;同时开展真菌地衣资源储备和建立资源评价体系,为人口与健康、农业可持续发展和生态环境等国民经济建设作出贡献。  相似文献   

5.
地衣之歌     
地衣,是生物多样性及其资源的重要组成,它几乎遍布地球陆地的各个角落。世界已知地衣约14000种,中国已知地衣约2000种。那么,究竟什么是地衣呢?人们经历了一个漫长的认识过程。分类学奠基人林奈,将地衣看成单一的植物,与苔藓、藻类归在一起。1867年德国一位科学家首先揭示了地衣的二元性,即地衣不是单一的绿色植物,而是由真菌与藻类组成的复合体。1890年芬兰的Vainio首次认识到地衣是属于真菌。因此,从一般生态学观点出发,地衣是真菌与藻类共生联合组成的结构特殊、形态稳定的复合体。从分类学概念出发,  相似文献   

6.
魏江春 《菌物学报》2018,37(7):811-811
正地衣曾被认为是低等植物或孢子植物。实际上,它并非植物,而是地球生物圈内生态系统中地衣型真菌与相应的藻类或蓝细菌结成稳定的胞外共生的生态群落。每一个共生的生态群落都是由一种地衣型真菌作为建群种和一种相应的藻类或蓝细菌作为伴生种所组成。所谓地衣型真菌,是指这些真菌只能在和相应的藻类或蓝细菌处于稳定共生状态下才能存活于自然界。除此而外,该共生群落中有时还伴有生长在地衣体外表的外生真菌;生  相似文献   

7.
地衣是一种独特的菌藻共生体,能够在荒漠、高山、冻土等恶劣环境生存,具有特殊的生理结构和独特的生存环境.地衣及其内生真菌能够产生结构新颖、活性广泛的次级代谢产物,研究地衣及其内生真菌次级代谢产物对新型药用资源开发以及利用等方面都具有重要的意义.本文关注了近年来地衣及其内生真菌的次级代谢产物相关研究,并对其生物活性方面的研...  相似文献   

8.
以蜈蚣衣属、黑蜈蚣衣属地衣样品为材料,结合GenBank中相关数据,对地衣型真菌核糖体小亚基 DNA上的I型内含子分布模式进行归纳,并探讨了其在地衣型真菌系统发育研究中的应用。结果表明在地衣型真菌核糖体小亚基 DNA上存在多个I型内含子插入位点,通过二级结构分析给出了天然状态下I型内含子发生转座的证据。分析显示,I型内含子作为分子标记,只适合用于种下单位的系统发育研究中。  相似文献   

9.
1 引  言在干旱半干旱草原生态系统中,地衣是植物群落中的一个重要组成部分.地衣是真菌和具有光合功能的藻类的共生体,共生光合生物通过光合作用为自身和共生真菌提供碳水化合物,共生真菌为共生光合生物提供物理保护、水和矿物元素[9] .地衣芽枝可通过截获风蚀物质而增加土壤表面粗糙度,有利于积蓄降水和养分[1] ,地衣的共生真菌菌丝可以通过分泌粘质物而改善土壤团粒结构[3 ] .另外,地衣还可有效地分解矿物元素,同时还有较强的固氮功能[9,17] ,地衣不仅影响土壤的理化性状而且对维管植物也有潜在的影响.因此,地衣在草原生态系统中可促进…  相似文献   

10.
赵能  原晓龙  华梅  李苏雨  王娟  王毅 《广西植物》2017,37(2):242-247
地衣是一种传统的民族药物,能产生多种具有活性的物质。该研究对地衣型真菌(Xanthoria elegans,Myelochroa indica,Ramalina peruviana,Cladonia macilenta,Nephromopsis pallescens,Cladonia coccifera)进行液体培养,2个月后,培养液用乙酸乙酯萃取后获得初提物。该研究采用抑菌圈法评价地衣型真菌初提物对7种致病细菌(Bacillus subtilis,Bacillus cereus,Vibrio parahaemolyticus,Straphylococcus haemolyticus,Pseudomonas aeruginosa,Staphylococcus aureus,Micrococcus luteus)的抗菌活性,并测定最低抑菌浓度(MIC)。结果表明:6种地衣型真菌的初提物均具有一定的抗菌活性,且不同培养基对地衣型真菌产生抗菌物质有显著影响。其中,R.peruviana在MY液体培养基中所产生的次级代谢产物对金黄色葡萄球菌、藤黄微球菌、溶血性葡萄球菌、铜尿假单胞菌具有抑制效果,但在YMG培养基中所得初提物对供试7种致病细菌不具有抑菌效果。X.elegans在YMG培养基中所得初提物对枯草芽孢杆菌具有明显抗菌活性,其抑菌圈直径可达17.77 mm。该研究证实不同地衣型真菌液体培养初提物具有抗菌活性,不同的培养基也直接影响地衣型真菌抗菌效果。该研究结果为地衣型真菌的进一步研究及民族药的开发利用奠定了基础。  相似文献   

11.
Patterns and regulation of mycorrhizal plant and fungal diversity   总被引:20,自引:1,他引:19  
The diversity of mycorrhizal fungi does not follow patterns of plant diversity, and the type of mycorrhiza may regulate plant species diversity. For instance, coniferous forests of northern latitudes may have more than 1000 species of ectomycorrhizal (EM) fungi where only a few ectomycorrhizal plant species dominate, but there are fewer than 25 species of arbuscular mycorrhizal (AM) fungi in tropical deciduous forest in Mexico with 1000 plant species. AM and EM fungi are distributed according to biome, with AM fungi predominant in arid and semiarid biomes, and EM fungi predominant in mesic biomes. In addition, AM fungi tend to be more abundant in soils of low organic matter, perhaps explaining their predominance in moist tropical forest, and EM fungi generally occur in soils with higher surface organic matter.EM fungi are relatively selective of host plant species, while AM tend to be generalists. Similar morphotypes of AM fungi collected from different sites confer different physiological benefits to the same plant species. While the EM fungi have taxonomic diversity, the AM fungi must have physiological diversity for individual species to be so widespread, as supported by existing studies. The environmental adaptations of mycorrhizal fungi are often thought to be determined by their host plant, but we suggest that the physiology and genetics of the fungi themselves, along with their responses to the plant and the environment, regulates their diversity. We observed that one AM plant species,Artemisia tridentata, was associated with different fungal species across its range, indicating that the fungi can respond to the environment directly and must not do so indirectly via the host. Different species of fungi were also active during different times of the growing season on the same host, again suggesting a direct response to the environment.These patterns suggest that even within a single functional group of microorganisms, mycorrhizal fungi, considerable diversity exists. A number of researchers have expressed the concept of functional redundancy within functional groups of microorganisms, implying that the loss of a few species would not be detectable in ecosystem functioning. However, there may be high functional diversity of AM fungi within and across habitats, and high species diversity as well for EM fungi. If one species of mycorrhizal fungus becomes extinct in a habitat, field experimental data on AM fungi suggest there may be significant shifts in how plants acquire resources and grown in that habitat.  相似文献   

12.
《Mycoscience》2020,61(6):331-336
To understand how ectomycorrhizal (ECM), wood-decomposing (WDC) and litter-decomposing (LDC) fungi differ in abundance and fruiting season, fruiting-body production was monitored by counting their number and/or measuring their biomass in deciduous broad-leaved and coniferous forests in Ishikawa (central Japan) and Hokkaido (northern Japan). ECM fungi were dominant in forests of both types in Ishikawa and a Larix kaempheri forest in Tomakomai (Hokkaido), whereas WDC fungi were dominant in a deciduous broad-leaved forest in Sapporo (Hokkaido). ECM and WDC fungi usually showed two abundance peaks in Kanazawa (Ishikawa), mid-summer and autumn for ECM fungi and spring or summer and autumn for WDC fungi, whereas LDC fungi usually showed one peak in autumn. In Tomakomai, the abundance peak appeared later in ECM fungi but earlier in LDC and WDC fungi in comparison with Kanazawa. The mode of resource acquisition is assumed as one of factors that affect the seasonal timing of fruiting-body production. On the other hand, highly positive correlations were often observed between precipitation in Jun or Aug and the fruiting-body production in summer and/or autumn in the survey in Kanazawa, suggesting that precipitation could affect the fruiting-body production a few months later.  相似文献   

13.
The initiation of a programme of screening and selection of arbuscular-mycorrhizal fungi (AM fungi) and ectomycorrhizal fungi (ECM fungi) for use as inoculant fungi in agriculture, horticulture of forestry will depend on whether inoculation is more appropriate as a management option than manipulation of the indigenous mycorrhizal populations. The greatest immediate potential for the successful use of mycorrhizal inoculants will be in soils and growth media where phosphorus (P) limits plant growth and where the indigenous mycorrhizal fungi are either ineffective at increasing P uptake by the plant or their numbers have been drastically reduced by human influence or natural disturbance. In recent investigations, however, additional benefits to the plant following colonization of roots by effective AM or ECM fungi have been demonstrated. These additional benefits of an effective mycorrhizal association have necessitated a re-evaluation of the optimum screening procedures for isolates of AM and ECM fungi. Both current methodologies and suggestions for alternative approaches to the screening of AM and ECM fungi are discussed in this paper. The problems inherent in choosing suitable experimental conditions to compare different isolates at the screening stage are also addressed. The review also stresses the importance of continued monitoring of introduced mycorrhizal fungi to learn more about their longer-term ecological role, particularly within reforestation or revegetation studies.  相似文献   

14.
以河南郑州和江苏徐州采集到的杜仲为材料,采用纯培养方法对杜仲内生真菌进行分离。将分离纯化得到的90株真菌通过形态学鉴定并进行多样性分析,90株内生真菌分别属于13个属,其中茎点霉属(Phoma)和链格孢属(Alternaria)为优势菌群,分别占总菌株数的18%和16%;其次为黑孢属(Nigrospora)和枝孢属(Cladosporium),均占总菌株数的10%。用平板对峙法对分离得到的杜仲内生真菌进行抗植物病原真菌实验,发现有18个菌株对至少一种病原真菌具有明显的拮抗作用。通过比色法进行内生真菌产IAA(吲哚乙酸)定性实验,结果显示,有37株真菌具有产IAA能力,通过分光光度法对这37株真菌进行产IAA定量实验,发现有8株有较好的产IAA活性。  相似文献   

15.
Arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi are ubiquitous in grass roots, but their colonizations may vary according to latitudinal gradient and site conditions. We investigated how vegetation zone (boreal vs. subarctic), humus thickness, and site openness affect root fungal colonizations of the grass Avenella flexuosa. More precisely, we hypothesized that AM and DSE fungal colonizations would have different responses to environmental conditions such that AM fungi could be more common in boreal zone, whereas we expected DSE fungi to be more affected by the amount of humus. We found site openness to affect AM and DSE fungi in a contrasting manner, in interaction with the vegetation zone. AM colonization was high at open coastal dunes, whereas DSE fungi were more common at forested sites, in the boreal zone. Humus thickness affected AM fungi negatively and DSE fungi positively. To conclude, the observed AM and DSE fungal colonization patterns were largely contrasting. AM fungi were favored in seashore conditions characterized by thin humus layer, whereas DSE fungi were favored in conditions of higher humus availability.  相似文献   

16.
The foraging behavior and survivorship of termites are modified by the presence of wood-inhabiting fungi. Nonetheless, it is not clear if these interactions are beneficial, negative, or neutral for termites. We conducted a meta-analytical review to determine if the presence of wood-inhabiting fungi affects the foraging behavior and survivorship of termites. Overall, the presence of wood-inhabiting fungi in a resource used by termites was positive, increasing resource consumption by 120%, and aggregation behavior by 81%. The presence of fungi also increased termite trail-following by approximately 200% and increased survival by 136%. The results varied, however, according to the type of fungi evaluated. Decay fungi and sap-stain fungi elicited positive responses in termites, whereas molds did not affect the consumption of cellulose by termites. Amongst the decay fungi group, white-rot fungi caused the strongest and most positive response in all termite behaviors evaluated, although brown-rot fungi is known to be preferred by termites. The results of our study, therefore, suggest that wood-inhabiting fungi are potential facilitators of the foraging behavior and survivorship of termites. These results have great implications for termite biocontrol, as well as for knowledge of the ecological aspects of termite–fungi interactions.  相似文献   

17.
培菌白蚁起源于非洲,蚁巢内具有复杂的社会分工.培菌白蚁依靠独特的蚁巢结构维持内部稳态和气体循环.菌圃是白蚁培育鸡枞菌的场所.鸡枞菌隶属于担子菌亚门,但其传播方式和生活史具有区别于其它担子菌的特点.鸡枞菌协助白蚁进行植物纤维的消化,白蚁则为鸡枞菌提供合适的生长环境,并控制鸡枞菌的遗传结构.培菌白蚁和鸡枞菌形成紧密的共生关系,二者缺少任何一方都不能独立生存.本文综述了培菌白蚁的分类、品级、蚁巢结构,鸡枞菌的传播方式和生活史,白蚁与鸡枞菌的共生关系等,以期望为培菌白蚁生物学及鸡枞菌的研究提供有益参考.  相似文献   

18.
Fungi associated with the decomposition of Nypa fruticans in Malaysia are under investigation. Forty-one fungi have been identified including 35 ascomycetes, four mitosporic fungi and two basidiomycetes. The distribution of intertidal fungi on palm structures including leaves, leaf veins, rachides, petiole bases, and inflorescences, and fungi on terrestrial parts have also been examined. No fungi were found on the leaf material, although several fungi were found on the leaf midribs, and possible reasons for this are given. Very few taxa developed on the inflorescences, but those that were present were abundant. The greatest density of fruiting structures occurred on the rachides, and the greatest diversity of fungal species occurred on the petiole bases. The terrestrial fungi differed from the intertidal fungi, although Linocarpon nipae occurred in both habitats. Reasons for the differences in fungal numbers and diversity on the various palm parts are discussed. The diversity of fungi at Morib mangrove was low when compared to previous studies on fungi on Nypa palm at Kampong Api Api in Brunei and in this study at Kuala Selangor mangrove in Malaysia.  相似文献   

19.
Thirtyfive siderophore producing fungi were categorized for their hydroxamate, catecholate or carboxylate nature by chemical and bioassays. Out of 35 fungi, 30 were hydroxamates and 5 showed carboxylate nature. However, none of the fungi produced catecholate type of siderophores. Eighteen out of 29 fungi were trihydroxamate and the rest 11 fungi were dihydroxamates. Twenty-three fungi were hexadentate and 6 were tetradentate in nature. Quantification of siderophores using standard compounds deferrioxamine mesylate and rhizoferrin revealed that Phanerochaete chrysosporium produced maximum among the hydroxamate producing fungi and Mycotypha africana resulted maximum among the carboxylate producing fungi.  相似文献   

20.
Abstract Interspecific mycelial interactions among brown-rot fungi resulted in either deadlock or replacement of one fungus by the other. Similarly, most of the brown-rot fungi deadlocked with some or all of the whitre-rot fungi tested, while a few were able to replace some of the white-rot fungi. The results indicate similarities in interspecific mycelial interactions among brown-rot fungi and between brown-rot and white-rot fungi. The results further suggest that some brown-rot fungi are capable of invading and occupying domains within white-rot fungal communities in decaying wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号