首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Early  H Huang  M Davis  K Calame  L Hood 《Cell》1980,19(4):981-992
We have determined the sequences of separate germline genetic elements which encode two parts of a mouse immunglobulin heavy chain variable region. These elements, termed gene segments, are heavy chain counterparts of the variable (V) and joining (J) gene segments of immunoglobulin light chains. The VH gene segment encodes amino acids 1-101 and the JH gene segment encodes amino acids 107-123 of the S107 phosphorylcholine-binding VH region. This JH gene segment and two other JH gene segments are located 5' to the mu constant region gene (Cmu) in germline DNA. We have also determined the sequence of a rearranged VH gene encoding a complete VH region, M603, which is closely related to S107. In addition, we have partially determined the VH coding sequences of the S107 and M167 heavy chain mRNAs. By comparing these sequences to the germline gene segments, we conclude that the germline VH and JH gene segments do not contain at least 13 nucleotides which are present in the rearranged VH genes. In S107, these nucleotides encode amino acids 102-106, which form part of the third hypervariable region and consequently influence the antigen-binding specificity of the immunoglobulin molecule. This portion of the variable region may be encoded by a separate germline gene segment which can be joined to the VH and JH gene segments. We term this postulated genetic element the D gene segment, referring to its role in the generation of heavy chain diversity. Essentially the same noncoding sequences are found 3' to the VH gene segment and as inverse complements 5' to two JH gene segments. These are the same conserved nucleotides previously found adjacent to light chain V and J gene segments. Each conserved sequence consists of blocks of seven and ten conserved nucleotides which are separated by a spacer of either 11 or 22 nonconserved nucleotides. The highly conserved spacing, corresponding to one or two turns of the DNA helix, maintains precise spatial orientations between blocks of conserved nucleotides. Gene segments which can join to one another (VK and JK, for example) always have spacers of different lengths. Based on these observations, we propose a model for variable region gene rearrangement mediated by proteins which recognize the same conserved sequences adjacent to both light and heavy chain immunoglobulin gene segments.  相似文献   

2.
Not all vertebrates create an immunoglobulin repertoire through the recombination of individual members of variable (V), diversity (D) and joining (J) gene segment families. In chickens, for example, a diverse set of immunoglobulins is created by intrachromosomal gene conversion of the single variable gene segments of the immunoglobulin heavy and light chain genes. Recent evidence from other species such as the rabbit suggests that gene conversion may be a more widespread mechanism for the creation of immunologic diversity than previously supposed.  相似文献   

3.
The accurate partitioning of Ig H chain V(H)DJ(H) junctions and L chain V(L)J(L) junctions is problematic. We have developed a statistical approach for the partitioning of such sequences, by analyzing the distribution of point mutations between a determined V gene segment and putative Ig regions. The establishment of objective criteria for the partitioning of sequences between V(H), D, and J(H) gene segments has allowed us to more carefully analyze intervening putative nontemplated (N) nucleotides. An analysis of 225 IgM H chain sequences, with five or fewer V mutations, led to the alignment of 199 sequences. Only 5.0% of sequences lacked N nucleotides at the V(H)D junction (N1), and 10.6% at the DJ(H) junction (N2). Long N regions (>9 nt) were seen in 20.6% of N1 regions and 17.1% of N2 regions. Using a statistical analysis based upon known features of N addition, and mutation analysis, two of these N regions aligned with D gene segments, and a third aligned with an inverted D gene segment. Nine additional sequences included possible alignments with a second D segment. Four of the remaining 40 long N1 regions included 5' sequences having six or more matches to V gene end motifs, which may be the result of V gene replacement. Such sequences were not seen in long N2 regions. The long N regions frequently seen in the expressed repertoire of human Ig gene rearrangements can therefore only partly be explained by V gene replacement and D-D fusion.  相似文献   

4.
We have studied the organization of variable region (V) genes of the human immunoglobulin heavy chain (H) by cosmid cloning. We isolated two independent immunoglobulin D5 clusters (D5-a and D5-b) from cosmid libraries of the human genome. Restriction maps of these two regions showed that downstream 15 kb portions of the 55 kb overlap were different although upstream 40 kb portions were almost identical. Four more D segments, (DM, DXP, DA and DK) were found around the D5 segment in the conserved region of each cluster. Nucleotide sequences of the corresponding D segments from each cluster were almost identical and they encoded potentially functional D regions. Analysis using human-rodent somatic cell hybrids demonstrated that both clusters were located in the immunoglobulin heavy chain (H) locus on chromosome 14, suggesting that the D5-a and D5-b regions evolved by internal duplication within this locus. We also isolated a 60 kb DNA region carrying four VH segments, designated as VH-F region, which was located on chromosome 16. Nucleotide sequences of the four VH segments were determined. Two of them encoded potentially functional VH segments, and the other two were pseudogenes. Some more VH segments were found to be located outside chromosome 14, by Southern blot hybridization of human-rodent hybrid cell DNAs. These results provide further evidence that the human VH locus has undergone recent reorganization.  相似文献   

5.
C B Thompson  P E Neiman 《Cell》1987,48(3):369-378
Previous studies have shown that the chicken lambda immunoglobulin light chain gene undergoes a single rearrangement that results in functional VJ joining of the unique variable (V lambda 1) and joining (J lambda) coding regions. The immunologic repertoire of lambda genes is created through extensive sequence diversification within the rearranged locus during B cell development in the bursa of Fabricius. This sequence diversification was detected only at the rearranged V lambda 1 segment and not within the 5' leader sequence, the J lambda segment, or the unrearranged V lambda 1 segment. The selective diversification of the rearranged V lambda 1 segment was associated with unique DNAase I-hypersensitive sites on the rearranged allele. While probes for V lambda 1 sequences detect multiple homologous V lambda segments, probes for both the 5' leader and J lambda segments fail to detect homologous sequences. Taken together, these results suggest that a highly selective process, possibly gene conversion, operates during B cell ontogeny to generate diversity within the lambda gene.  相似文献   

6.
7.
8.
In the process of analyzing the contribution of nonproductive alpha- and beta-chain gene rearrangements to the allelic exclusion of TCR gene expression, we have found a novel type of aberrant alpha-gene rearrangement. In one alpha-allele of the mouse KB5-C20 T cell clone, a J alpha gene segment has been abutted precisely to a sequence that does not display any homology to known V and D gene segment. The appended sequence originates from within the V alpha locus and is located, in the germ-line, 1 kb upstream of a member of the V alpha 2-gene segment subfamily. No recombination signal sequences have been found contiguous to the recombination point. These observations indicate that in normal T lymphocytes, TCR alpha-genes may be affected by aberrant rearrangements similar to those that predominate in human T cell tumors containing chromosome 14 inversion or translocation. Furthermore, compilation of published data and cloning and sequencing of three additional alpha-alleles has allowed us to examine the status of alpha-loci in nine mouse T cell clones expressing functional alpha beta-heterodimers. Interestingly, in contrast to the situation observed at the beta-locus, only 1 of 18 analyzed alpha-alleles has retained a germ-line unrearranged configuration. In addition, in each T cell clone, alpha-rearrangements on homologous chromosomes were unevenly distributed over the J alpha region and shown to generally involve neighboring J alpha gene segments.  相似文献   

9.
Conclusions While much has been learned concerning the molecular structural basis for the heavy chain class switch, many questions relating to the regulation of the switch remain unanswered, or at least controversial. Identification of the enzyme system which mediates the class switch, as well as other regulatory, possibly X-linked, genes should provide the necessary key to our understanding of this unique process.AbbreviationsB cell lymphocyte derived from the bone marrow in adult mammals or the bursa of Fabricius in chickens - bp base pair - C immunoglobulin constant region - CDR complementarity-determining region of the immunoglobulin variable region - D diversity gene segment of the immunoglobulin heavy chain variable region gene - H immunoglobulin heavy chain - Ig immunoglobulin - J joining region gene segment of the immunoglobulin variable region gene - kb kilobase - L immunoglobulin light chain - LPS lipopolysaccharide - Pyr pyrimidine - S-, s-site, s-region switch rearrangement site - SCE sister chromatid exchange - sIg surface immunoglobulin - T cell lymphocyte derived from the thymus - USCE unequal sister chromatid exchange - V immunoglobulin variable region  相似文献   

10.
11.
Xenopus laevis Ig contain two distinct types of L chains, designated rho or L1 and sigma or L2. We have analyzed Xenopus genomic DNA by Southern blotting with cDNA probes specific for L1 V and C regions. Many fragments hybridized to the V probe, but only one or two fragments hybridized to the C probe. Corresponding C, J, and V gene segments were identified on clones isolated from a genomic library prepared from the same DNA. One clone contains a C gene segment separated from a J gene segment by an intron of 3.4 kb. The J and C gene segments are nearly identical in sequence to cDNA clones analyzed previously. The C segment is somewhat more similar and the J segment considerably more similar in sequence to the corresponding segments of mammalian kappa chains than to those of mammalian lambda chains. Upstream of the J segment is a typical recombination signal sequence with a spacer of 23 bp, as in J kappa. A second clone from the library contains four V gene segments, separated by 2.1 to 3.6 kb. Two of these, V1 and V3, have the expected structural and regulatory features of V genes, and are very similar in sequence to each other and to mammalian V kappa. A third gene segment, V2, resembles V1 and V3 in its coding region and nearby 5'-flanking region, but diverges in sequence 5' to position -95 with loss of the octamer promoter element. The fourth V-like segment is similar to the others at the 3'-end, but upstream of codon 64 bears no resemblance in sequence to any Ig V region. All four V segments have typical recombination signal sequences with 12-bp spacers at their 3'-ends, as in V kappa. Taken together, the data suggest that Xenopus L1 L chain genes are members of the kappa gene family.  相似文献   

12.
D Chowdhury  R Sen 《The EMBO journal》2001,20(22):6394-6403
The immunoglobulin heavy chain (IgH) gene locus spans several megabases. We show that IgH activation during B-cell differentiation, as measured by histone acetylation, occurs in discrete, independently regulated domains. Initially, a 120 kb domain of germline DNA is hyperacetylated, that extends from D(FL16.1), the 5'-most D(H) gene segment, to the intergenic region between Cmu and Cdelta. Germline V(H) genes were not hyperacetylated at this stage, which accounts for D(H) to J(H) recombination occurring first during B-cell development. Subsequent activation of the V(H) locus happens in at least three differentially regulated domains: an interleukin-7-regulated domain consisting of the 5' J558 family, an intermediate domain and the 3' V(H) genes, which are hyperacetylated in response to DJ(H) recombination. These observations lead to mechanisms for two well-documented phenomena in B-cell ontogeny: the sequential rearrangement of D(H) followed by V(H) gene segments, and the preferential recombination of D(H)-proximal V(H) genes in pro-B cells. We suggest that stepwise activation may be a general mechanism by which large segments of the genome are prepared for expression.  相似文献   

13.
14.
The immunoglobulin (Ig) heavy chain variable (VH) gene family of Heterodontus francisci (horned shark), a phylogenetically distant vertebrate, is unique in that VH, diversity (DH), joining (JH) and constant region (CH) gene segments are linked closely, in multiple individual clusters. The V regions of 12 genomic (liver and gonad) DNA clones have been sequenced completely and three organization patterns are evident: (i) VH-D1-D2-JH-CH with unique 12/22 and 12/12 spacers in the respective D recombination signal sequences (RSSs); VH and JH segments have 23 nucleotide (nt) spacers, (ii) VHDH-JH-CH, an unusual germline configuration with joined VH and DH segments and (iii) VHDHJH-CH, with all segmental elements being joined. The latter two configurations do not appear to be pseudogenes. Another VH-D1-D2-JH-CH gene possesses a D1 segment that is flanked by RSSs with 12 nt spacers and a D2 segment with 22/12 spacers. Based on the comparison of spleen, VH+ cDNA sequences to a germline consensus, it is evident that both DH segments as well as junctional and N-type diversity account for Ig variability. In this early vertebrate, the Ig genes share unique properties with higher vertebrate T-cell receptor as well as with Ig and may reflect the structure of a common ancestral antigen binding receptor gene.  相似文献   

15.
We have constructed a library of Balb/c mouse embryo DNA in the vector Charon 4A. The library was searched for sequences homologous to the VH region of a cloned cDNA of the UPC10 heavy chain mRNA. In this paper, we describe the structure and the partial nucleotide sequence of one of such clones (VH441). The nucleotide sequence of this germ-line gene indicates that it encodes amino-acids 1-98 of the X44 and J601 galactan-binding VH regions, but that it differs from the UPC10 VH segment by four single base changes. The VH gene appears to contain a 101 bases long intervening sequence within a precursor sequence identical to the precursor sequence of UPC10. The 3' non coding sequence of the V gene contains the two conserved sequences found in embryonic V DNA segments, CACAGTG and ACATGAACC, separated by 23 nucleotides and a sequence CACTGTG separated by 33 nucleotides from the first heptamer.  相似文献   

16.
Monoclonal antibodies specific for the synthetic polypeptide antigen (T,G)-A--L have been produced in two strains of mice, C57BL/10 and C3H.SW. The genes encoding the variable (V) regions of these antibodies have been studied by using the DNA hybridization technique of Southern, as well as by gene cloning and sequencing. Hybridization of DNA from 14 different cell lines with a kappa-chain probe revealed that the different cell lines used one of two different gene rearrangements to encode the recombined V region gene. There was a perfect correlation between light chain rearrangement, idiotype expression, and fine specificity. Hybridization analyses of the heavy chain revealed a more complex pattern. Seven hybridomas had the rearranged heavy chain V region genes on a 4.4 kb EcoRI restriction fragment. Others were found on restriction fragments that differed in length by several hundred base pairs. The recombined heavy chain V region genes were cloned from three different hybridoma cell lines secreting anti-(T,G)-A--L antibodies, all of which express the same idiotype and fine specificity pattern. Restriction mapping and sequencing indicate that all three utilize the same V gene, identified as the 186-2 germline gene. However, different D and J genes are used to encode each of the antibodies. In contrast to the results seen in other antigen systems, heavy chain D and J genes do not have a major influence on idiotype expression and fine specificity of antibodies to the synthetic polypeptide (T,G)-A--L.  相似文献   

17.
The gene encoding the beta chain of the human T-cell receptor for antigen is composed of variable (V), diversity (D), joining (J), and constant (C) gene segments which undergo specific rearrangements during T-lymphocyte ontogeny. Southern blot analyses of seven human T-cell tumor lines and normal human T-lymphocyte clones revealed that most of these T-cell lines rearrange their Ti beta genes differently. The T-cell tumor line HPB-MLT rearranges and transcribes both of its Ti beta genes. Cloning and sequencing of the Ti beta cDNAs corresponding to these rearrangements revealed that one of the rearranged Ti beta genes is defective, while the other is functional and corresponds to the Ti beta protein expressed on the surface of these cells. Thus, this cell line displays a pattern of allelic exclusion of Ti beta gene expression. A comparison of four C beta 2-containing Ti beta cDNAs from three different cell lines revealed that three of the four utilize the same J beta 2.5 gene segment joined to different D beta and V beta genes, suggesting that there may be preferential use of this J gene during J beta 2 rearrangements. Hybridization analyses with probes for the alpha and beta genes of the T-cell receptor and the T-cell-specific T gamma gene revealed that HPB-MLT cells appear to express approximately equivalent amounts of RNA corresponding to each of the rearranged Ti alpha and Ti beta genes. However, they express a much lower level of T gamma RNA.  相似文献   

18.
Immunoglobulin gene rearrangements in normal mouse B cells.   总被引:4,自引:0,他引:4  
We have analyzed the structure of rearranged mu heavy-chain genes obtained from the genomic DNA of normal BALB/c mouse spleen cells expressing surface immunoglobulin M. Examples were found of two types of nonproductive rearrangements, which may be responsible for allelic exclusion in normal B cells. In one of these rearrangements, a germ line D gene segment has joined to the JH4 gene segment but no V/D joining has occurred. We present evidence that D gene segments lie as a cluster between V and J gene segments in the germ line. A comparison of conserved sequences in V and D gene segments suggests that the D gene segments, which are found only in the heavy-chain gene family, may have evolved from V gene segments similar to the Vk family.  相似文献   

19.
A cDNA clone (pDH7) has been isolated which encodes the entire leader peptide and variable (V) region and most of the constant (C) region of a rabbit lambda-light chain. Although similar to amino acid sequences derived from fragments of isolated lambda-chains from several Basilea rabbits, differences in the first framework region (FR1) suggest that at least two germ-line V lambda genes are expressed. There are major differences between rabbit V lambda sequences and light chains of other species: in particular, rabbit lambda-chains have an additional four amino acids in the vicinity of the FR2-CDR2 junction. The same region also has significant homology with the human D2 germ-line mini-gene sequence, especially with a 14-nucleotide sequence previously shown to be homologous to human and rabbit heavy chain CDR2 sequences. Similar homologies in other heavy and light chain sequences suggest that D-gene segments may be derived from VH genes, perhaps by transposition. The framework regions of the rabbit lambda-chain encoded by clone pDH7 show the greatest homologies with those of human kappa- and lambda-sequences (46 to 54% homology), with that of chicken sequence (55%), and least with murine V lambda sequences (40%).  相似文献   

20.
The genomic organization and sequence of immunoglobulin light chain genes in Heterodontus francisci (horned shark), a phylogenetically primitive vertebrate, have been characterized. Light chain variable (VL) and joining (JI) segments are separated by 380 nucleotides and together with the single constant region exon (CI), occupy less than 2.7 kb, the closest linkage described thus far for a rearranging gene system. The VL segment is flanked by a characteristic recombination signal sequence possessing a 12 nucleotide spacer; the recombination signal sequence flanking the JL segment is 23 nucleotides. The VL genes, unlike heavy chain genes, possess a typical upstream regulatory octamer as well as conserved enhancer core sequences in the intervening sequence separating JL and CL. Restriction mapping and genomic Southern blotting are consistent with the presence of multiple light chain gene clusters. There appear to be considerably fewer light than heavy chain genes. Heavy and light chain clusters show no evidence of genomic linkage using field inversion gel electrophoresis. The findings of major differences in the organization and functional rearrangement properties of immunoglobulin genes in species representing different levels of vertebrate evolution, but consistent similarity in the organization of heavy and light chain genes within a species, suggests that these systems may be coevolving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号