首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct and efficient production of ethanol by fermentation from raw corn starch was achieved by using the yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis alpha-amylase by using the C-terminal-half region of alpha-agglutinin and the flocculation functional domain of Flo1p as the respective anchor proteins. In 72-h fermentation, this strain produced 61.8 g of ethanol/liter, with 86.5% of theoretical yield from raw corn starch.  相似文献   

2.
Direct and efficient production of ethanol by fermentation from raw corn starch was achieved by using the yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase by using the C-terminal-half region of α-agglutinin and the flocculation functional domain of Flo1p as the respective anchor proteins. In 72-h fermentation, this strain produced 61.8 g of ethanol/liter, with 86.5% of theoretical yield from raw corn starch.  相似文献   

3.
The development of a yeast that converts raw starch to ethanol in one step (called consolidated bioprocessing) could yield large cost reductions in the bioethanol industry. The aim of this study was to develop an efficient amylolytic Saccharomyces cerevisiae strain suitable for industrial bioethanol production. A native and codon-optimized variant of the Aspergillus awamori glucoamylase gene were expressed in the S. cerevisiae Y294 laboratory strain. Codon optimization resulted to be effective and the synthetic sequence sGAI was then δ-integrated into a S. cerevisiae strain with promising industrial fermentative traits. The mitotically stable recombinant strains showed high enzymatic capabilities both on soluble and raw starch (2425 and 1140 nkat/g dry cell weight, respectively). On raw corn starch, the engineered yeasts exhibited improved fermentative performance with an ethanol yield of 0.42 (g/g), corresponding to 75?% of the theoretical maximum yield.  相似文献   

4.
Efficient ethanol producing yeast Saccharomyces cerevisiae cannot produce ethanol from raw starch directly. Thus the conventional ethanol production required expensive and complex process. In this study, we developed a direct and efficient ethanol production process from high-yielding rice harvested in Japan by using amylase expressing yeast without any pretreatment or addition of enzymes or nutrients. Ethanol productivity from high-yielding brown rice (1.1g/L/h) was about 5-fold higher than that obtained from purified raw corn starch (0.2g/L/h) when nutrients were added. Using an inoculum volume equivalent to 10% of the fermentation volume without any nutrient supplementation resulted in ethanol productivity and yield reaching 1.2g/L/h and 101%, respectively, in a 24-h period. High-yielding rice was demonstrated to be a suitable feedstock for bioethanol production. In addition, our polyploid amylase-expressing yeast was sufficiently robust to produce ethanol efficiently from real biomass. This is first report of direct ethanol production on real biomass using an amylase-expressing yeast strain without any pretreatment or commercial enzyme addition.  相似文献   

5.
Alcoholic fermentation from raw corn starch using Schizosaccharomyces pombe AHU 3179 and a raw starch saccharifying enzyme (RSSE) from Corticium rolfsii AHU 9627 was investigated. The optimum ethanol production was achieved at pH 3.5, 27°C and under the yeast cell concentration of 2.7 × 109 cells/ml. Addition of RSSE 5 units (as glucoamylase)/g raw corn starch was found sufficient. Under these optimum conditions, 18.5% (v/v, at 15°C) ethanol was obtained from 30% raw corn starch (30.8% as glucose) after incubation for 48 h.  相似文献   

6.
A diploid yeast strain displaying both α-amylase and glucoamylase was developed for repeated fermentation from raw starch. First, the construct of α-amylase was optimized for cell surface display, as there have been no reports of α-amylase-displaying yeast. The modified yeast displaying both glucoamylase and α-amylase produced 46.5 g/l of ethanol from 200 g/l of raw corn starch after 120 h of fermentation, and this was 1.5-fold higher when compared to native α-amylase-displaying yeast. Using the glucoamylase and modified α-amylase co-displaying diploid strain, we repeated fermentation from 100g/l of raw starch for 23 cycles without the loss of α-amylase or glucoamylase activity. The average ethanol productivity and yield during repeated fermentation were 1.61 g/l/h and 76.6% of the theoretical yield, respectively. This novel yeast may be useful for reducing the cost of bio-ethanol production and may be suitable for industrial-scale bio-ethanol production.  相似文献   

7.
Recombinant Saccharomyces cerevisiae YKU 131 (capable of expressing glucoamylase) was used to produce ethanol from sago starch. The optimum C/N ratio for ethanol production by the recombinant yeast was 7.9, where 4.7 and 10.1 g/l ethanol was produced from 20 and 40 g/l sago starch, respectively. At sago starch concentration higher than 40 g/l and C/N ratio higher than 10.4, glucoamylase production and rate of starch hydrolysis were reduced, which in turn, reduced ethanol production significantly. The theoretical yield of ethanol based on sago starch consumed in fermentation using 40 g/l was 72.6%. This yield was slightly lower than those obtained in fermentation using soluble starch such as potato and corn starch, which ranged from 80–90% as reported in the literature. However, S. cerevisiae YKU 131 could only utilize 62% of the total amount of starch added to a medium.  相似文献   

8.
Alcohol fermentation of starch was investigated using a direct starch fermenting yeast, Saccharomyces cerevisiae SR93, constructed by integrating a glucoamylase-producing gene (STA1) into the chromosome of Saccharomyces cerevisiae SH1089. The glucoamylase was constitutively produced by the recombinant yeast. The ethanol concentration produced by the recombinant yeast was 14.3 g/L which was about 1.5-fold higher than by the conventional mixed culture using an amylolytic microorganism and a fermenting microorganism. About 60% of the starch was converted into ethanol by the recombinant yeast, and the ethanol yield reached its maximum value of 0.48 at the initial starch concentration of 50 g/L. The fed-batch culture, which maintains the starch concentration in the range of 30 to 50 g/L, was used to produce a large amount of ethanol from starch. The amount of ethanol produced in the fed-batch culture increased about 20% compared to the batch culture. (c) 1997 John Wiley & Sons, Inc.  相似文献   

9.
10.
The novelty of this approach was hydrolysis of the raw starch in ground corn to fermentable sugars that are simultaneously fermented to ethanol by yeast in a non-sterile environment. Thus, the conventional cooking step can be eliminated for energy conservation. A koji of Aspergillus niger grown on whole corn for 3 days was the crude enzyme source. A ratio of 0.2 g dry koji/g total solids was found sufficient. Optimum pH was 4.2. Ethanol concentration was 7.7% (w/w) in the aqueous phase with 92% raw starch conversion. Agitation increased rate. Sacharification was the rate-limiting step. The initial ethanol concentration preventing fermentation was estimated to be 8.3% by weight.  相似文献   

11.
Summary The suitable conditions for high-concentration ethanol production from raw ground corn by a tetraploid yeast strain were examined. We found that the glucoamylase preparation which ia usually employed for alcoholic fermentation of cooked starch could effectively saccharify raw ground corn starch.  相似文献   

12.
A novel raw-starch-digesting glucoamylase producer, Rhizopus sp. W-08, and Saccharomyces cerevisiae Z-06 were used in a fed batch process for simultaneous saccharification and fermentation of raw corn flour. Ethanol concentration of 21% (v/v) was obtained after 48 h. The conversion efficiency of raw corn flour to ethanol was 94.5% of the theoretical ethanol yield.  相似文献   

13.
Raw starch and raw cassava tuber powder were directly and efficiently fermented at elevated temperatures to produce ethanol using the thermotolerant yeast Kluyveromyces marxianus that expresses α‐amylase from Aspergillus oryzae as well as α‐amylase and glucoamylase from Debaryomyces occidentalis. Among the constructed K. marxianus strains, YRL 009 had the highest efficiency in direct starch fermentation. Raw starch from corn, potato, cassava, or wheat can be fermented at temperatures higher than 40°C. At the optimal fermentation temperature 42°C, YRL 009 produced 66.52 g/L ethanol from 200 g/L cassava starch, which was the highest production among the selected raw starches. This production increased to 79.75 g/L ethanol with a 78.3% theoretical yield (with all cassava starch were consumed) from raw cassava starch at higher initial cell densities. Fermentation was also carried out at 45 and 48°C. By using 200 g/L raw cassava starch, 137.11 and 87.71 g/L sugar were consumed with 55.36 and 32.16 g/L ethanol produced, respectively. Furthermore, this strain could directly ferment 200 g/L nonsterile raw cassava tuber powder (containing 178.52 g/L cassava starch) without additional nutritional supplements to produce 69.73 g/L ethanol by consuming 166.07 g/L sugar at 42°C. YRL 009, which has consolidated bioprocessing ability, is the best strain for fermenting starches at elevated temperatures that has been reported to date. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:338–347, 2014  相似文献   

14.
A halophilic bacterium Halolactibacillus sp. SK71 producing extracellular glucoamylase was isolated from saline soil of Yuncheng Salt Lake, China. Enzyme production was strongly influenced by the salinity of growth medium with maximum in the presence of 5% NaCl. The glucoamylase was purified to homogeneity with a molecular mass of 78.5 kDa. It showed broad substrate specificity and raw starch hydrolyzing activity. Analysis of hydrolysis products from soluble starch by thin‐layer chromatography revealed that glucose was the sole end‐product, indicating the enzyme was a true glucoamylase. Optimal enzyme activity was found to be at 70°C, pH 8.0, and 7.5% NaCl. In addition, it was highly active and stable over broad ranges of temperature (0–100°C), pH (7.0–12.0), and NaCl concentration (0–20%), showing excellent thermostable, alkali stable, and halotolerant properties. Furthermore, it displayed high stability in the presence of hydrophobic organic solvents. The purified glucoamylase was applied for raw corn starch hydrolysis and subsequent bioethanol production using Saccharomyces cerevisiae. The yield in terms of grams of ethanol produced per gram of sugar consumed was 0.365 g/g, with 71.6% of theoretical yield from raw corn starch. This study demonstrated the feasibility of using enzymes from halophiles for further application in bioenergy production. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1262–1268, 2014  相似文献   

15.
Sake yeast suppresses acute alcohol-induced liver injury in mice   总被引:2,自引:0,他引:2  
Brewer's and baker's yeasts appear to have components that protect from liver injury. Whether sake yeast, Saccharomyces cerevisiae Kyokai no. 9, also has a hepatoprotective effect has not been examined. Here we show that sake yeast suppresses acute alcoholic liver injury in mice. Male C57BL/6 mice that had been fed a diet containing 1% sake yeast for two weeks received three doses of ethanol (5 g/kg BW). In the mice fed sake yeast, ethanol-induced increases in triglyceride (TG) and glutamate pyruvate transaminase (GPT) were significantly attenuated and hepatic steatosis was improved. In addition, sake yeast-fed mice showed a smaller decrease in hepatic S-adenosylmethionine (SAM) level and a smaller increase in plasma homocysteine (Hcy) level after ethanol treatment than the control mice, suggesting that a disorder of methionine metabolism in the liver caused by ethanol was relieved by sake yeast. These results indicate that sake yeast protects against alcoholic liver injury through maintenance of methionine metabolism in the liver.  相似文献   

16.
The suppressive effects on acute alcoholic liver injury of S-adenosylmethionine (SAM) and the sake yeast, Saccharomyces cerevisiae Kyokai No. 9, have been shown previously. To enhance the suppression of acute alcoholic liver injury by sake yeast, we prepared SAM-accumulating sake yeast (SAM yeast). Male C57BL/6 mice that had been fed on a diet containing 0.25% SAM yeast or sake yeast for two weeks received three doses of ethanol (5 g/kg BW). In the mice fed on the SAM yeast, the ethanol-induced increases in both triglyceride (TG) and alanine aminotransferase (ALT) were significantly repressed. In addition, the SAM yeast-fed mice did not show an ethanol-induced decrease in hepatic SAM level, suggesting that a disorder of methionine metabolism in the liver caused by ethanol was relieved by the SAM yeast. These results suggest that the SAM yeast had a stronger effect suppressing acute alcoholic liver injury in mice than the sake yeast.  相似文献   

17.
Brewer’s and baker’s yeasts appear to have components that protect from liver injury. Whether sake yeast, Saccharomyces cerevisiae Kyokai no. 9, also has a hepatoprotective effect has not been examined. Here we show that sake yeast suppresses acute alcoholic liver injury in mice. Male C57BL/6 mice that had been fed a diet containing 1% sake yeast for two weeks received three doses of ethanol (5 g/kg BW). In the mice fed sake yeast, ethanol-induced increases in triglyceride (TG) and glutamate pyruvate transaminase (GPT) were significantly attenuated and hepatic steatosis was improved. In addition, sake yeast-fed mice showed a smaller decrease in hepatic S-adenosylmethionine (SAM) level and a smaller increase in plasma homocysteine (Hcy) level after ethanol treatment than the control mice, suggesting that a disorder of methonine metabolism in the liver caused by ethanol was relieved by sake yeast. These results indicate that sake yeast protects against alcoholic liver injury through maintenance of methionine metabolism in the liver.  相似文献   

18.
《Process Biochemistry》2007,42(7):1135-1139
Corn fiber (CF) is a potential raw material for the production of various products because it is widely available in corn-producing countries. Corn fiber is a byproduct of the corn wet-milling industry and a very large amount of it (approximately 130 t/day) is produced in Hungary. The major component of corn fiber is the pericarp that consists of 35% hemicellulose, 18% cellulose and 20% remaining starch (protein, fiber oil and lignin are also present in this material). Corn fiber is presently used as animal feed. However, with continuous growth in corn processing to ethanol, there might be problems with the utilization of the surplus fibrous byproducts. In this paper the conversion of corn fiber to ethanol or other products was examined. Destarched corn fiber was pretreated by using different alkaline solutions and dissolved hemicellulose was precipitated with ethanol for the recovery of a valuable coproduct. The residual material consisting mostly of cellulose was hydrolyzed with cellulolytic enzymes and fermented into ethanol by using Saccharomyces cerevisiae.  相似文献   

19.
The suppressive effects on acute alcoholic liver injury of S-adenosylmethionine (SAM) and the sake yeast, Saccharomyces cerevisiae Kyokai No. 9, have been shown previously. To enhance the suppression of acute alcoholic liver injury by sake yeast, we prepared SAM-accumulating sake yeast (SAM yeast). Male C57BL/6 mice that had been fed on a diet containing 0.25% SAM yeast or sake yeast for two weeks received three doses of ethanol (5 g/kg BW). In the mice fed on the SAM yeast, the ethanol-induced increases in both triglyceride (TG) and alanine aminotransferase (ALT) were significantly repressed. In addition, the SAM yeast-fed mice did not show an ethanol-induced decrease in hepatic SAM level, suggesting that a disorder of methionine metabolism in the liver caused by ethanol was relieved by the SAM yeast. These results suggest that the SAM yeast had a stronger effect suppressing acute alcoholic liver injury in mice than the sake yeast.  相似文献   

20.
Aspergillus oryzae glucoamylases encoded by glaA and glaB, and Rhizopus oryzae glucoamylase, were displayed on the cell surface of sake yeast Saccharomyces cerevisiae GRI-117-UK and laboratory yeast S. cerevisiae MT8-1. Among constructed transformants, GRI-117-UK/pUDGAA, displaying glaA glucoamylase, produced the most ethanol from liquefied starch, although MT8-1/pUDGAR, displaying R. oryzae glucoamylase, had the highest glucoamylase activity on its cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号