首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
The adaptations and responses of photosynthesis to long- and short-term growth light gradient treatments were investigated in five subtropical forest plants, namely Pinus massoniana Lamb., Schima superba Gardn. et Champ., Castanopsis flssa (Champ. ex Benth.) Rehd. et Wils., Acmena acuminatissima (BI.) Merr et Perry, and Cryptocarya concinna Hance. With diurnal changes in sunlight and air temperature, the de-epoxidation state and lutein content in the five woody plants under three light Intensities first increased and then decreased during the day. However, maximal photochemical efficiency (FvFm; where Fm is the maximum fluorescence yield and Fv Is variable fluorescence) and the photochemical quantum yields of photosystem (PS)Ⅱ (φPSⅡ) of the species examined changed in the opposite manner, with those in plants grown under 100% natural light changing the most. After long-term treatment (21 months), anti-oxidant capacity (1,1-diphenyl-2-picrylhydrazyl radical (DPPH.)-scavenging capacity) and utilization of excitation energy showed differences in modulation by different light intensities. It was shown that A. acuminatissima and C. concinna, as dominant species in the late succession stage of a subtropical forest in Dinghu mountain, South China, were better able to adapt to different light environments. However, P. massonlana, the pioneer species of this forest, exhibited less adaptation to low light intensity and was definitely eliminated by the forest succession process.  相似文献   

2.
Forest structure and succession in Wolong Nature Reserve is influenced by the understory dwarf bamboo population. However, less is known about how the forest succession affects the dwarf bamboo population. To examine the bamboo ramet population growth of Fargesla nitida (Mltford) Keng f. et Yi and to determine how ramet population structure varies along the succession of coniferous forest, we sampled ramet populations of F. nitida from the following three successional stages: (i) a deciduous broad-leaved (BL) stand; (ii) a mixed broad-leaved coniferous (MI) stand; and (ill) a coniferous (CF) stand. We investigated the population structure, biomass allocation, and morphological characteristics of the bamboo ramet among the three stand types. Clonal ramets, constituting the bamboo population, tended to become short and small with succession. The ramet changed towards having a greater mass investment in leaves, branches and underground roots and rhizomes rather than in the culm. With respect to leaf traits, individual leaf mass and area in the BL stand were markedly bigger than those In both the MI and CF stands, except for no significant difference in specific leaf area. The age distribution showed that the bamboo population approached an older age with succession. The results demonstrate that the ramet population structure of F. nitida is unstable and its growth performance is inhibited by succession.  相似文献   

3.
A greenhouse experlment was performed In order to Investigate the effects of dlfferent levels of water stress on leaf water potentlal (ψw), stomatal resistance (rs), protein content and chlorophyll (Chl) content of tomato plants (Lycoperslcon esculentum Mill. cv. Nlkita). Water stress was Induced by addlng polyethylene glycol (PEG 6 000) to the nutrlent solution to reduce the osmotlc potential (ψs). We Investlgated the behavlor of antl-oxldant enzymes, such as catalase (CAT) and superoxide dlsmutase (SOD), durlng the development of water stress. Moderate and severe water stress (i.e. ψs= -0.51 and -1.22 MPa, respectlvely) caused a decrease In ψw for all treated (water-stressed) plants compared with control plants, wlth the reductlon belng more pronounced for severely stressed plants. In addltion, rs was slgnlflcantly affected by the Induced water stress and a decrease in leaf soluble protelns and Chl content was observed. Whereas CAT actlvlty remained constant, SOD actlvlty was increased in water-stressed plants compared wlth unstressed plants. These results Indicate the possible role of SOD as an anti-oxidant protector system for plants under water stress condltlons. Moreover, It suggests the possibllity of using this enzyme as an addltional screening crlterlon for detecting water stress in plants.  相似文献   

4.
In eastern Asian subtropical forests,leaf habit shifts from evergreen to deciduous broad-leaved woody plants toward higher latitudes.This shift has been largely explained by the greater capacity of deciduous broad-leaved plants to respond to harsh climatic conditions(e.g.,greater seasonality).The advantages of deciduous leaf habit over evergreen leaf habit in more seasonal climates have led us to hypothesize that leaf habits would shift in response to climate changes more conspicuously in forest...  相似文献   

5.
Responses of photosynthesis and the partition of energy utilization to high-nitrogen importation and high-light intensity in leaves of three dominant tree species of subtropical forest,including sun plant or early-successional species Schima superba,mesophyte or intermediate-successional species Canstanopsis hystrix,and shading-tolerant plant or late-successional species Cryptocarya concinna were studied by using the CO2 exchange system and chlorophyll fluorescence method.Our results showed that,regardless of plant species,net photosynthetic rate(Pn)was higher in high-nitrogen supply and high irradiance(HNHL)plants than in low-nitrogen supply and high irradiance(LNHL)plants,implying that low-nitrogen importation would limit Pn of plants grown under high irradiance.However, high-nitrogen supply and low irradiance(HNLL)plants had a lower Pn.Insignificant change of quantum yield(Fv′/Fm′)in opened PS II was found in leaves of HNHL,LNHL or HNLL plants of S.superba and C. hystrix,while a higher Fv′/Fm′occurred in HNHL plants of C.concinna in comparison with LNHL or HNLL plants.The HNHL plants of C.concinna also had a higher photochemical quantum yield(△F/Fm′) than LNHL or HNLL plants,however no similar responses were found in plants of S.superba and C. hystrix(P<0.05).In the irradiance range of 0―2000μmol photon·m -2·s -1,the fraction of energy consumed by photochemistry(φ PSII )was 18.2%in LNHL plants of S.superba which was higher than that in HNHL plants(P>0.05)and it was significantly higher than in HNLL plants(P<0.05).C.hystrix also had a similar response inφ PSII to nitrogen supply and irradiance.Regardless of species HNLL plants had a significantφ PSII and higher heat dissipation in light,and this effect was more severe in C.concinna than in S.superba or C.hystrix.The results may mean that high-nitrogen importation by nitrogen deposit and low irradiance caused by changing climate or air pollution would more severely restrict photosynthetic processes in the late-successional species C.concinna than in the early-successional species S.superba and intermediate-successional species C.hystrix.The continuous high-nitrogen precipitation in the future and the over cast mist or pollution smoke could induce late-successional species to degrade,however,early-successional species would be more adapted to competition for more resources to keep their dominance in ecosystems.In this sense,the zonal vegetation may accelerate degradation caused by high nitrogen precipitation and low irradiance,while the early-successional and mesophytic vegetations can remain longer.Thus,nitrogen precipitation may play an important role in plant community succession.  相似文献   

6.
7.
Foliar δ^13C values, an indicator of long-term intercellular carbon dioxide concentration and, thus, of long-term water use efficiency (WUE) in plants, were measured for Pinus massoniana Lamb., P. elliottii Engelm., Cunninghamia laceolata (Lamb.) Hook., and Schima superba Gardn. et Champ. in a restored forest ecosystem in the Jiazhu River Basin. Seasonal variation and the relationship between the foliar δ^13C values of the four species and environmental factors (monthly total precipitation, monthly average air temperature, relative humidity, atmospheric pressure, and monthly total solar radiation and evaporation) were investigated. The monthly δ^13C values and WUE of the four species increased with increasing precipitation, air temperature, solar radiation, and evaporation, whereas δ^13C values of the four species decreased with increasing relative humidity and atmospheric pressure. Despite significant differences in δ^13C seasonal means for the four species, our results demonstrate a significant convergence in the responses of δ^13C values and WUE to seasonal variations in environmental factors among the species investigated and that the δ^13C signature for each species gives a strong indication of environmental variables.  相似文献   

8.
In the present study, the relationship between the nutritional status of leaves and the development of symptoms of cotton leaf curl virus (CLCuV) in two cotton (Gossypium hirsutum L.) cuItlvars (I.e. CIM-240 and S-12) was Investigated. The incidence of disease attack was found to be 100% In the S-12 cuItlvar and 16% in the CIM-240 cuItivar. Geminivirus particles in infected leaves were confirmed by transmission electron microscope examination of highly specific geminivirus coat protein antlsera-treated cell sap. The CLCuV Impaired the accumulation of different nutrients in both cuItivars. A marked decrease in the accumulation of Ca^2+ and K^+ was observed in infected leaves. However, the disease had no effect on leaf concentrations of Na^+, N, and P. It was observed that the curling of leaf margins in CLCuV-Infected plants was associated with the leaf Ca^2+ content; leaf curling was severe in plants with a significant reduction In Ca^2+ content. Moreover, leaf K&+ content was found to be associated with resistance/susceptibility to CLCuV infection.  相似文献   

9.
<正>Examining the plants in any forest or meadow reveals a remarkable diversity of leaf shape, suggesting the importance of this trait for adaptation to various environmental conditions (reviewed in Nicotra et al.2011). Indeed, leaf shape may be constrained by biomechanical factors and affects thermoregulation,  相似文献   

10.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was char-acterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then de-clined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dis-sipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than –21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon re-watering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation.  相似文献   

11.
In evergreen broad-leaved forests (EBLFs) in Tiantong National Forest Park, Eastern China, we studied the soil chemistry and plant leaf nutrient concentration along a chronosequence of secondary forest succession. Soil total N, P and leaf N, P concentration of the most abundant plant species increased with forest succession. We further examined leaf lifespan, leaf nutrient characteristics and root–shoot attributes of Pinus massoniana Lamb, the early-successional species, Schima superba Gardn. et Champ, the mid-successional species, and Castanopsis fargesii Franch, the late-successional species. These species showed both intraspecific and interspecific variability along succession. Leaf N concentration of the three dominant species increased while N resorption tended to decrease with succession; leaf P and P resorption didn’t show a consistent trend along forest succession. Compared with the other two species, C. fargesii had the shortest leaf lifespan, largest decay rate and the highest taproot diameter to shoot base diameter ratio while P. massoniana had the highest root–shoot biomass ratio and taproot length to shoot height ratio. Overall, P. massoniana used ‘conservative consumption’ nutrient use strategy in the infertile soil conditions while C. fargesii took up nutrients in the way of ‘resource spending’ when nutrient supply increased. The attributes of S. superba were intermediate between the other two species, which may contribute to its coexistence with other species in a wide range of soil conditions.  相似文献   

12.
We report on the development and characterization of 13 microsatellite markers from repetitive DNA enriched libraries for Cryptocarya concinna from lower subtropical China. The number of alleles ranged from 3 to 12. Observed and expected heterozygosities ranged from 0.4286 to 0.8571, and 0.4725 to 0.8820, respectively. These markers will allow analysis of the baseline genetic variability and population structure of C. concinna to enrich our scientific understanding of forest fragmentation on genetic health of this species and provide strategies for effective conservation and management in this area.  相似文献   

13.
为探讨夏季南亚热带森林演替过程中优势树种幼叶的光保护机制,以演替中期优势树种木荷(Schima superba)、黧蒴(Castanopsis fissa)、锥栗(C.chinensis)和演替后期优势种华润楠(Machilus chinensis)、厚壳桂(Cryptocarya chinensis)、黄果厚壳桂(C.concinna)为材料,分析了2种生长光强(全光照和30%全光照)下6种优势种幼叶和成熟叶的叶片表型、光合色素含量、花色素苷含量、抗氧化能力、类黄酮含量、总酚含量和最大量子产量(Fv/Fm)恢复效率间的差异。结果表明,两个演替阶段幼叶的叶绿素含量(Chl a+b)、Chl a/b比成熟叶低,但光保护物质比成熟叶多;演替中期幼叶的花色素苷含量和总抗氧化能力比演替后期的高,而类黄酮和总酚含量比演替后期的低;全光照下幼叶的总酚、类黄酮、总抗氧化能力及Fv/Fm恢复效率都要比30%全光照的高,并且含有花色素苷的幼叶恢复得更快。因此,植物的光合能力与自身的光保护潜力成反比关系,演替中期优势种幼叶的光保护在很大程度上是因为花色素苷的积累而演替后期优势种是因为自身抗氧化物质(类黄酮、总酚)的共同作用。  相似文献   

14.
The tested tree species included pioneer species Acacia mangium, early succession stage species Schima superba, mesophyte intermediate-succession species Machilus chinensis, and shade-tolerant plant or late-succession species Cryptocarya concinna which occur in the lower subtropical forest community. A comparison with the current ambient level of UV-B radiation (UV-B) showed the leaf net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) of the four species ranged from significantly decreased to no significant change. Additionally, the thickness of palisade and mesophyll in leaves of four tree species were decreased sharply by enhanced UV-B. The thickness of spongy parenchyma in leaves was also decreased except for M. chinensis. UV-B increased the leaf width of A. mangium but its leaf length, leaf thickness, and dry mass per unit area were not affected. Significantly increased stomata width was observed in A. mangium leaf epidermis in response to UV-B. Significantly decreased stomata width and significantly increased stomata density of leaf abaxial epidermis in M. chinensis were also observed. The stomata density of abaxial epidermis of C. concinna was remarkably increased by enhanced UV-B. The height and branch biomass of A. mangium and the height of S. superba were reduced visibly by enhanced UV-B. The four plant species could be classified into three groups of UV-B sensitiveness by hierarchical cluster analysis. A. mangium was sensitive to enhanced UV-B, while C. concinna showed more tolerance.  相似文献   

15.
Sulfur dioxide (SO2) is naturally synthesized by glutamate‐oxaloacetate transaminase (GOT) from l ‐cysteine in mammalian cells. We aim to investigate the role of SO2 in inflammation in acute lung injury (ALI) following limb ischemia/reperfusion (I/R). Male Wistar rats were subjected to limb I/R and were injected with saline, GOT inhibitor hydroxamate (HDX, 0.47 mmol/kg), or the SO2 donor Na2SO3/NaHSO3 (0.54 mmol/kg/0.18 mmol/kg). Compared with the sham operation, the plasma SO2 levels were significantly decreased by limb I/R treatment. In addition, SO2 concentration and GOT activity in the lung tissue were also reduced in ALI. The occurrence of ALI following limb I/R can be prevented by Na2SO3/NaHSO3 treatment, whereas it can be significantly aggravated by HDX. The plasma IL‐1β, IL‐6, and IL‐10 levels were consistent with myeloperoxidase activity and inflammation in lung tissue. In conclusion, our data suggest that downregulation of endogenous SO2 production might be involved in pathogenesis of ALI following limb I/R in rats. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:389‐397, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21492  相似文献   

16.
Spraying low concentrated (0.5–5.0 mM) solutions of NaHSO3 on Satsuma mandarin (Citrus unshiu Marc.) leaves resulted in enhancement (maximal about 15 % at 1 mM NaHSO3) of net photosynthetic rate (P N) for 6 d. The potential photochemical efficiency of photosystem 2 (PS2, Fv/Fm) and the quantum yield of PS2 electron transport (ΦPS2) were increased under strong photon flux density (PFD). The slow phase of millisecond delayed light emission (ms-DLE) was increased, showing that the transmembrane proton motive force related to photophosphorylation was enhanced. We also observed that low concentrations of NaHSO3 promoted the production of ATP in irradiated leaves. We suggest that the increase in P N in Satsuma mandarin leaves caused by low concentrations of NaHSO3 solution may have been due to the stimulation of photophosphorylation and, hence, the increase in photochemical efficiency through speeding-up of PS2 electron transport. Photoinhibition of photosynthesis in leaves was modified by NaHSO3 treatment under high PFD. Hence the increase in leaf dry mass seems to be associated with the mitigation of photoinhibition caused by strong PFD.  相似文献   

17.
非结构性碳水化合物(NSC)是凋落物中的易分解组分,在凋落物分解早期快速释放进入土壤并被微生物利用,参与森林土壤生物地球化学循环,因此新鲜凋落物中NSC变化规律是认识森林土壤碳和养分循环的关键之一。选取亚热带常绿阔叶林优势树种米槠(Castanopsis carlesii)和主要造林树种杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)为研究对象,分析其新鲜凋落叶和凋落枝中NSC(可溶性糖和淀粉)含量的动态变化规律。结果表明:凋落物中NSC含量在不同月份表现出明显的时间动态,米槠、杉木和马尾松凋落叶和凋落枝中NSC含量总体上在11—12月呈上升趋势,而在2—6月呈缓慢下降趋势。不同类型的凋落物NSC含量存在显著差异,米槠、杉木和马尾松凋落叶中NSC含量分别为3.03%—3.56%、2.18%—4.37%、3.38%—4.89%,凋落枝中NSC含量分别为1.87%—4.22%、2.88%—4.28%、2.75%—5.27%,米槠和马尾松凋落叶中NSC含量高于凋落枝,而杉木凋落枝中NSC含量高于凋落叶。不同树种凋落物NSC含量差异显著,米槠和...  相似文献   

18.
中龄林的马尾松受松材线虫侵染后,林木生长、生理生化指标、群落多样性等会发生异质性变化,但是,针对患病林木地下细根的响应尚不清楚。本研究以松材线虫疫区患病马尾松和健康马尾松为研究对象,采用土柱法,分0-15 cm和15-30 cm土层,对细根进行分级研究,定量分析1-5级细根的形态、生物量以及养分元素,探讨松材线虫侵染的马尾松人工林细根形态、生物量以及养分元素的分异特征。结果表明:(1)患病马尾松人工林细根的健康状态与根长密度、生物量呈极显著正相关(P<0.01),低级根(如1级根)患病后,响应会更加强烈。(2)马尾松人工林患病后,细根有效磷、速效钾浓度会显著降低(P<0.05),而全氮、钙浓度会显著升高(P<0.05)。(3)松材线虫病使林分的土壤有机质含量显著高于健康林分(P<0.05),而土壤速效钾含量会显著低于健康林分(P<0.05)。以上结果表明,松材线虫侵染的马尾松人工林会在细根形态、细根养分和土壤养分上会发生特异性响应,揭示了松材线虫病对马尾松人工林地下细根的影响,旨在为松材线虫病防治提供一定参考。  相似文献   

19.
几种南亚热带木本植物光合作用对生长光强的响应   总被引:17,自引:0,他引:17  
分别将马尾松(Pinus massoniana)、黧蒴(Castanopsis fissa)、荷木(Schima superba)、黄果厚壳桂(Cryptocarya concinna)的幼苗置于100%自然光和32%自然光下生长6个月,测定它们的光强-光合反应曲线和叶绿素荧光的某些参数。结果表明,在100%光下,马尾松有最高的最大光合速率(Pmax)、光饱和点(LSP)、光补偿点(LCP)、暗呼吸(Rd)、表观量子效率(AQY)和总电子传递速率(JF),光化学猝灭(qP)也最大。而黄果厚壳棒有最大的分配到光呼吸的电子流比率(JO/JF)。100%光下AQY的大小顺序为:马尾松〉黧蒴〉荷木〉黄果厚壳桂,32%光下AQY的顺序则相反。这说明群落早期演替的先锋树种马尾松属于强阳生性树种,具有适应强光的特点,而处于群落演替项级阶段的优势种黄果厚壳梓则能更加充分利用低光生长环境中的光强,同时也可通过提高电子流向光呼吸分配的比例来避免自然光环境中强光的伤害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号