首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Detergent solubilization of the interleukin 1 receptor   总被引:5,自引:0,他引:5  
Interleukin 1 (IL 1) receptors were solubilized from membranes prepared from murine EL-4 thymoma cells with the zwitterionic detergent 3[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). Binding of IL 1 to the solubilized receptor was detected by a polyethylene glycol (PEG) precipitation procedure. Concentrations of CHAPS from 4 to 8 mM were effective in solubilizing the IL 1 receptor. At 10 mM CHAPS, there was some loss in binding activity, whereas 2 mM CHAPS was completely ineffective in solubilizing the receptor. Detergent concentrations of 4 mM were routinely used. The solubilized receptor retains the ability to bind 125I-IL 1 in a specific and saturable manner. Scatchard analysis reveals a single type of high affinity binding site having an apparent dissociation constant (KD) of approximately 1.2 X 10(-10) M. Nearly identical KD values are observed for membrane fractions. There are approximately 400 to 500 fmol receptor/mg protein in the detergent extract, corresponding to a two- to threefold enrichment in the Bmax observed for membranes. There is no loss in receptor activity as determined by complete recovery of the total number of binding sites from membranes after solubilization. Binding kinetics show that apparent steady state for the solubilized receptor is reached after 60 min at 37 degrees C. The binding of 125I-IL 1 is essentially irreversible because relatively little bound ligand can be dissociated from the receptor on the addition of excess unlabeled IL 1 at 37 degrees C. Both human IL 1 alpha and IL 1 beta compete for binding of 125I-IL 1 to the soluble receptor, confirming that IL 1 alpha and IL 1 beta bind to the same receptor. Other recombinant proteins, including interferon-alpha A, interferon-gamma, and interleukin 2 have no inhibitory effect.  相似文献   

2.
IL-1 is a potent bone resorbing agent. Its mechanism of action is unknown, but the presence of osteoblasts was shown to be necessary for IL-1 stimulation of bone resorption by isolated osteoclasts. This study examines the presence of IL-1R and IL-1 effects in osteoblastic cells from a clonal human osteosarcoma cell line, Saos-2/B-10. We found that the binding affinity and the number of binding sites increases substantially during the postconfluent stage. Scatchard and curve-fitting analysis revealed one class of high affinity binding sites, with Kd/Ki's of 40 +/- 17 pM (mean +/- SD) for IL-1 alpha (n = 5) and 9 +/- 7 pM for IL-1 beta (n = 5) and 2916 +/- 2438 (n = 6) receptors/cell. Incubation of the cells with 125I-IL-1 alpha (100 pM) at 4 degrees C, followed by incubation at 37 degrees C up to 4 h, revealed internalization of receptor-bound IL-1 alpha. Chemical cross-linking studies showed that the IL-1R in Saos-2/B-10 cells had a molecular mass of approximately 80 kDa. To assess the biologic effect of IL-1 in Saos-2/B-10 cells, we determined PGE2 content and adenylate cyclase activity. Although IL-1 had no effect on PGE2 synthesis, both IL-1 alpha and IL-1 beta enhanced PGE2 stimulation of adenylate cyclase two- to four-fold in a dose-dependent manner. The half-maximal effect for IL-1 alpha was seen at 8 to 10 pM and for IL-1 beta at 0.6 to 1.8 pM. IL-1 did not enhance basal adenylate cyclase or stimulation by parathyroid hormone, isoproterenol, or forskolin. IL-1 enhancement of PGE2-stimulated adenylate cyclase was detected between 1 to 2 h, was maximal at 4 to 5 h, was not prevented by cycloheximide treatment, and was seen in membranes from IL-1 pretreated cells. These data show effects of IL-1 on a human osteoblast-like cell line that are mediated by high affinity receptors. These IL-1 effects could contribute to the biologic action of IL-1 on bone.  相似文献   

3.
In this study we demonstrate that 125I-labelled interleukin (IL) 1 alpha binds specifically to its receptor on the surface of EL4 6.1 cells and is subsequently endocytosed and translocated from the cell membrane to the nucleus, where it progressively accumulates. Two-dimensional polyacrylamide-gel electrophoresis revealed that the internalized 125I-IL1 alpha associated with the nucleus was intact, with negligible breakdown products present. Specific and saturable binding of 125I-IL1 alpha was demonstrated on purified nuclei isolated from these cells. Binding of the radiolabelled ligand showed similar kinetics to that of the plasma-membrane receptor, and was inhibited by both unlabelled IL1 alpha and IL1 beta. Equilibrium binding studies on isolated nuclei revealed a single high-affinity binding site, with a Kd of 17 +/- 2 pM, and 79 +/- 12 binding sites per nucleus. These studies demonstrate that receptor-mediated endocytosis of IL1 results in its accumulation in the nucleus, and this mechanism may play an important role in mediating some of the actions of IL1.  相似文献   

4.
Pure, E. coli-derived recombinant murine interleukin 1 alpha (IL 1 alpha) was labeled with 125I and used for receptor binding studies. The 125I-IL 1 binds to murine EL-4 thymoma cells in a specific and saturable manner. Scatchard plot analysis for binding studies carried out at 4 degrees C reveals a single type of high affinity binding site with an apparent dissociation constant of approximately 2.6 X 10(-10) M and the presence of approximately 1200 binding sites per cell. The rate of association of the 125I-IL 1 with EL-4 cells is slow, requiring more than 3 h to reach apparent steady state at 4 degrees C. Cell-bound 125I-IL 1 cannot be dissociated from EL-4 cells upon removal of unbound 125I-IL 1 and incubation of the cells at 4 degrees C in the presence or absence of unlabeled IL 1. Unlabeled recombinant murine IL 1 competes for 125I-IL 1 binding in a dose-dependent manner, whereas interferon-alpha A, interleukin 2 (IL 2), epidermal growth factor, and nerve growth factor have no effect. The 125I-IL 1 binding site is sensitive to trypsin, suggesting that it is localized on the cell surface. We have also examined the ability of purified recombinant human IL 1 alpha and IL 1 beta to compete for binding of the radiolabeled murine IL 1 to its receptor and to stimulate IL 2 production by EL-4 cells. Previous reports have shown that human IL 1 alpha is approximately 60% homologous in amino acid sequence with murine IL 1, but that human IL 1 beta is only about 25% homologous with either murine IL 1 or human IL 1 alpha. Despite these marked differences, however, we report here that both human IL 1 proteins are able to recognize the same binding site as mouse IL 1. In addition, murine as well as both human IL 1 proteins stimulate IL 2 production by EL-4 cells.  相似文献   

5.
The interaction between interleukin IL-1 alpha and PGE2 on P388D1 cells has been investigated. Preincubation of murine macrophage-like cells, P388D1, with IL-1 alpha (0-73 pM) reduced the binding of PGE2 to these cells in a concentration-dependent manner. Scatchard analysis showed that IL-1 alpha decreased the PGE2 binding by lowering both the high and low affinity receptor binding capacities (from 0.31 +/- 0.02 to 0.12 +/- 0.01 fmol/10(6) cells for the high affinity receptor binding sites and from 2.41 +/- 0.12 to 1.51 +/- 0.21 fmol/10(6) cells for the low affinity receptor binding sites). However, the dissociation constants of the receptors of the IL-1 alpha-treated cells remained unchanged. Inhibition of PGE2 binding by IL-1 alpha did not involve changes in either protein phosphorylation or intracellular cyclic AMP levels. Our data clearly show that IL-1 alpha inhibits the binding of PGE2 to monocytes/macrophages and may thereby counter the immunosuppressive actions of PGE2.  相似文献   

6.
IL-12 is a 75-kDa heterodimeric cytokine composed of disulfide-bonded 35-kDa and 40-kDa subunits. Included among the biologic activities mediated by IL-12 is induction of proliferation of PHA-activated human PBL. The concentration of IL-12 required to stimulate maximum proliferation of PHA-activated lymphoblasts is 50 to 100 pM. In this study, highly purified 125I-labeled IL-12 (7 to 15 microCi/microgram; 50 to 100% bioactive) was used to characterize the receptor for IL-12 on 4-day PHA-activated lymphoblasts. The binding of 125I-labeled IL-12 to PHA-activated lymphoblasts was saturable and specific because the binding of radiolabeled ligand was only inhibited by IL-12 and not by other cytokines. The kinetics of [125I]IL-12 binding to PHA-activated lymphoblasts was rapid at both 4 degrees C and 22 degrees C; reaching equilibrium within 60 min. At 22 degrees C, the rate of dissociation of [125I]IL-12 was slow in the absence of competing IL-12 (t1/2 = 5.9 h) and more rapid in the presence of 25 nM competing IL-12 (t1/2 = 2.5 h). The kinetically derived equilibrium dissociation constant ranged from 10 to 83 pM. Analysis of steady state binding data by the method of Scatchard identified a single binding site with an apparent equilibrium dissociation constant of 100 to 600 pM and 1000 to 9000 sites/lymphoblast. The equilibrium dissociation constant for competing ligands and sites per cell calculated from unlabeled IL-12 competition experiments ranged from 164 to 315 pM and 1067 to 3336, respectively, which is in good agreement with the values determined from steady state binding. The variations in KD and sites per cell were dependent on the individual preparations of lymphoblasts. Although the steady state binding data were consistent with a single class of high affinity binding sites, the kinetic dissociation data indicates a cooperative interaction between receptors on PHA-activated lymphoblasts. Affinity cross-linking of surface bound [125I]IL-12 to PHA-activated lymphoblasts at 4 degrees C identified a major complex of approximately 210 to 280 kDa. Anti-IL-12 antibodies also immunoprecipitated a complex of approximately 210 to 280 kDa that was produced by cross-linking unlabeled IL-12 to 125I-labeled lymphoblast cell-surface proteins. Cleavage of this complex with reducing agent identified one radiolabeled protein of approximately 110 kDa. These data suggest that the IL-12 binding site on PHA-activated lymphoblasts may be composed of a single protein of approximately 110 kDa.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The adrenergic receptors of rat pineal gland were investigated using radiolabeled ligand binding and photoaffinity labeling techniques. 125I-2-[beta-(4-hydroxyphenyl)ethylaminomethyl]tetralone (125I-HEAT) and 125I-cyanopindolol (125I-CYP) labeled specific sites on rat pineal gland membranes with equilibrium dissociation constants (KD) of 48 (+/- 5) pM and 30 (+/- 5) pM, respectively. Binding site maxima were 481 (+/- 63) and 1,020 (+/- 85) fmol/mg protein. The sites labeled by 125I-HEAT had the pharmacological characteristics of alpha 1-adrenergic receptors. 125I-CYP-labeled beta-adrenergic receptors were characterized as a homogeneous population of beta 1-adrenergic receptors. The alpha 1- and beta 1-adrenergic receptors were covalently labeled with the specific photoaffinity probes 4-amino-6,7-dimethoxy-2-(4-[5-(4-azido-3-[125I]iodophenyl) pentanoyl]-1-piperazinyl) quinazoline (125I-APDQ) and 125I-p-azidobenzylcarazolol (125I-pABC). 125I-APDQ labeled an alpha 1-adrenergic receptor peptide of Mr = 74,000 (+/- 4,000), which was similar to peptides labeled in rat cerebral cortex, liver, and spleen. 125I-pABC labeled a single beta 1-adrenergic receptor peptide with a Mr = 42,000 (+/- 1,500), which differed from the 60-65,000 peptide commonly seen in mammalian tissues. Possible reasons for these differences are discussed.  相似文献   

8.
Soluble interleukin 1 (IL 1) binding proteins were identified by gel filtration and covalent cross-linking of 125I IL 1 in normal human serum and inflammatory exudate. High molecular weight 125I IL 1 protein complexes occurred with both IL 1 alpha and IL 1 beta, however, high molecular weight binding appeared to be non-specific. One specific IL 1 beta binding protein was observed to elute at approximately 100 kDa on gel filtration when bound to 125I IL 1 beta. This complex migrated as a broad band at 60 kDa when covalently cross-linked and analyzed by SDS-PAGE. The protein did not bind 125I IL 1 alpha and 125I IL 1 beta binding was only displaceable by excess cold IL-1 beta. The production of the specific IL 1 beta binding protein was assessed in a number of cell populations. Unstimulated peripheral blood mononuclear cells (PBMNC) did not produce the binding protein, but stimulation with phytohemagglutinin (PHA) caused production within 24 hr and binding protein levels remained elevated for up to 7 days. Stimulation with lipopolysaccharide (LPS) and IL 1 alpha did not consistently induce synthesis of the binding protein. Ligand-binding studies were performed to compare solubilized EL 4 NOB.1 cell membrane IL 1 receptor (sIL 1R) with semi-purified IL 1 beta binding protein from pooled synovial fluid. The sIL 1R preparation bound ligand with an affinity of 168 pM while the IL 1 beta binding protein bound 125I IL 1 beta with an affinity of 370 pM. This protein may function as an important carrier molecule for IL 1 beta and determine its distribution and kinetics in vivo.  相似文献   

9.
The cardiac beta-adrenoceptor adaptation to physical activity was investigated in rats which were subjected to a six-week endurance swimming training (ET; n = 7) and a training of high intensity (MT; n = 7). In addition, the effect of a single bout of endurance exercise without preceding training (EE; n = 7) was evaluated. These groups were compared with a sedentary control group (C; n = 9). Beta-adrenergic receptors in rat myocardial membranes were labelled using the high affinity antagonist radioligand (-)125iodocyanopindolol (ICYP). Computer modelling techniques provided estimates of the maximal binding capacity (Bmax) and the dissociation constants (KD). Tissue was constantly kept at temperatures of less than or equal to 4 degrees C and incubated at 4 degrees C for 18 h in buffer containing 100 microM GTP so as to prevent masking of beta-adrenoceptors by endogenous norepinephrine. In comparison with the C group (Bmax = 43.2 +/- 1.6 fmol/mg protein, KD = 11.7 +/- 1.5 pM) computerized coanalyses of saturation binding data of ET, MT, and EE revealed a 13.0%, 25.5%, and 16.6% decrease in Bmax (P less than 0.01), respectively, without significantly differing KD values (10.6 pM, 9.0 pM, 10.5 pM, respectively). We provide the first evidence that acute exercise lowers the sarcolemmal beta-adrenoceptor number in the rat heart. In the competition radioligand binding, CGP20712A and ICI118.551 were employed as subtype-selective antagonists of beta 1- and beta 2-adrenoceptors, respectively, to determine the relative proportions of the receptor subtypes. The ratio of beta 1-/beta 2-adrenoceptors in C was 67.5:32.5 and no statistically significant variation occurred in animals subjected to physical activity. On the basis of published data we assume that acute exercise induces a sequestration of beta-adrenoceptors from the cell surface to some intracellular compartment, whereas the molecular basis of the chronic beta-adrenoceptor down-regulation may involve a training-induced reduction in receptor synthesis. Our findings on cardiac beta-adrenoceptor adaptation to physical activity may represent one of the mechanisms underlying the relative bradycardia in trained subjects.  相似文献   

10.
The regulation of interleukin 1 (IL 1) receptor expression on a human large granular lymphocyte cell line, YT, and fate of internalized 125I-labeled IL 1 beta (125I-IL 1 beta) were studied. YT cells were selected for this study, because this cell line expresses a large number of specific high-affinity receptor for IL 1, responds biologically to exogenously added IL 1 by expressing high-affinity IL 2 receptors, and does not produce IL 1. YT cells constitutively express approximately 7 X 10(3) IL 1 receptors/cell with a Kd approximately 10(-10) M. Neither IL 2, phorbol myristic acid, nor lipopolysaccharide affected the total binding of 125I-IL 1 beta by YT cells. In contrast, the capacity of YT cells to bind 125I-IL 1 beta when incubated at 37 degrees C for 3 to 16 hr with a low dose of purified IL 1 beta (approximately 6 U/ml) was reduced by greater than 80%. The loss of binding capability gradually recovered by 16 hr after removal of IL 1 beta from cultured YT cells. The apparent loss of IL 1 receptor expression was accompanied by the internalization of 125I-IL 1 beta into cells. Acid treatment of YT cells to remove bound 125I-IL 1 beta at 4 degrees C showed that 50% of the 125I-IL 1 beta bound to cells could no longer be recovered after 30 min at 37 degrees C, and this increased to 80% after 3 hr at 37 degrees C. Fractionation of cell extracts on Percoll gradient additionally showed 125I-IL 1 beta to appear intracellularly after receptor binding on plasma membranes, and to be successively transferred to some membranous organelles (d approximately equal to 1.037) through an intermediate density organelle (d approximately equal to 1.050), and to finally end up in lysosomal cell fractions (d approximately equal to 1.05 to 1.08) after approximately 3 hr at 37 degrees C. Only approximately 5% of internalized 125I-IL 1 beta was released into culture media by 6 hr of incubation at 37 degrees C. However, the radioactivity in the TCA soluble fraction of the culture media increased gradually by 6 hr and a lysosomotropic enzyme, ethylamine, significantly inhibited both the transfer of internalized 125I-IL 1 beta to the lysosomal fraction and the degradation of 125I-IL 1 beta. This study represents the first evidence of autoregulation of IL 1 receptors by IL 1 and internalization of IL 1 molecules after binding to receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Expression of interleukin 1 receptors on human peripheral T cells   总被引:6,自引:0,他引:6  
The expression of interleukin 1 receptors (IL 1R) on human peripheral T cells was studied by the binding assay with 125I-labeled recombinant human interleukin 1 (IL 1) alpha and IL 1 beta and by the flow cytofluorometry with the fluorescein isothiocyanate (FITC)-conjugated IL 1 alpha. Peripheral blood lymphocytes expressed only few IL 1R without any stimulations. When they were stimulated with concanavalin A (Con A), IL 1R-positive cells began to increase by 4 hr, reached the maximum level at 48 hr, and then gradually decreased. The kinetics of the expression of IL 1 alpha R and IL 1 beta R showed the same pattern. Furthermore the binding of 125I-labeled IL 1 alpha to IL 1R on T cells was inhibited by the addition of either cold IL 1 alpha or IL beta, but not by interleukin 2 or interferons. The similar results were observed in the binding of 125I-labeled IL 1 beta. These results suggest that IL 1R on human peripheral T cells reactive for IL 1 alpha and IL 1 beta were identical. By Scatchard plot analysis, the numbers of IL 1R were estimated as 40 and 350 molecules per cell before and after Con A stimulation, respectively, and their Kd values were 3.1 X 10(-10) M and 2.8 X 10(-10) M. When purified T cells alone were stimulated with Con A, IL 1R were only marginally expressed. However, by the addition of monocytes, IL 1R were expressed on T cells in a dose-dependent manner. The maximum response was induced in the presence of 10% monocytes. The maximum IL 1R-positive T cells were approximately 30% by the detection of the flow cytofluorometry with FITC-conjugated IL 1 alpha. This enhancing activity of IL 1R expression on T cells by monocytes was inhibited by the addition of an anti-HLA-DR antibody or by the treatment of monocytes with the anti-HLA-DR antibody and complement. Furthermore T cell proliferative responses induced with IL 1 and Con A were also enhanced by the addition of HLA-DR-positive monocytes. These results suggest that IL 1R are expressed as the result of monocyte-T cell interaction in the early stage of T cell activation, and the expression of IL 1R on T cells and the responsiveness of T cells for IL 1 require the accessory function of HLA-DR-positive monocytes.  相似文献   

12.
Purified bovine myometrial plasma membranes were used to characterize prostaglandin (PG) E2 binding. Two binding sites were found: a high-affinity site with a dissociation constant (KD) of 0.27 +/- 0.08 nM and maximum binding (Bmax) of 102.46 +/- 8.6 fmol/mg membrane protein, and a lower affinity site with a KD = 6.13 +/- 0.50 nM and Bmax = 467.93 +/- 51.63 fmol/mg membrane protein. Membrane characterization demonstrated that [3H]PGE2 binding was localized in the plasma membrane. In binding competition experiments, unlabelled PGE1 displaced [3H]PGE2 from its receptor at the same concentrations as did PGE2. Neither PGF2 alpha nor PGD2 effectively competed for [3H]PGE2 binding. Adenylyl cyclase activity was inhibited at concentrations of PGE2 that occupy the high-affinity receptor. These data demonstrate that two receptor sites, or states of binding within a single receptor, are present for PGE2 in purified myometrial membranes. PGE2 inhibition of adenylyl cyclase activity support the view that cAMP has a physiological role in the regulation of myometrial contractility by PGE2.  相似文献   

13.
In this report a method for the affinity purification and radiolabeling of recombinant mouse interleukin (IL)-4 is described. It is shown on the basis of several criteria that IL-4 retains full biologic activity after radioiodination and can therefore be used as a valid model for measuring the binding characteristics of native IL-4. By using Scatchard plot analysis of equilibrium binding data, it is demonstrated that 125I-IL-4 binds to a high affinity cell surface receptor which is expressed by both hemopoietic and nonhemopoietic cells. The dissociation constant for 125I-IL-4 (Kd = 20 to 60 pM) corresponds to the concentration of IL-4 which gives 50% biologic activity (i.e., 10 to 30 pM). Binding of 125I-IL-4 is rapid (t1/2 of 2 min), whereas dissociation occurs at a slow rate (t1/2 approximately 4 hr). The IL-4 receptor shows a high degree of specificity. Whereas unlabeled mouse IL-4 competed with mouse 125I-IL-4 in an equimolar fashion for binding to IL-4 receptors, several other lymphokines, including mouse IL-2, IL-3, interferon-gamma, granulocyte-macrophage colony-stimulating factor, and human IL-1, IL-2, and IL-4 were unable to inhibit, even at molar excesses of 400 to 800-fold. At 37 degrees C, 125I-IL-4 is rapidly internalized (approximately 200 molecules/cell/min) by HT-2 cells, with at least 85% of cell surface receptors being functional in this respect. Receptors for IL-4 were found to be expressed by subclasses of T and B cells, mast cells, macrophages, and by cells of the myeloid and erythroid lineages. This wide distribution of receptor expression closely matches the known spectrum of biologic activities of IL-4, including proliferation and/or differentiation of T and B cells, mast cells and granulocytes, and induction of macrophage antigen-presenting capacity. IL-4 receptors were also found on a variety of nonhemopoietic cells such as cloned stromal cell lines from the bone marrow, spleen, thymus, and brain, and on muscle, brain, melanoma, fibroblast, and liver cells. Indeed, only 5 of more than 90 cell types tested have undetectable numbers of IL-4 receptors. The biologic effects of IL-4 on nonhemopoietic cells have not yet been reported and await elucidation.  相似文献   

14.
T Kitamura  N Sato  K Arai  A Miyajima 《Cell》1991,66(6):1165-1174
A cDNA for a human interleukin-3 (hIL-3) binding protein has been isolated by a novel expression cloning strategy: a cDNA library was coexpressed with the cDNA for the beta subunit of human granulocyte/macrophage colony-stimulating factor (GM-CSF) receptor (hGMR beta) in COS7 cells and screened by binding of 125I-labeled IL-3. The cloned cDNA (DUK-1) encodes a mature protein of 70 kd, which belongs to the cytokine receptor family and which alone binds hIL-3 with extremely low affinity (Kd = 120 +/- 60 nM). A high affinity IL-3-binding site (Kd = 140 +/- 30 pM) was reconstituted by coexpressing the DUK-1 protein and hGMR beta, indicating that hIL-3R and hGMR share the beta subunit. Therefore, we designated DUK-1 as the alpha subunit of the hIL-3R. As in human hematopoietic cells, hIL-3 and hGM-CSF complete for binding in fibroblasts expressing the cDNAs for hIL-3R alpha, GMR alpha, and the common beta subunit, indicating that different alpha subunits compete for a common beta subunit.  相似文献   

15.
The inhibition of the binding of 125I-labeled Clostridium botulinum type C neurotoxin to synaptosomes by unlabeled toxin indicated that there were two kinds of receptors on the synaptosomal membrane. The dissociation constants (Kd) were calculated as 79 pM and 35 nM from the concentration of unlabeled toxin that induced half-displacement of bound 125I-toxin. These values agree satisfactorily with the values obtained from direct binding experiments (Agui, T, Syuto, B., Oguma, K., Iida, H., & Kubo, S. (1983) J. Biochem. 94, 521-527). The inhibition of the binding of 125I-toxin to synaptosomes and N-acetylneuraminyl(alpha 2-3)galactosyl(beta 1-3)N-acetylgalactosaminyl(beta 1-4) [N-acetylneuraminyl(alpha 2-8) N-acetylneuraminyl(alpha 2-3)]galactosyl(beta 1-4)glucosyl(beta 1-1)ceramide (GT1b) by unlabeled heavy chain indicated that heavy chain facilitates the binding of toxin to synaptosomes and GT1b. The synaptosomal and heavy chain complex Kd values were estimated as 12 nM and 24 microM. Monoclonal antibodies C-9 and CA-12 recognized the binding sites to GT1b and synaptosomes, respectively. Antigenic determinants against the two antibodies are presumably partially overlapping, and the overlapping area seems to be essential to the reaction between toxin and C-9 antibody.  相似文献   

16.
Alpha-adrenergic receptors may play an important role in regulating vascular tone and reactivity. To study alpha-adrenergic receptors in blood vessels, we have developed a method to characterize and quantitate alpha-adrenergic receptors in a particulate fraction of individual rabbit aortas using the high specific activity alpha antagonist [125I] BE2254. [125I] BE2254 specifically labels a single class of binding sites with a dissociation constant of 286 pM and a maximal binding capacity of 16.7 fmoles/mg protein. Catecholamines compete for [125I] BE2254 binding stereospecifically and with the characteristic alpha-adrenergic potency series of (-)epinephrine greater than or equal to (-)norepinephrine much greater than (-)isoproterenol. The alpha 1-selective antagonist prazosin (KD = 0.7 nM) is much more potent in competing for [125I] BE2254 binding than is the alpha 2-selective antagonist yohimbine (KD = 1000 nM), which suggests that the alpha adrenergic receptor identified is predominantly of the alpha 1 subtype. Also, the dissociation constants from these binding studies were in good agreement with those reported in rabbit aorta from classical pharmacological experiments where contraction was found to be mediated via alpha 1 receptors. This extension of radioligand binding techniques to individual rabbit aortas should simplify the study of vascular alpha adrenergic receptor regulation, and provide a basis for broadening the understanding of vascular alpha adrenergic receptors.  相似文献   

17.
UC11 cells, derived from a human astrocytoma, have a high density of functional substance P receptors. Radioligand binding studies were conducted with the highly selective neurokinin-1 receptor ligand [3H][Sar9,Met(O2)11]-substance P. Kinetic binding experiments conducted at 4 degrees C yielded an association rate constant k1 of 1.86 x 10(7) M-1 min-1, a dissociation rate constant k-1 of 0.00478 min-1, and a calculated kinetic KD of 257 pM. Saturation binding experiments yielded average values of KD = 447 +/- 103 pM, Bmax = 862 +/- 93 fmol/mg of protein. This Bmax corresponds to more than 150,000 binding sites/cell. Competition binding experiments with unlabeled [Sar9,Met(O2)11]-substance P yielded average values of KD = 491 +/- 48 pM and Bmax = 912 +/- 67 fmol/mg of protein. In [3H]inositol-labeled cells, substance P induced a robust inositol phosphate formation. Inositol trisphosphate levels increased as much as 20-fold within approximately 15 s of addition of substance P. This inositol trisphosphate formation was transient and had returned to baseline within the first 60-120 s. Inositol monophosphate formation, however, was linear for at least 2 h. Structure activity data on binding and inositol monophosphate formation confirmed the presence of a neurokinin-1 receptor subtype in these cells. Thus, the UC11 cell should be a useful model cell for delineating the physiological role of substance P receptors in astrocytes.  相似文献   

18.
Tyrosine phosphorylation of cellular proteins induced by various hematopoietic growth factors such as interleukin 3 (IL3), granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL4) was studied in several multi-factor-dependent myeloid cell lines. Among the growth factors, IL3 specifically induced rapid tyrosine phosphorylation of a membrane glycoprotein of mol. wt 150 kd (gpp150) in the IL3-dependent cell lines, IC2 and DA-1. The IL3-induced tyrosine phosphorylation of gpp150 was detected within 30 s, reached a maximum at 3 min and decreased thereafter. The concentration of IL3 required for half-maximum stimulation of gpp150 tyrosine phosphorylation with 2.5 x 10(6)/ml cells was approximately 200 pM, which is the same as the dissociation constant for 125I-labeled IL3 binding. gpp150 was constitutively phosphorylated on tyrosine residue(s) in growth factor independent variants, IC2Tr and DA-1Tr, derived from IC2 and DA-1 respectively. Neither variant synthesized IL3. The present findings suggest that tyrosine phosphorylation of gpp150 is a critical event involved in both IL3-dependent and -independent growth.  相似文献   

19.
The interaction of 125I-labeled recombinant human neutrophil activating factor (NAF) with polymorphonuclear leukocytes (PMN) was studied by means of a radioreceptor assay. The binding was characterized by a rapid transition (t1/2 less than or equal to 1 min) from a pH 3-sensitive state at 4 degrees C to pH 3 resistance at 37 degrees C. This was not caused by internalization of NAF since pH 3-resistant bound iodinated NAF could still be exchanged by an excess of nonlabeled NAF, i.e. was dissociable. Internalized iodinated NAF was processed into trichloroacetic acid-soluble forms. Scatchard transformation of binding isotherms at 4 and 37 degrees C led to nonlinear curves, a finding which is consistent with the expression of two receptor populations, one with high (KD = 11-35 pM) and the other with lower affinity (KD = 640-830 pM) at 4 degrees C. Numbers of the low affinity binding sites were approximately 34,000, and those with high affinity were 5,200/PMN when estimated at 4 degrees C. Binding of iodinated NAF to PMN was specific since it could be competed by an excess of nonlabeled NAF but not by two other activators of PMN function, formylmethionyl-leucyl-phenylalanine or human recombinant granulocyte-macrophage colony-stimulating factor. In addition to human PMN, NAF also bound specifically to two human monocytic cell lines; however, only the low affinity binding site could be detected on these cells.  相似文献   

20.
Using 125I-interleukin-1 beta (125I-IL-1 beta) as a ligand, a specific receptor of high affinity dissociation constant (1.1 +/- 0.2 x 10(-10) M) with binding sites (350 +/- 40/cell) for interleukin-1 beta (IL-1 beta) has been demonstrated on cultured porcine thyroid cells. IL-1 alpha almost equally cross-reacted with the receptor (Kd = 1.2 +/- 0.3 x 10(-10) M and 350 +/- 50 binding sites/cell). TSH, IL-2 and other peptide hormones did not inhibit the binding of 125I-IL-1 beta to thyroid cells. Crosslinking study revealed a major band (approximately 95 kD) with a corrected molecular mass of approximately 78 kD. Moreover, both IL-1 beta and IL-1 alpha stimulated prostaglandin E2 production of cultured porcine thyroid cells, although the potency of IL-1 alpha was slightly greater than that of IL-1 beta. These results suggest that IL-1 may be involved in the regulation of thyroid cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号