首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contrasting effects on the stomatal index (SI), stomatal density,epidermal cell size and number were observed in four chalk grasslandherbs (Sanguisorba minor Scop., Lotus corniculatus L., Anthyllisvulneraria L. and Plantago media L.) following exposure to elevatedcarbon dioxide concentrations (CO2) in controlled environmentgrowth cabinets. SI of S. minor increased for both leaf surfaces,whilst in A. vulneraria and P. media SI decreased on one surfaceonly. In L. corniculatus , no differences in SI were observedas epidermal cell density changed in parallel with stomataldensity. In L. corniculatus and S. minor stomatal density increasedon both surfaces, whereas in P. media it decreased; in A. vulnerariastomatal density decreased on the abaxial leaf surface alonefollowing exposure to elevated CO2. In the latter three species,SI changed because stomatal density did not change in parallelwith epidermal cell density. The results suggest elevated CO2is either directly or indirectly affecting cell differentiationand thus stomatal initiation in the meristem. In S. minor and P. media leaf growth increased in elevated CO2,because of increased cell expansion of epidermal cells, whereasin L. corniculatus, epidermal cell size decreased and greaterleaf growth was because of an increase in epidermal cell divisions.In A. vulneraria, leaf size did not change, but increased cellexpansion on the adaxial surface suggests CO2 affects leaf surfacesdifferently, either directly or indirectly at the cell differentiationstage or as the leaf grows. These results suggest component species of a plant communitymay differ in their response to elevated CO2. Predicting theeffect of environmental change is therefore difficult.Copyright1994, 1999 Academic Press Elevated CO2, Sanguisorba minor (salad burnet), Lotus corniculatus (birdsfoot trefoil), Anthyllis vulneraria (kidney vetch), Plantago media (hoary plantain), stomatal index, stomatal density, epidermal cell size  相似文献   

2.
We investigated the responses of model calcareous grassland communities to three CO2concentrations: 330, 500, and 660 μL L-1, The communities were composed of six species, Bromus erectus Hudson, Festuca ovina L., Prunella vulgaris L., Prunella grandiflora (L.) Scholler, Hieracium pilosella L., and Trifolium repens L., that are native to the calcareous grasslands of Europe. Genotypic variation in CO2 response was studied in Bromus erectus and Festuca ovina. Plants were harvested after c. 126 days of growth. We found that:
    相似文献   

3.
Seed production and seed quality in a calcareous grassland in elevated CO2   总被引:2,自引:1,他引:1  
In diverse plant communities the relative contribution of species to community biomass may change considerably in response to elevated CO2. Along with species‐specific biomass responses, reproduction is likely to change as well with increasing CO2 and might further accelerate shifts in species composition. Here, we ask if, after 5 years of CO2 exposure, seed production and seed quality in natural nutrient‐poor calcareous grassland are affected by elevated CO2 (650 μ L L?1 vs 360 μ L L?1) and how this might affect long‐term community dynamics. The effect of elevated CO2 on the number of flowering shoots (+ 24%, P < 0.01) and seeds (+ 29%, P = 0.06) at the community level was similar to above ground biomass responses in this year, suggesting that the overall allocation to sexual reproduction remained unchanged. Compared among functional groups of species we found a 42% increase in seed number (P < 0.01) of graminoids, a 33% increase (P = 0.07) in forbs, and no significant change in legumes (? 38%, n.s.) under elevated CO2. Large responses particularly of two graminoid species and smaller responses of many forb species summed up to the significant or marginally significant increase in seed number of graminoids and forbs, respectively. In several species the increase in seed number resulted both from an increase in flowering shoots and an increase in inflorescence size. In most species, seeds tended to be heavier (+ 12%, P < 0.01), and N‐concentration of seeds was significantly reduced in eight out of 13 species. The fraction of germinating seeds did not differ between seeds produced in ambient and elevated CO2, but time to germination was significantly shortened in two species and prolonged in one species when seeds had been produced in elevated CO2. Results suggest that species specific increases in seed number and changes in seed quality will exert substantial cumulative effects on community composition in the long run.  相似文献   

4.
Elevated atmospheric carbon dioxide concentrations ([CO2]) generally increase plant photosynthesis in C3 species, but not in C4 species, and reduce stomatal conductance in both C3 and C4 plants. In addition, tissue nitrogen concentration ([N]) often fails to keep pace with enhanced carbon gain under elevated CO2, particularly in C3 species. While these responses are well documented in many species, implications for plant growth and nutrient cycling in native ecosystems are not clear. Here we present data on 18 years of measurement of above and belowground biomass, tissue [N] and total standing crop of N for a Scirpus olneyi‐dominated (C3 sedge) community, a Spartina patens‐dominated (C4 grass) community and a C3–C4‐mixed species community exposed to ambient and elevated (ambient +340 ppm) atmospheric [CO2] in natural salinity and sea level conditions of a Chesapeake Bay wetland. Increased biomass production (shoots plus roots) under elevated [CO2] in the S. olneyi‐dominated community was sustained throughout the study, averaging approximately 35%, while no significant effect of elevated [CO2] was found for total biomass in the C4‐dominated community. We found a significant decline in C4 biomass (correlated with rising sea level) and a concomitant increase in C3 biomass in the mixed community. This shift from C4 to C3 was accelerated by the elevated [CO2] treatment. The elevated [CO2] stimulation of total biomass accumulation was greatest during rainy, low salinity years: the average increase above the ambient treatment during the three wettest years (1994, 1996, 2003) was 2.9 t ha−1 but in the three driest years (1995, 1999, 2002), it was 1.2 t ha−1. Elevated [CO2] depressed tissue [N] in both species, but especially in the S. olneyi where the relative depression was positively correlated with salinity and negatively related with the relative enhancement of total biomass production. Thus, the greatest amount of carbon was added to the S. olneyi‐dominated community during years when shoot [N] was reduced the most, suggesting that the availability of N was not the most or even the main limitation to elevated [CO2] stimulation of carbon accumulation in this ecosystem.  相似文献   

5.
Genetic variation within plant species in their response to elevated CO2 could be important for long‐term changes in plant community composition because it allows for selection of responsive genotypes. Six years of in situ CO2 enrichment in a temperate grassland offered a unique opportunity to investigate such microevolutionary changes in a common herb of that plant community, Sanguisorba minor. Plants were grown from seeds collected at the end of a 6‐year treatment in either ambient or elevated CO2. The resulting seedlings were grown under ambient or elevated CO2 and with or without interspecific competition by Bromus erectus in the greenhouse for two seasons. The effect of competition was included because we expected selection under elevated CO2 to favour increased competitive ability. Elevated CO2 in the greenhouse and competition both caused a significant reduction of the total dry mass in S. minor, by 12% and 40%, respectively, with no interaction between CO2 and competition. Genetic variation in all traits was substantial. Seed families responded differently to competition, but the family × greenhouse CO2 interaction was rather weak. There was no main effect of the field CO2 treatment on any parameter analysed in the greenhouse. However, the field CO2 treatment did significantly interact with the greenhouse CO2 treatment for the cumulative number of leaves, suggesting microevolutionary change in this plant trait. Families from ambient field CO2 produced fewer leaves under elevated greenhouse CO2, whereas families from elevated field CO2 retained constant number of leaves in either greenhouse CO2 treatment. Since this resulted in increased litter production of the families from elevated field CO2 under elevated greenhouse CO2, the microevolutionary response should, in turn, affect ecosystem functions through dry matter recycling.  相似文献   

6.
The effect of elevated atmospheric CO2 concentration (Ca) on the aboveground biomass of three oak species, Quercus myrtifolia, Q. geminata, and Q. chapmanii, was estimated nondestructively using allometric relationships between stem diameter and aboveground biomass after four years of experimental treatment in a naturally fire‐regenerated scrub‐oak ecosystem. After burning a stand of scrub‐oak vegetation, re‐growing plants were exposed to either current ambient (379 µL L?1 CO2) or elevated (704 µL L?1 CO2) Ca in 16 open‐top chambers over a four‐year period, and measurements of stem diameter were carried out annually on all oak shoots within each chamber. Elevated Ca significantly increased aboveground biomass, expressed either per unit ground area or per shoot; elevated Ca had no effect on shoot density. The relative effect of elevated Ca on aboveground biomass increased each year of the study from 44% (May 96–Jan 97), to 55% (Jan 97–Jan 98), 66% (Jan 98–Jan 99), and 75% (Jan 99–Jan 00). The effect of elevated Ca was species specific: elevated Ca significantly increased aboveground biomass of the dominant species, Q. myrtifolia, and tended to increase aboveground biomass of Q. chapmanii, but had no effect on aboveground biomass of the subdominant, Q. geminata. These results show that rising atmospheric CO2 has the potential to stimulate aboveground biomass production in ecosystems dominated by woody species, and that species‐specific growth responses could, in the long term, alter the composition of the scrub‐oak community.  相似文献   

7.
Experiments were carried out to determine the effects of elevated atmospheric carbon dioxide (CO2) on phenolic biosynthesis in four plant species growing over three generations for nine months in a model plant community. Results were compared to those obtained when the same species were grown individually in pots in the same soils and controlled environment. In the model herbaceous plant community, only two of the four species showed any increase in biomass under elevated CO2, but this occurred only in the first generation for Spergula arvensis and in the second generation for Poa annua. Thus, the effects of CO2 on plant biomass and carbon and nitrogen content were species‐ and generation‐specific. The activity of the principle phenolic biosynthetic enzyme, phenylalanine ammonia lyase (PAL), increased under elevated CO2 in Senecio vulgaris only in Generation 1, but increased in three of the four plant species in Generation 2. There were no changes in the total phenolic content of the plants, except for P. annua in Generation 1. Lignin content decreased under elevated CO2 in Cardamine hirsuta in Generation 1, but increased in Generation 2, whilst the lignin content of P. annua showed no change, decreased, then increased in response to elevated CO2 over the three generations. When the species were grown alone in pots, elevated CO2 increased PAL activity in plants grown in soil taken from the Ecotron community after nine months of plant growth, but not in plants grown in the soil used at the start of the experiment (‘initial' soil). In P. annua, phenolic biosynthesis decreased under elevated CO2 in initial soil, and in both P. annua and S. vulgaris there was a significant interaction between effects of soil type and CO2 level on PAL activity. In this study, plant chemical composition altered more in response to environmental factors such as soil type than in response to carbon supply. Results were species‐specific and changed markedly between generations.  相似文献   

8.
In a field microcosm experiment, species‐specific responses of aboveground biomass of two California annual grassland communities to elevated CO2 and nutrient availability were investigated. One community grows on shallow, nutrient‐poor serpentine‐derived soil whereas the other occurs on deeper, modestly fertile sandstone/greenstone‐derived substrate. In most species, CO2 effects did not appear until late in the growing season, probably because the elevated CO2 increased water‐use‐efficiency easing, the onset of the summer drought. Responses of aboveground biomass to elevated CO2 differed depending on nutrient availability. Similarly, biomass responses to nutrient treatments differed depending on the CO2 status. For the majority of the species, production increased most under elevated CO2 with added nutrients (N,P,K, and micro nutrients). Some species were losers under conditions that increased overall community production, including Bromus hordeaceus in the serpentine community (negative biomass response under elevated CO2) and Lotus wrangelianus in both communities (negative biomass response with added nitrogen). Treatment and competitive effects on species‐specific biomass varied in both magnitude and direction, especially in the serpentine community, significantly affecting community structure. Individual resource environments are likely to be affected by neighbouring plants, and these competitive interactions complicate predictions of species' responses to elevated CO2.  相似文献   

9.
A fast growing high density Populus plantation located in central Italy was exposed to elevated carbon dioxide for a period of three years. An elevated CO2 treatment (550 ppm), of 200 ppm over ambient (350 ppm) was provided using a FACE technique. Standing root biomass, fine root turnover and mycorrhizal colonization of the following Populus species was examined: Populus alba L., Populus nigra L., Populus x euramericana Dode (Guinier). Elevated CO2 increased belowground allocation of biomass in all three species examined, standing root biomass increased by 47–76% as a result of FACE treatment. Similarly, fine root biomass present in the soil increased by 35–84%. The FACE treatment resulted in 55% faster fine root turnover in P. alba and a 27% increase in turnover of roots of P. nigra and P. x euramericana. P. alba and P. nigra invested more root biomass into deeper soil horizon under elevated CO2. Response of the mycorrhizal community to elevated CO2 was more varied, the rate of infection increased only in P. alba for both ectomycorrhizal (EM) and arbuscular mycorrhizas (AM). The roots of P. nigra showed greater infection only by AM and the colonization of the root system of P. x euramericana was not affected by FACE treatment. The results suggest that elevated atmospheric CO2 conditions induce greater belowground biomass investment, which could lead to accumulation of assimilated C in the soil profile. This may have implications for C sequestration and must be taken into account when considering long‐term C storage in the soil.  相似文献   

10.
The effects of elevated CO2 on plant biomass and community structure have been studied for four seasons in a calcareous grassland in northwest Switzerland. This highly diverse, semi-natural plant community is dominated by the perennial grass Bromus erectus and is mown twice a year to maintain species composition. Plots of 1.3 m2 were exposed to ambient or elevated CO2 concentrations (n = 8) using a novel CO2 exposure technique, screen-aided CO2 control (SACC) starting in March 1994. In the 1st year of treatment, the annual harvested biomass (sum of aboveground biomass from mowings in June and October) was not significantly affected by elevated CO2. However, biomass increased significantly at elevated CO2 in the 2nd (+20%, P = 0.05), 3rd (+21%, P = 0.02) and 4th years (+29%, P = 0.02). There were no detectable differences in root biomass in the top 8 cm of soil between CO2 treatments on eight out of nine sampling dates. There were significant differences in CO2 responsiveness between functional groups (legumes, non-leguminous forbs, graminoids) in the 2nd (P = 0.07) and 3rd (P < 0.001) years of the study. The order of CO2 responsiveness among functional groups changed substantially from the 2nd to the 3rd year; for example, non-leguminous forbs had the smallest relative response in the 2nd year and the largest in the 3rd year. By the 3rd year of CO2 exposure, large species-specific differences in CO2 response had developed. For five important species or genera the order of responsiveness was Lotus corniculatus (+271%), Carex flacca (+249%), Bromus erectus (+33%), Sanguisorba minor (no significant CO2 effect), and six Trifolium species (a negative response that was not significant). The positive CO2 responses in Bromus and Carex were most closely related to increases in tiller number. Species richness was not affected by CO2 treatment, but species evenness increased under elevated CO2 (modified Hill ratio; P = 0.03) in June of the 3rd year, resulting in a marginally significant increase in species diversity (Simpson's index; P = 0.09). This and other experiments with calcareous grassland plants show that elevated atmospheric CO2 concentrations can substantially alter the structure of calcareous grassland communities and may increase plant community biomass. Received: 12 July 1997 / Accepted: 14 September 1998  相似文献   

11.
The effects of species richness and elevated CO2 on community productivity under altered nutrient levels were studied in experimental herbaceous communities composed of species from the Midwestern United States annual community, which consists of three functional groups C3, C4 and N‐fixers. Aboveground and belowground biomass were measured at flowering stage and at the end of the experiment when fruits of most plants were ripe. At the low nutrient level, species richness did not have a significant effect on community productivity. However, at the high nutrient level, the community biomass decreased with decreasing species richness at both ambient and elevated CO2 in the first harvest, and at elevated CO2 in the second harvest. At low nutrient level, CO2 slightly increased community biomass at medium and high species richness. At high nutrient level, CO2 significantly increased community biomass in all species‐richness treatments in the first harvest, but a significant response was observed only in the high richness treatment in the second harvest. At the functional group level, biomass of C3 responded positively to CO2, and C4 responded very negatively to CO2. The N‐fixers responded positively to CO2 at low and medium species richness, but negatively at high species richness, showing a CO2×richness interaction. CO2 increased species evenness in the communities, depending on nutrient level. Species varied in the responses of light‐saturated net photosynthesis (Pmax) to elevated CO2, even within functional groups. Our findings suggest that (1) the relationship between productivity and species diversity was dependent on nutrient levels. (2) Species diversity enhances responses of communities to elevated CO2. (3) Harvest time can affect the results of diversity‐productivity experiments. (4) Responses of C3, C4, and N‐fixers to elevated CO2 in communities did not follow the prediction based on functional groups or plants grown individually, rather it depended on species richness.  相似文献   

12.
This study investigated the effect of elevated CO2 on the post‐fire resprouting response of a grassland system of perennial grass species of Cumberland Plain Woodland. Plants were grown in mixtures in natural soil in mesocosms, each containing three exotic grasses (Nassella neesiana, Chloris gayana, Eragrostis curvula) and three native grasses (Themeda australis, Microlaena stipoides, Chloris ventricosa) under elevated (700 ppm) and ambient (385 ppm) CO2 conditions. Resprouting response after fire at the community‐ and species‐level was assessed. There was no difference in community‐level biomass between CO2 treatments; however, exotic species made up a larger proportion of the community biomass under all treatments. There were species‐level responses to elevated CO2 but no significant interactions found between CO2 and burning or plant status. Two exotic grasses (N. neesiana and E. curvula, a C3 and a C4 species respectively), and one native grass (M. stipoides, a C3 species) significantly increased in biomass, and a native C4 grass (C. ventricosa) significantly decreased in biomass under elevated CO2. These results suggest that although overall productivity of this community may not change with increases in CO2 and fire frequency, the community composition may alter due to differential species responses.  相似文献   

13.
Rising levels of atmospheric CO2 may alter patterns of plant biomass production. These changes will be dependent on the ability of plants to acquire sufficient nutrients to maintain enhanced growth. Species-specific differences in responsiveness to CO2 may lead to changes in plant community composition and biodiversity. Differences in species-level growth responses to CO2 may be, in a large part, driven by differences in the ability to acquire nutrients. To understand the mechanisms of how elevated CO2 leads to changes in community-level productivity, we need to study the growth responses and patterns of nutrient acquisition for each of the species that comprise the community. In this paper, we present a study of how elevated CO2 affects community-level and species-level patterns of nitrogen uptake and biomass production. As an experimental system we use experimental communities of 11 co-occurring annuals common to disturbed seasonal grasslands in south-western U.S.A. We established experimental communities with approximately even numbers of each species in three different atmospheric CO2 concentrations (375, 550, and 700 ppm). We maintained these communities for 1, 1.5, and 2 months at which times we applied a 15N tracer (15NH415NO3) to quantify the nitrogen uptake and then measured plant biomass, nitrogen content, and nitrogen uptake rates for the entire communities as well as for each species. Overall, community-level responses to elevated CO2 were consistent with the majority of other studies of individual- and multispecies assemblages, where elevated CO2 leads to enhanced biomass production early on, but this enhancement declines through time. In contrast, the responses of the individual species within the communities was highly variable, showing the full range of responses from positive to negative. Due to the large variation in size between the different species, community-level responses were generally determined by the responses of only one or a few species. Thus, while several of the smaller species showed trends of increased biomass and nitrogen uptake in elevated CO2 at the end of the experiment, community-level patterns showed a decrease in these parameters due to the significant reduction in biomass and nitrogen content in the single largest species. The relationship between enhancement of nitrogen uptake and biomass production in elevated CO2 was highly significant for both 550 ppm and 700 ppm CO2. This relationship strongly suggests that the ability of plants to increase nitrogen uptake (through changes in physiology, morphology, architecture, or mycorrhizal symbionts) may be an important determinant of which species in a community will be able to respond to increased CO2 levels with increased biomass production. The fact that the most dominant species within the community showed reduced enhancement and the smaller species showed increased enhancement suggest that through time, elevated CO2 may lead to significant changes in community composition. At the community level, nitrogen uptake rates relative to plant nitrogen content were invariable between the three different CO2 levels at each harvest. This was in contrast to significant reductions in total plant nitrogen uptake and nitrogen uptake relative to total plant biomass. These patterns support the hypothesis that plant nitrogen uptake is largely regulated by physiological activity, assuming that physiological activity is controlled by nitrogen content and thus protein and enzyme content.  相似文献   

14.
Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long‐term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root‐free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate‐induced respiration response after glucose and/or yeast extract addition to the soil. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ‐values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum<Beta vulgaris<Populus deltoides. N deficiency affected microbial growth rates directly (N limitation) and indirectly (changing the quantity of fine roots). So, 50% decrease in N fertilization caused the overall increase or decrease of microbial growth rates depending on plant species. The μ‐value increase was lower for microorganisms growing on yeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates) rather than total microbial biomass amount are sensitive to increased atmospheric CO2. We conclude that the more abundant available organics released by roots at elevated CO2 altered the ecological strategy of the soil microbial community specifically a shift to a higher contribution of fast‐growing r‐selected species was observed. These changes in functional structure of the soil microbial community may counterbalance higher C input into the soil under elevated atmospheric CO2 concentration.  相似文献   

15.
We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO2 and nitrogen (N) deposition treatments. Because elevated CO2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO2 and ambient N, or ambient CO2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO2. In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.  相似文献   

16.
Elevation of atmospheric CO2 concentration is predicted to increase net primary production, which could lead to additional C sequestration in terrestrial ecosystems. Soil C input was determined under ambient and Free Atmospheric Carbon dioxide Enrichment (FACE) conditions for Lolium perenne L. and Trifolium repens L. grown for four years in a sandy‐loam soil. The 13C content of the soil organic matter C had been increased by 5‰ compared to the native soil by prior cropping to corn (Zea mays) for > 20 years. Both species received low or high amounts of N fertilizer in separate plots. The total accumulated above‐ground biomass produced by L. perenne during the 4‐year period was strongly dependent on the amount of N fertilizer applied but did not respond to increased CO2. In contrast, the total accumulated above‐ground biomass of T. repens doubled under elevated CO2 but remained independent of N fertilizer rate. The C:N ratio of above‐ground biomass for both species increased under elevated CO2 whereas only the C:N ratio of L. perenne roots increased under elevated CO2. Root biomass of L. perenne doubled under elevated CO2 and again under high N fertilization. Total soil C was unaffected by CO2 treatment but dependent on species. After 4 years and for both crops, the fraction of new C (F‐value) under ambient conditions was higher (P= 0.076) than under FACE conditions: 0.43 vs. 0.38. Soil under L. perenne showed an increase in total soil organic matter whereas N fertilization or elevated CO2 had no effect on total soil organic matter content for both systems. The net amount of C sequestered in 4 years was unaffected by the CO2 concentration (overall average of 8.5 g C kg?1 soil). There was a significant species effect and more new C was sequestered under highly fertilized L. perenne. The amount of new C sequestered in the soil was primarily dependent on plant species and the response of root biomass to CO2 and N fertilization. Therefore, in this FACE study net soil C sequestration was largely depended on how the species responded to N rather than to elevated CO2.  相似文献   

17.
Increased atmospheric carbon dioxide supply is predicted to alter plant growth and biomass allocation patterns. It is not clear whether changes in biomass allocation reflect optimal partitioning or whether they are a direct effect of increased growth rates. Plasticity in growth and biomass allocation patterns was investigated at two concentrations of CO2 ([CO2]) and at limiting and nonlimiting nutrient levels for four fast‐ growing old‐field annual species. Abutilon theophrasti, Amaranthus retroflexus, Chenopodium album, and Polygonum pensylvanicum were grown from seed in controlled growth chamber conditions at current (350 μmol mol?1, ambient) and future‐ predicted (700 μmol mol?1, elevated) CO2 levels. Frequent harvests were used to determine growth and biomass allocation responses of these plants throughout vegetative development. Under nonlimiting nutrient conditions, whole plant growth was increased greatly under elevated [CO2] for three C3 species and moderately increased for a C4 species (Amaranthus). No significant increases in whole plant growth were observed under limiting nutrient conditions. Plants grown in elevated [CO2] had lower or unchanged root:shoot ratios, contrary to what would be expected by optimal partitioning theory. These differences disappeared when allometric plots of the same data were analysed, indicating that CO2‐induced differences in root:shoot allocation were a consequence of accelerated growth and development rates. Allocation to leaf area was unaffected by atmospheric [CO2] for these species. The general lack of biomass allocation responses to [CO2] availability is in stark contrast with known responses of these species to light and nutrient gradients. We conclude that biomass allocation responses to elevated atmospheric [CO2] are not consistent with optimal partitioning predictions.  相似文献   

18.
To determine the long-term impact of elevated CO2 on primary production of native tallgrass prairie, we compared the responses of tallgrass prairie at ambient and twice-ambient atmospheric CO2 levels over an 8-year period. Plots in open-top chambers (4.5 m diameter) were exposed continuously (24 h) to ambient and elevated CO2 from early April to late October each year. Unchambered plots were monitored also. Above-ground peak biomass was determined by clipping each year in early August, and root growth was estimated by harvesting roots from root ingrowth bags. Plant community composition was censused each year in early June. In the last 2 years of the study, subplots were clipped on 1 June or 1 July, and regrowth was harvested on 1 October. Volumetric soil water content of the 0–100 cm soil layer was determined using neutron scattering, and was generally higher in elevated CO2 plots than ambient. Peak above-ground biomass was greater on elevated CO2 plots than ambient CO2 plots with or without chambers during years with significant plant water stress. Above-ground regrowth biomass was greater under elevated CO2 than under ambient CO2 in a year with late-season water stress, but did not differ in a wetter year. Root ingrowth biomass was also greater in elevated CO2 plots than ambient CO2 plots when water stress occurred during the growing season. The basal cover and relative amount of warm-season perennial grasses (C4) in the stand changed little during the 8-year period, but basal cover and relative amount of cool-season perennial grasses (C3) in the stand declined in the elevated CO2 plots and in ambient CO2 plots with chambers. Forbs (C3) and members of the Cyperaceae (C3) increased in basal cover and relative amount in the stand at elevated compared to ambient CO2. Greater biomass production under elevated CO2 in C4-dominated grasslands may lead to a greater carbon sequestration by those ecosystems and reduce peak atmospheric CO2 concentrations in the future.  相似文献   

19.
We investigated the effects of elevated CO2 (600 μl l−1 vs 350 μl l−1) and phosphorus supply (1 g P m−2 year−1 vs unfertilized) on intact monoliths from species-rich calcareous grassland in a greenhouse. Aboveground community dry mass remained almost unaffected by elevated CO2 in the first year (+6%, n.s.), but was significantly stimulated by CO2 enrichment in year two (+26%, P<0.01). Among functional groups, only graminoids contributed significantly to this increase. The effect of phosphorus alone on community biomass was small in both years and marginally significant only when analyzed with MANOVA (+6% in year one, +9% in year two, 0.1 ≥P > 0.05). Belowground biomass and stubble after two seasons were not different in elevated CO2 and when P was added. The small initial increase in aboveground community biomass under elevated CO2 is explained by the fact that some species, in particular Carex flacca, responded very positively right from the beginning, while others, especially the dominant Bromus erectus, responded negatively to CO2 enrichment. Shifts in community composition towards more responsive species explain the much larger CO2 response in the second year. These shifts, i.e., a decline in xerophytic elements (B. erectus) and an increase in mesophytic grasses and legumes occurred independently of treatments in all monoliths but were accelerated significantly by elevated CO2. The difference in average biomass production at elevated compared to ambient CO2 was higher when P was supplied (at the community level the CO2 response was enhanced from 20% to 33% when P was added, in graminoids from 17% to 27%, in legumes from 4% to 60%, and in C. flacca from 120% to 298% by year two). Based on observations in this and similar studies, we suggest that interactions between CO2 concentration, species presence, and nutrient availability will govern community responses to elevated CO2. Received: 12 July 1997 / Accepted: 28 March 1998  相似文献   

20.
We conducted an experiment on responses of weedy species from an orchard ecosystem to elevated CO2 (700–800 μmol mol−1) under low phosphorus (P) soil in an environment-controlled growth chamber. Twelve local weedy species, Poa annua L., Lolium perenne L., Avena fatua L., Vicia cracca L., Medicago lupulina L., Kummerowia striata (Thunb.) Schindl., Veronica didyma Ten., Plantago virginica L., Gnaphalium affine D.Don., Echinochloa crusgalli var. mitis (L.) Beauv., Eleusine indica (L.) Gaertn. and Setaria glauca (L.) P. Beauv., grouped into four functional groups (C3 grass, C3 forb, legume and C4 grass), were used in the experiment. The total plant biomass, P uptake, and mycorrhizal colonization were measured. The results showed that the total biomass of the 12 weedy species tended to increase under elevated CO2. But changes in the total biomass under elevated CO2 significantly differed among functional groups: legumes showed the greatest increase in the total biomass of all functional groups, following the order C3 forbs > C4 grasses > C3 grasses. Elevated CO2 significantly increased mycorrhizal colonization and P uptake of legumes, C3 forbs and C4 grasses but did not change C3 grasses. Positive correlations between mycorrhizal colonization and shoot P concentration, and between total P uptake and total biomass were found under elevated CO2. The results suggested that the interspecific difference in CO2 response at low P availability was caused by the difference in CO2 response in mycorrhizae and P uptake. These differences among species imply that plant interaction in orchard ecosystems may change under future CO2 enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号