首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phase transitions were studied of the sodium salt of poly(rA).poly(rU) induced by elevated temperature without Ni(2+) and with Ni(2+) in 0.07 M concentration in D(2)O (approximately 0.4 [Ni]/[P]). The temperature was varied from 20 degrees C to 90 degrees C. The double-stranded conformation of poly(rA).poly(rU) was observed at room temperature (20 degrees C-23 degrees C) with and without Ni(2+) ions. In the absence of Ni(2+) ions, partial double- to triple-strand transition of poly(rA).poly(rU) occurred at 58 degrees C, whereas only single- stranded molecules existed at 70 degrees C. While poly(rU) did not display significant helical structure, poly(rA) still maintained some helicity at this temperature. Ni(2+) ions significantly stabilized the triple-helical structure. The temperature range of the stable triple-helix was between 45 degrees C and 70 degrees C with maximum stability around 53 degrees C. Triple- to single-stranded transition of poly(rA).poly(rU) occurred around 72 degrees C with loss of base stacking in single-stranded molecules. Stacked or aggregated structures of poly(rA) formed around 86 degrees C. Hysteresis took place in the presence of Ni(2+) during the reverse transition from the triple-stranded to the double-stranded form upon cooling. Reverse Hoogsteen type of hydrogen-bonding of the third strand in the triplex was suggested to be the most probable model for the triple-helical structure. VCD spectroscopy demonstrated significant advantages over infrared absorption or the related electronic CD spectroscopy.  相似文献   

2.
Ultraviolet (UV) and infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy were used to study conformational transitions in the double-stranded poly(rA). poly(rU) and its components-single-stranded poly(rA) and poly(rU) in buffer solution (pH 6.5) with 0.1M Na+ and different Mg2+ and Cd2+ (10(-6) to 10(-2) M) concentrations. Transitions were induced by elevated temperature that changed from 10 up to 96 degrees C. IR absorption and VCD spectra in the base-stretching region were obtained for duplex, triplex, and single-stranded forms of poly(rA) . poly(rU) at [Mg2+],[Cd2+]/[P] = 0.3. For single-stranded polynucleotides, the kind of conformational transition (ordering --> disordering --> compaction, aggregation) is conditioned by the dominating type of Me2+-polymer complex that in turn depends on the ion concentration range. The phase diagram obtained for poly(rA) . poly(rU) has a triple point ([Cd2+] approximately 10(-4)M) at which the helix-coil (2 --> 1) transition is replaced with a disproportion transition 2AU --> A2U + poly(rA) (2 --> 3) and the subsequent destruction of the triple helix (3 --> 1). The 2 --> 1 transitions occur in the narrow temperature interval of 2 degrees -5 degrees . Unlike 2 --> 1 and 3 --> 1 melting, the disproportion 2 --> 3 transition is a slightly cooperative one and observed over a wide temperature range. At [Me2+] approximately 10(-3) M, the temperature interval of A2U stability is not less than 20 degrees C. In the case of Cd2+, it increases with the rise of ion concentration due to the decrease of T(m) (2-->3). The T(m) (3-->1) value is practically unchanged up to [Cd2+] approximately 10(-3)M. Differences between diagrams for Mg(2+) and Cd2+ result from the various kinds of ion binding to poly(rA).poly-(rU) and poly(rA).  相似文献   

3.
Abstract

The B-Z transition of the synthetic oligonucleotide, (dG-dC)20, induced by Mn2+ ions at room temperature, was investigated by absorption and Vibrational Circular Dichroism (VCD) spectroscopy in the range of 1800–800 cm?1. Metal ion concentration was varied from 0 to 0.73 M Mn2+ (0 to 8.5 moles of Mn2+ per mole of oligonucleotide phosphate, [Mn]/[P]). While both types of spectra showed considerable changes as the Mn2+ concentrations were raised, differences between the two were often complementary in their expression and extent, those displayed by VCD being more clearly evident due to the inversion of the opposite helical sense from the right-handed to the left-handed conformation. The main phase of the transition occurred in the metal ion concentration between 0.8?1.1 [Mn]/[P]. Gradual changes that took place in the spectra were interpreted in terms of simultaneous processes that depended on metal ion concentration, namely B-Z transformation, binding of Mn2+ to phosphates and to nitrogen bases, and partial denaturation. Below~0.6 [Mn]/[P], only a small portion of the oligonucleotide adopted the Z conformation within a 3 hour period, whereas conversion was completed in the same time interval for concentrations between 0.9?1.2 [Mn]/[P]. At [Mn]/[P] > 1.7, complete transition to the Z-form took place immediately on adding Mn2+. Applying VCD spectroscopy in combination with conventional infrared absorption proved most useful for corroborating changes in the absorption spectra, and for detecting in an unique manner, not attainable by absorption methods, conformational changes that lead to the inversion of the helical sense of the oligonucleotide.  相似文献   

4.
Pexiganan (Gly-Ile-Gly-Lys-Phe-Leu-Lys-Lys-Ala-Lys-Lys-Phe-Gly-Lys-Ala-Phe-Val-Lys-Ile-Leu-Lys-Lys), a 22 amino acid peptide, is an analogue of the magainin family of antimicrobial peptides present in the skin of the African clawed frog. Conformational analysis of pexiganan was carried out in different solvent environments for the first time. Organic solvents, trifluoroethanol (TFE) and methanol, were used to study the secondary structural preferences of this peptide in the membrane-mimicking environments. In addition, aqueous (D2O) and dimethyl sulfoxide (DMSO) solutions were also investigated to study the role of hydrogen bonding involved in the secondary structure formation. Fourier transform infrared absorption, vibrational circular dichroism (VCD), and electronic circular dichroism (ECD) measurements were carried out under the same conditions to ascertain the conformational assignments in different solvents. All these spectroscopic measurements suggest that the pexiganan peptide has the tendency to adopt different structures in different environments. Pexiganan appears to adopt an alpha-helical conformation in TFE, a sheet-stabilized beta-turn structure in methanol, a random coil with beta-turn structure in D2O, and a solvated beta-turn structure in DMSO.  相似文献   

5.
The secondary structure of a new type of recombinant RGD-hirudin, which has the activities of anti-thrombin and anti-platelet aggregation, has been studied by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and circular dichroism (CD) methods. The distribution of various secondary structure elements was determined using only a very small amount of sample protein. It was found that the recombinant RGD-hirudin contains about 26% extended chain, 21% beta-turn and 53% unordered structure, leaving no alpha-helix. The results showed that the regular secondary structure of recombinant RGD-hirudin is increased compared with wild-type hirudin. The RGD segment that is located at the end of a long arm of a beta-sheet is thought to play an important role in the additional function of anti-platelet aggregation. Throughout the experiments, FT-IR, Raman spectroscopy and CD generated mutually reinforcing results.  相似文献   

6.
Vibrational circular dichroism (VCD) spectroscopy and simultaneous IR absorption measurements are applied to study the interaction of natural calf thymus DNA with Cu2+ ions at room temperature in a Cu2+ concentration range of 0-0.4M (a Cu2+/phosphate molar ratio [Cu]/[P] of 0-0.7). In some important instances, VCD provides more detailed insights than previous IR investigations whereas in several others it leads to the same interpretations. The Cu2+ ions bind to phosphate groups at a low metal concentration. Upon increasing the ion concentration, chelates are formed in which Cu2+ binds to the N7 of guanine (G) and a phosphate group. Detectable only by VCD, significant distortion of most guanine-cytosine (GC) base pairs occurs at a [Cu]/[P] ratio of 0.5 with only a minor affect on adenine-thymine (AT) base pairs, which favors a "sandwich" complex in which a Cu2+ ion is inserted between two adjacent guanines in a GpG sequence. The AT base pairs become significantly distorted when the metal concentration is increased to 0.7 [Cu]/[P]. A number of GC base pairs, which are possibly involved in sandwich complexes, remain stacked and paired even at 0.7 [Cu]/[P], preventing complete strand separation. The DNA secondary structure changes considerably from the standard B-form geometry at a [Cu]/[P] ratio of 0.4 and higher. A further transition to some intermediate conformation that is inconsistent with either the A- or Z-form or a completely denatured state is suggested in agreement with other works. In general, VCD proves to be a reliable indicator of the 3-dimensional structure of the DNA-metal ion complexes, which reveals structural details that cannot be deduced from the IR absorption spectra alone.  相似文献   

7.
The vibrational circular dichroism (VCD) and infrared absorption (IR) spectra of the mismatched octamer oligonucleotides d(CGTGCGCG)(2) (CGT) and d(CGCGTGCG)(2) (CGC) and their complexes with the antitumor drug daunomycin were measured in D(2)O, interpreted, and compared to the octamer d(CGCGCGCG)(2) (CG). The IR spectra of the mismatched octamers in the carbonyl-stretching region are similar to those of the parent CG, whereas the VCD spectra differ in several respects between each other. The main VCD feature due to carbonyl stretching is informative for the mismatches and CG. Vibrational modes in the sugar-phosphate region remain essentially unchanged especially for PO(2) (-) symmetric stretching. Differences between the free and complexed mismatch octamers occurred mainly in the carbonyl-stretching region (1,700-1,600 cm(-1)). The absorption intensity of the C==O peak of G is more prominent for CGC than CGT and resembles CG in this respect. The detailed composition of this doublet is clearly visible, indicating the geometric rearrangement of the base pairs in the presence of the mismatch and upon forming the daunomycin complex.  相似文献   

8.
The IR absorption frequencies as derived from second derivatives of the Fourier transform IR spectra of the amide I' bands of globular proteins in D2O are compared to those obtained from band fitting of the vibrational circular dichroism (VCD) spectra. The two sets of frequencies are in very good agreement, yielding consistent ranges where amide I' VCD and IR features occur. Use of VCD to complement the IR allows one to add sign information to the frequency information so that features occurring in the overlapping frequency ranges that might arise from different secondary structures can be better discriminated. From this comparison, it is clear that correlation just of the frequency of a given IR transition to secondary structure can lead to a nonunique solution. Different sign patterns were identified for correlated groups of globular proteins in restricted frequency ranges that have been previously assigned to defined secondary structural elements. Hence, different secondary structural elements must contribute band components to a given frequency range.  相似文献   

9.
Conformational properties of two potentially beta-turn forming peptides were determined using a strategy which combines MD simulations, IR and VCD spectroscopy and quantum chemical calculations. This strategy could be a useful alternative for solution conformational analysis of short flexible peptides and could help to identify VCD features which are as yet unknown.  相似文献   

10.
Vibrational absorption and circular dichroism (VCD) spectra were obtained for parent cyclodextrins, hydroxyl deuterated alpha-cyclodextrin, cyclodextrin-copper complexes, and for the cyclodextrin inclusion complexes with Methyl Orange, methyloxirane, 1-propanol, and substituted cyclohexanones, in the solution phase. Changes in the VCD spectra, reflecting perturbations of cyclodextrin cavity, were found in the case of an inclusion complex with Methyl Orange, but for the remaining inclusion complexes measurable changes in VCD were not found. Significant changes observed in the VCD spectra of cyclodextrin-copper complexes suggest that the covalent binding of copper ions to the hydroxyl groups of cyclodextrin is involved.  相似文献   

11.
Vibrational circular dichroism (VCD) and IR absorption spectra are obtained in a chloroform solution for poly[gamma-((R)-alpha-phenethyl)-L-glutamate] (PRPLG) and poly[gamma-((S)-alpha-phenethyl)-L-glutamate] (PSPLG), whose only structural difference is an opposite chiral center in the side chain. Their characteristic amide A, I, and II bands show VCD patterns quite similar to those of poly[gamma-benzyl-L-glutamate] (PBLG), indicating that the secondary structure of these polypeptides is a right-handed alpha-helix. The VCD spectra in the CH stretching region exhibit different patterns for PRPLG and PSPLG, reflecting the chirality difference in the side chains. This difference is interpreted on the basis of the additivity of optical activity contributions from the main chain conformation and the chirality difference in the side chains. The results indicate that a VCD difference spectrum of the CH stretching region is a useful diagnostic tool for elucidating local chirality differences.  相似文献   

12.
Tripeptidesserve as model systems for understanding the so-called random-coil state of peptides and proteins. While it is well known that polyproline or proline-rich polypeptides adopt the very regular polyproline-II (PPII) or left-handed 3(1)-helix conformation, it was thus far not clear whether this is also the predominant structure adopted by proline-containing tripeptides. To clarify this issue, we have investigated the amide I' band profile in the ir, isotropic, and anisotropic Raman, and vibrational circular dichroism (VCD) spectrum of cationic and zwitterionic tri-proline in D(2)O. The data were analyzed by modifying a recently developed algorithm, which allows one to obtain the central dihedral angles of tripeptides from the amide I' band intensities (R. Schweitzer-Stenner, Biophysical Journal, 2002, Vol. 83, pp. 523-532). Our analysis revealed that the peptide adopts a nearly canonical PPII structure in water with psi and phi values in the range of 175 degrees -165 degrees and -70 degrees -(-80 degrees ), respectively. This is fully confirmed by the respective electronic ultraviolet-CD spectra. Our result indicates that the strong PPII propensity of trans proline results from local interactions between the pyrrolidine ring and the backbone and is not due to any long-range interactions.  相似文献   

13.
Raman and Fourier transform infrared (FTIR) spectroscopies and circular dichroism (CD) have been applied to investigate the secondary structure of bombesin in the solid state and in phosphate buffer solution (pH 3.8). At concentrations around 10−5 M, circular dichroism reveals that bombesin exists as an irregular or disordered conformation. However, the secondary structure of the peptide appears to be a mixture of disordered structure and intermolecular β-sheets in 0.01 M sodium phosphate buffer when the peptide concentrations are higher than around 6.5 mM. The tendency of bombesin to form aggregated β-sheet species seems to be originated mainly in the sequence of the residues 7–14, as supported by the Raman spectra and β-sheet propensities (Pβ) of the amino-acid residues. It is the hydrophobic force of this amino-acid sequence, and not a salt bridge effect, that is the factor responsible for the formation of peptide aggregates.  相似文献   

14.
Hemopexin is a serum glyco-protein that binds heme with the highest known affinity of any characterized heme-binding protein and plays an important role in receptormediated cellular heme uptake. Complete understanding of the function of hemopexin will require the elucidation of its molecular structure. Previous analysis of the secondary structure of hemopexin by far-UV circular dichroism (CD) failed due to the unusual positive ellipticity of this protein at 233 nm. In this paper, we present an examination of the structure of hemopexin by both Fourier-transform infrared (FTIR) and circular dichroism spectroscopy. Our studies show that hemopexin contains about 55% β-structure, 15% α-helix, and 20% turns. The two isolated structural domains of hemopexin each have secondary structures similar to hemopexin. Although there are significant tertiary conformational changes indicated by the CD spectra, the overall secondary structure of hemopexin is not affected by binding heme. However, moderate changes in secondary structure do occur when the heme-binding domain of hemopexin associates with heme. In spite of the exceptionally tight binding at neutral pH, heme is released from the bis-histidyl heme–hemopexin complex at pH 5.0. Under this acidic condition, hemopexin maintains the same overall secondary structure as the native protein and is able to resume the heme-binding function and the native structure of the hemeprotein (as indicated by the CD spectra) when returned to neutral pH. We propose that the state of hemopexin identified in vitro at pH 5.0 resembles that of this protein in the acidic environment of the endosomes in vivo when hemopexin releases heme during receptor-mediated endocytosis. © 1994 Wiley-Liss, Inc.  相似文献   

15.
As more peptide secondary structures deduced by infrared spectroscopy (IR) have been reported in the literature, there have been overlaps in assignments of elements of secondary structure to carbonyl vibrational frequencies. We have investigated this phenomenon with regards to the use of IR for monitoring membrane-induced structural changes using conformationally diverse peptides. These IR studies, complemented by circular dichroism (CD) experiments, revealed that peptide–solvent interactions can mask membrane-induced conformational changes monitored by IR. A structural transition from random coil to α-helix upon the binding of mastoparan X to a membrane was clearly observed by CD but obscured in the amide I region of the IR spectrum. In addition, unlike the buried helical peptides gramicidin D and P16 in micelles, the amide II peak for mastoparan X was absent, likely due to H–D exchange. This suggests information on the peptide's membrane-bound solvent accessibility could be obtained from this region of the spectrum.  相似文献   

16.
Nový J  Urbanová M 《Biopolymers》2007,85(4):349-358
The interactions of two different porphyrins, without axial ligands-5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin-Cu(II) tetrachloride (Cu(II)TMPyP) and with bulky meso substituents-5,10,15,20-tetrakis(N,N,N-trimethylanilinium-4-yl)porphyrin tetrachloride (TMAP), with (dG-dC)10 and (dA-dT)10 were studied by combination of vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopy at different [oligonucleotide]/[porphyrin] ratios, where [oligonucleotide] and [porphyrin] are the concentrations of oligonucleotide per base-pair and porphyrin, respectively. The combination of VCD and ECD spectroscopy enables us to identify the types of interactions, and to specify the sites of interactions: The intercalative binding mode of Cu(II)TMPyP with (dG-dC)(10), which has been well described, was characterized by a new VCD "marker" and it was shown that the interaction of Cu(II)TMPyP with (dA-dT)10 via external binding to the phosphate backbone and major groove binding caused transition from the B to the non-B conformer. TMAP interacted with the major groove of (dG-dC)10, was semi-intercalated into (dA-dT)10, and caused significant variation in the structure of both oligonucleotides at the higher concentration of porphyrin. The spectroscopic techniques used in this study revealed that porphyrin binding with AT sequences caused substantial variation of the DNA structure. It was shown that VCD spectroscopy is an effective tool for the conformational studies of nucleic acid-porphyrin complexes in solution.  相似文献   

17.
The VCD spectrum of the monoterpene (−)-myrtenal (1) was compared with theoretical spectra using ab initio density functional theory (DFT) calculations at the B3LYP/6-31G(d,p), B3LYP/6-31G+(d,p), B3LYP/6-311G+(d,p), B3LYP/DGDZVP, and B3PW91/DGTZVP levels of theory. Conformational analysis of 1 indicated that the lowest energy conformer was s-trans-C2-C10, which contributes more than 98.5% to the total conformational population regardless of the employed level of theory. The use of a recently developed confidence level algorithm demonstrated that VCD spectra calculated for the main conformer, using the indicated hybrid functionals and basis set, gave no significant changes, from where it follows that B3LYP/DGDZVP calculations provide a superior balance between computer cost and VCD spectral accuracy. The DGDZVP basis set demanded around a quarter the time than the 6-311G+(d,p) basis set while providing similar results. The spectral comparison also provided evidence that the levorotatory enantiomer of myrtenal has the 1R absolute configuration.  相似文献   

18.
Marquardt and Powell optimization methods without constraintson the optimized spectral parameters were employed for decompositionof complex i.r., c.d. and absorption spectra into componentbands. The procedure resolved experimental spectra into eightcomponent bands and it can be easily adjusted for a larger setof component bands. The CPU time required for achievement ofsatisfactory convergence of parameters for eight component bandsis rather large even when using mainframe computers and thereforedivision of spectra into a few non-overlapped parts is advisable.The program also can be used for calculation of absorption,c.d. and difference spectra from formatted raw spectral data. Received on January 13, 1986; accepted on April 7, 1986  相似文献   

19.
Porcine lutropin shares with ovine lutropin common structural features. They exhibit identical vacuum circular dichroism down to 170 nm with characteristic negative bands at 173, 194, and 210 nm. The band at 210 ± 1 nm is shifted to 201 nm upon dissociation with disappearance of the 194-nm band. For the two hormones the acid transition involves a significant loss of the three recognized periodic structures α helix, β sheet, and β turns of type II, unshields near the same number of tyrosyl residues (2.2 ± 0.7), and gives rise to an identical absorption difference at 287 nm in a two-step mechanism. However, pLH also exhibits noticeable differences: 5 to 10 times lower rates of acid transition with a lower pKa (3.7 ± 0.1) and different transition behavior of tyrosine residues compared to ovine lutropin.  相似文献   

20.
Stephens PJ  Devlin FJ  Pan JJ 《Chirality》2008,20(5):643-663
The vibrational circular dichroism (VCD) spectra of the two enantiomers of a chiral molecule are of equal magnitude and opposite sign: i.e. mirror-image enantiomers give mirror-image VCD spectra. In principle, the absolute configuration (AC) of a chiral molecule can therefore be determined from its VCD spectrum. In practice, the determination of the AC of a chiral molecule from its experimental VCD spectrum requires a methodology which reliably predicts the VCD spectra of its enantiomers. The only reliable methodology developed to date uses the Stephens quantum-mechanical theory of the rotational strengths of fundamental vibrational transitions, developed in the early 1980s, implemented using ab initio density functional theory in the GAUSSIAN program in the mid 1990s. This methodology has by now been widely used in determining ACs from experimental VCD spectra. In this article we discuss the protocol for determining the ACs of chiral molecules with optimum reliability and its implementation for a variety of molecules, including the D3 symmetry perhydrotriphenylene, a thiazino-oxadiazolone recently shown to be a highly active calcium entry channel blocker, the alkaloid natural products schizozygine, iso-schizogaline, and iso-schizogamine, and the iridoid natural products plumericin, iso-plumericin, and prismatomerin. The power of VCD spectroscopy in determining ACs, even for large organic molecules and for substantially conformationally-flexible organic molecules is clearly documented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号