首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Uptake and utilization of nitrate were investigated in Hordeum vulgare L. cvs Mette and Golf in the vegetative stage, 2 and 4 weeks after sowing. The plants were subjected to a light/dark cycle of 16/8 h (18/12°C). Results obtained with the two genotypes were essentially similar. In the light, xylem nitrate transport and shoot nitrate reduction approximately equalled the amount of nitrate absorbed by the root. A drastic decline in translocation to the shoot in darkness was entirely attributable to decreased transpiration since no major changes in xylem nitrate concentration were observed. Darkening caused only a slight decrease in nitrate uptake, while root nitrate reduction was enhanced. Nitrate starvation for 2 days did not significantlly affect dry matter increment, but resulted in a drastic drop in previously accumulated nitrate, indicating that the stored nitrate is accessible and can sustain unrestricted growth. Uptake increased upon re-addition of nitrate and after 8 h it was about twice that of non-starved plants. During recovery, restoration of root nitrate pools and root nitrate reduction took precedence over shoot nitrate accumulation and reduction. Net nitrate uptake and removal of nitrate from the root to the transpiration stream seem to be decisive for the rate of root nitrate reduction.  相似文献   

2.
Kumagai E  Araki T  Hamaoka N  Ueno O 《Annals of botany》2011,108(7):1381-1386

Background and Aims

Rice (Oryza sativa) plants lose significant amounts of volatile NH3 from their leaves, but it has not been shown that this is a consequence of photorespiration. Involvement of photorespiration in NH3 emission and the role of glutamine synthetase (GS) on NH3 recycling were investigated using two rice cultivars with different GS activities.

Methods

NH3 emission (AER), and gross photosynthesis (PG), transpiration (Tr) and stomatal conductance (gS) were measured on leaves of ‘Akenohoshi’, a cultivar with high GS activity, and ‘Kasalath’, a cultivar with low GS activity, under different light intensities (200, 500 and 1000 µmol m−2 s−1), leaf temperatures (27·5, 32·5 and 37·5 °C) and atmospheric O2 concentrations ([O2]: 2, 21 and 40 %, corresponding to 20, 210 and 400 mmol mol−1).

Key Results

An increase in [O2] increased AER in the two cultivars, accompanied by a decrease in PG due to enhanced photorespiration, but did not greatly influence Tr and gS. There were significant positive correlations between AER and photorespiration in both cultivars. Increasing light intensity increased AER, PG, Tr and gS in both cultivars, whereas increasing leaf temperature increased AER and Tr but slightly decreased PG and gS. ‘Kasalath’ (low GS activity) showed higher AER than ‘Akenohoshi’ (high GS activity) at high light intensity, leaf temperature and [O2].

Conclusions

Our results demonstrate that photorespiration is strongly involved in NH3 emission by rice leaves and suggest that differences in AER between cultivars result from their different GS activities, which would result in different capacities for reassimilation of photorespiratory NH3. The results also suggest that NH3 emission in rice leaves is not directly controlled by transpiration and stomatal conductance.  相似文献   

3.
4.
The green micro-algae Chlamydomonas reinhardtiiand Dunaliella tertiolecta were cultivated undermedium-duration square-wave light/dark cycles with acycle time of 15 s. These cycles were used to simulatethe light regime experienced by micro-algae inexternally-illuminated (sunlight) air-lift loopbioreactors with internal draft tube. Biomass yieldin relation to light energy was determined as gprotein per mol of photons (400–700 nm). Between 600and 1200 mol m-2 s-1 the yield at a10/5 s light/dark cycle was equal to the yield atcontinuous illumination. Consequently, provided thatthe liquid circulation time is 15 s, a considerabledark zone seems to be allowed in the interior ofair-lift loop photobioreactors (33% v/v) without lossof light utilization efficiency. However, at a 5/10 slight/dark cycle, corresponding to a 67% v/v darkzone, biomass yield decreased. Furthermore, bothalgae, C. reinhardtii and D. tertiolecta,responded similarly to these cycles with respect tobiomass yield. This was interesting because they werereported to exhibit a different photoacclimationstrategy. Finally, it was demonstrated that D.tertiolecta was much more efficient at low (average)photon flux densities (57–370 mol m-2s-1) than at high PFDs (> 600 mol m-2s-1) and it was shown that D. tertiolectawas cultivated at a sub-optimal temperature (20 °C).  相似文献   

5.
Two-month-old jack pine ( Pinus banksiana Lamb.) seedlings were placed in a greenhouse where both nitrogen source and light level were varied. After 4 months, whole seedling biomass, leaf biomass and relative growth rate were greatest in seedlings grown with NH+4/NO/NO3-N and full light (FL) and least in seedlings grown with NO 3-N and low light (LL). NO 3-seedlings grown under full light and NH+4/NO3-seedlings grown under low light were approximately equal. This indicates that the extra carbon costs of assimilating only NO3-N were similar to the reduction of carbon fixation resulting from a 50% decrease in photon flux density. Percentage and total nitrogen content of needles were greater in seedlings grown under low light independent of nitrogen fertilization. Percentage and total nitrogen content of roots were higher under low light and lower when fertilized with NO3.
Nitrate reductase (NR) activity was higher in roots than in needles, while glutamine synthetase (GS) activity was higher in needles than in roots. Low light resulted in decreased NR activity (mg N)−1 in needles, but not in roots. However, no nitrate was detected in the needles in any treatment. GS activity, on the other hand, was greater under low light in both needles and roots. GS activity in needles is most likely involved with the reassimilation rather than the initial assimilation of ammonium. Some implications of these shifts in enzymatic activity for ecological phenomena in forests are discussed.  相似文献   

6.
A number of biochemical parameters of glutamine synthetase (EC 6.3.1.2) isolated from the cyanobacterium Anabaena 7120 were determined. Apparent Michaelis constants for glutamate and ATP were found to be 2.1 and 0.32 mM, respectively; that for ammonia was found to be below 20 microM, significantly lower than that reported for glutamine synthetases from other species. Serine, alanine, glycine, cysteine, aspartic acid, methionine sulfone, and methionine sulfoximine were found to inhibit the enzyme. The enzyme is controlled neither by adenylylation nor by feedback inhibition by glutamine, mechanisms found in some other prokaryotes. It must therefore be regulated by a different mechanism, possibly a combination of feedback by alanine, serine, and glycine, metabolites which are especially effective in inhibiting Anabaena glutamine synthetase.  相似文献   

7.
The possible regulation of amino acid remobilization via the phloem in wheat (Triticum aestivum L.) by the primary enzyme in nitrogen (N) assimilation and re-assimilation, glutamine synthetase (GS, E.C. 6.3.1.2) was studied using two conditions known to alter N phloem transport, N deficiency and cytokinins. The plants were grown for 15 days in controlled conditions with optimum N supply and then N was depleted from and/or 6-benzylaminopurine was added to the nutrient solution. Both treatments generated an induction of GS1, monitored at the level of gene expression, protein accumulation and enzyme activity, and a decrease in the exudation of amino acids to the phloem, obtained with EDTA technique, which correlated negatively. GS inhibition by metionine sulfoximide (MSX) produced an increase of amino acids exudation and the inhibitor successfully reversed the effect of N deficiency and cytokinin addition over phloem exudation. Our results point to an important physiological role for GS1 in the modulation of amino acids export levels in wheat plants.  相似文献   

8.
9.
Hauke Holtorf  Klaus Apel 《Planta》1996,199(2):289-295
In etiolated barley (Hordeum vulgare L.) seedlings the light-induced accumulation of chlorophyll is controlled by two light-dependent NADPH-proto-chlorophyllide oxidoreductase (POR; EC 1.6.99.1) enzymes. While the concentration of one of these enzymes (POR A) and its mRNA rapidly decline during illumination, the second POR protein (POR B) and its mRNA remain at an approximately constant level during the transition from dark growth to the light. These results may suggest that only one of the enzymes, POR B, operates throughout the greening process and in light-adapted mature plants while the second enzyme, POR A, is active only in etiolated seedlings at the beginning of illumination. The fate of the two POR proteins and their mRNAs in fully green plants, however, has not been studied yet. In the present work we determined changes in the level of POR A and POR B proteins and mRNAs in green barley plants kept under a diurnal 12 h light/12 h dark cycle. In green barley plants, not only POR B is present but also trace amounts of POR A continue to reappear transiently at the end of a night period and seem to be involved in the synthesis and accumulation of chlorophyll at the beginning of each day.Abbreviations Chl chlorophyll - Chlide chlorophyllide - Lhcb light-harvesting chlorophyll a/b protein - Pchlide protochlorophyllide - POR NADPH-protochlorophyllide oxidoreductase Dedicated to Horst Senger on the occasion of his 65th birthday.We thank Dr. Dieter Rubli for photography and Renate Langjahr for typing. This work was supported by the Swiss National Science Foundation and the ETH-Zürich.  相似文献   

10.
Nitrogen-limited continuous cultures of Rhodopseudomonas capsulata were used to investigate some aspects of the regulation of nitrogenase activity. The role of glutamine synthetase (GS) in this regulation was examined by measuring changes of its adenylylation state when the light intensity and the nitrogen source were varied. Maximal nitrogenase activity was observed at a dilution rate corresponding to about one third of the maximum specific growth rate (max), both in ammonia- and in glutamate-limited cultures. At higher dilution rates, both GS and nitrogenase were inactivated by ammonia. Determination of the kinetics of inhibition of both enzymes indicated that the degree of inactivation of nitrogenase and the adenylylation state of GS were not closely related. Increase of light intensity stimulated nitrogenase activity dramatically. Conversely, a shift-down in light intensity to a limiting value resulted in a decrease of nitrogenase activity suggesting that synthesis was inhibited. On the other hand, the adenylylation state of glutamine synthetase appeared to be unaffected by changes in light intensity, indicating that GS is probably not involved in the regulation of nitrogenase expression by light.Abbreviations GS glutamine synthetase - R Rhodopseudomonas - Rs. Rhodospirillum - CTAB cetyltrimethylammonium bromide Dedicated to Prof. Dr. H. G. Schlegel on the occasion of his 60th birthday  相似文献   

11.
In plants, ammonium released during photorespiration exceeds primary nitrogen assimilation by as much as 10-fold. Analysis of photorespiratory mutants indicates that photorespiratory ammonium released in mitochondria is reassimilated in the chloroplast by a chloroplastic isoenzyme of glutamine synthetase (GS2), the predominant GS isoform in leaves of Solanaceous species including tobacco (Nicotiana tabacum). By contrast, cytosolic GS1 is expressed in the vasculature of several species including tobacco. Here, we report the effects on growth and photorespiration of overexpressing a cytosolic GS1 isoenzyme in leaf mesophyll cells of tobacco. The plants, which ectopically overexpress cytosolic GS1 in leaves, display a light-dependent improved growth phenotype under nitrogen-limiting and nitrogen-non-limiting conditions. Improved growth was evidenced by increases in fresh weight, dry weight, and leaf soluble protein. Because the improved growth phenotype was dependent on light, this suggested that the ectopic expression of cytosolic GS1 in leaves may act via photosynthetic/photorespiratory process. The ectopic overexpression of cytosolic GS1 in tobacco leaves resulted in a 6- to 7-fold decrease in levels of free ammonium in leaves. Thus, the overexpression of cytosolic GS1 in leaf mesophyll cells seems to provide an alternate route to chloroplastic GS2 for the assimilation of photorespiratory ammonium. The cytosolic GS1 transgenic plants also exhibit an increase in the CO(2) photorespiratory burst and an increase in levels of photorespiratory intermediates, suggesting changes in photorespiration. Because the GS1 transgenic plants have an unaltered CO(2) compensation point, this may reflect an accompanying increase in photosynthetic capacity. Together, these results provide new insights into the possible mechanisms responsible for the improved growth phenotype of cytosolic GS1 overexpressing plants. Our studies provide further support for the notion that the ectopic overexpression of genes for cytosolic GS1 can potentially be used to affect increases in nitrogen use efficiency in transgenic crop plants.  相似文献   

12.
S-Adenosylmethionine greatly stimulates the formation of threonine from O-phosphohomoserine by an enzyme from sugar beet leaves. The stimulation due to S-adenosylmethionine is inhibited by cysteine. Cysteine and O-phosphohomoserine are incorporated into cystathionine by another enzyme. The results suggest that the conversion of O-phosphohomoserine to either threonine or cystathionine is regulated by the relative amounts of cysteine and S-adenosylmethionine present.  相似文献   

13.
14.
15.
16.
Changes in the transpiration rate of intact spring barley plants, cv. “Slovensky dunajsky trh”, were studied separately in the light and in the dark under controlled temperature and illumination, after the infection withErysiphe graminis DC, during an 8 day period of the development of the fungus. In the first stage of pathogenesis, the fungus diminishes water output from the host plants in the light. An opposite phenomenon can be observed in the dark; water output from infected plants in the dark increases sharply mainly in the stage of advanced fructification. Thus, the fungus considerably diminishes the ratio of water output from the host plants in the light to that in the dark.  相似文献   

17.
Diurnal variations of in vitro activity of 5 enzymes of nitrogen metabolism were studied. Barley ( Hordeum vulgare L. cv. Herta) seedlings were grown in 8 h short days, in daylight or under fluorescent lamps. During, the photoperiod nitrite reductase (EC 1.7.7.1) increased by an average of 18% in daylight and 10% under fluorescent lamps. Glutamine synthetase (EC 6.3.1.2) activity increased by 14 and 10%, respectively. The increase in enzyme activity reflected the overall increase in soluble proteins which was 8% in daylight and 3% under fluorescent lamps. Alanine aminotransferase (EC 2.6.1.2) increased by 82% in daylight and 37% under fluorescent lamps. Desalting of the extracts did not alter the enzyme activity and thus supported the assumption that changes in extractable enzyme activity are due to changes in the amount of (active) enzyme protein. Glutamate synthase (EC 1.4.7.1) activity did not show regular diurnal variations, and aspartate aminotransferase (EC 2.6.1.1) activity was almost constant.  相似文献   

18.
Glutamine synthetase (GS; E.C.6.3.1.2) is a key enzyme in higher plants with two isozymes, cytosolic GS1 and plastidic GS2, and involves in the assimilation and recycling of NH4+ ions and maintenance of complex traits such as crop nitrogen-use efficiency and yield. Our present understanding of crop nitrogen-use efficiency and its correlation with the functional role of the GS family genes is inadequate, which delays harnessing the benefit of this key enzyme in crop improvement. In this report, we performed a comprehensive investigation on the phylogenetic relationship, structural properties, complex multilevel gene regulation, and expression patterns of the GS genes to enrich present understanding about the enzyme. Our Gene Ontology and protein–protein interactions analysis revealed the functional aspects of GS isozymes in stress mitigation, aging, nucleotide biosynthesis/transport, DNA repair and response to metals. The insight gained here contributes to the future research strategies in developing climate-smart crops for global sustainability.  相似文献   

19.
The incorporation of 15N into washed cells of Derxia gummosa from labelled-(NH4)2SO4 and -KNO3 respectively was inhibited by both L-methionine-DL-sulphoximine and azaserine. Glutamine synthetase purified to homogeneity from this bacterium had a molecular weight of 708 000 and was composed of 12 similar subunits each of 59 000. The enzyme assayed by γ-glutamyltransferase method had Km values for L-glutamine and hydroxylamine of 12.5 and 1.2 mM, respectively. Optimal pH values for adenylylated and deadenylylated forms were pH 7.0 and pH 8.0, respectively. The adenylylated enzyme was deadenylylated by treatment with snake venom phosphodiesterase. The inhibitions by both glutamate and ammonia were competitive. The activity was markedly inhibited by L-methionine-DL-sulphoximine, alanine, glycine and serine and to a lesser extent by aspartate, phenylalanine and lysine. Various tri-, di- and mono-phosphate nucleotides, organic acids (pyruvate, oxalate and oxaloacetate) were also inhibitory. Glutamate synthase purified 167-fold had specific requirements for NADH, L-glutamine and 2-ketoglutarate. The Km values for NADH, glutamine and 2-ketoglutarate were 9.6, 270 and 24 μM respectively. Optimal pH range was 7.2–8.2. The enzyme was inhibited by azaserine, methionine, aspartate, AMP, ADP and ATP.  相似文献   

20.
Positive influences of high concentrations of dissolved inorganic carbon (DIC) in the growth medium of salinity-stressed plants are associated with carbon assimilation through phosphoenolpyruvate carboxylase (PEPc) activity in roots; and also in salinity-stressed tomato plants, enriched CO2 in the rhizosphere increases NO?3uptake. In the present study, wild-type and nitrate reductase-deficient plants of barley (Hordeum vulgare L. cv. Steptoe) were used to determine whether the influence of enriched CO2 on NO?3 uptake and metabolism is dependent on the activity of nitrate reductase (NR) in the plant. Plants grown in NH4+and aerated with ambient air, were transferred to either NO3? or NH4+ solutions and aerated with air containing between 0 and 6 500 μmol mol?1 CO2. Nitrogen uptake and tissue concentrations of NO3? and NH4+ were measured as well as activities of NR and PEPc. The uptake of NO?3 by the wild-type was increased by increasing CO2. This was associated with increased in vitro NR activity, but increased uptake of NO3? was found also in the NR-deficient genotype when exposed to high CO2 concentrations; so that the influence of CO2 on NO3? uptake was independent of the reduction of NO3? and assimilation into amino acids. The increase in uptake of NO3? in wild-type plants with enriched CO2 was the same at pH 7 as at pH 5, indicating that the relative abundance of HCO3? or CO2 in the medium did not influence NO3? uptake. Uptake of NH4+ was decreased by enriched CO2 in a pH (5 or 7) independent fashion. Thus NO3? and NH+4 uptakes are influenced by the CO2 component of DIC independently of anaplerotic carbon provision for amino acid synthesis, and CO2 may directly affect the uptake of NO3? and NH4+ in ways unrelated to the NR activity in the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号