首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric-oxide synthase (NOS) catalyzes the formation of NO and citrulline from l-arginine and oxygen. However, the NO so formed has been found to auto-inhibit the enzymatic activity significantly. We hypothesized that the NO reactivity is in part controlled by hydrogen bonding between the conserved tryptophan residue (position 409 in the neuronal isoform of NOS (nNOS)) and the cysteine residue that forms the proximal bond to the heme. By using resonance Raman spectroscopy and NO as a probe of the heme environment, we show that in the W409F and W409Y mutants of the oxygenase domain of the neuronal enzyme (nNOSox), the Fe-NO bond in the Fe3+NO complex is weaker than in the wild type enzyme, consistent with the loss of a hydrogen bond on the sulfur atom of the proximal cysteine residue. The weaker Fe-NO bond in the W409F and W409Y mutants might result in a faster rate of NO dissociation from the ferric heme in the Trp-409 mutants as compared with the wild type enzyme, which could contribute to the lower accumulation of the inhibitory NO-bound complexes observed during catalysis with the Trp-409 mutants (Adak, S., Crooks, C., Wang, Q., Crane, B. R., Tainer, J. A., Getzoff, E. D., and Stuehr, D. J. (1999) J. Biol. Chem. 274, 26907-26911). The optical and resonance Raman spectra of the Fe2+NO complexes of the Trp-409 mutants differ from those of the wild type enzyme and indicate that a significant population of a five-coordinate Fe2+NO complex is present. These data show that the hydrogen bond provided by the Trp-409 residue is necessary to maintain the thiolate coordination when NO binds to the ferrous heme. Taken together our results indicate that the heme environment on the proximal side of nNOS is critical for the formation of a stable iron-cysteine bond and for the control of the electronic properties of heme-NO complexes.  相似文献   

2.
A ferrous heme-NO complex builds up in rat neuronal NO synthase during catalysis and lowers its activity. Mutation of a tryptophan located directly below the heme (Trp(409)) to Phe or Tyr causes hyperactive NO synthesis and less heme-NO complex buildup in the steady state (Adak, S., Crooks, C., Wang, Q., Crane, B. R., Tainer, J. A., Getzoff, E. D., and Stuehr, D. J. (1999) J. Biol. Chem. 274, 26907-26911). To understand the mechanism, we used conventional and stopped flow spectroscopy to compare kinetics of heme-NO complex formation, enzyme activity prior to and after complex formation, NO binding affinity, NO complex stability, and its reaction with O(2) in mutants and wild type nNOS. During the initial phase of NO synthesis, heme-NO complex formation was 3 and 5 times slower in W409F and W409Y, and their rates of NADPH oxidation were 50 and 30% that of wild type, probably due to slower heme reduction. NO complex formation slowed NADPH oxidation in the wild type by 7-fold but reduced mutant activities less than 2-fold, giving mutants higher final activities. NO binding kinetics were similar among mutants and wild type, although in ferrous W409Y (and to a lesser extent W409F) the 436-nm NO complex converted to a 417-nm NO complex with time. Oxidation of the ferrous heme-NO complex to ferric enzyme was 7 times faster in Trp(409) mutants than in wild type. Thus, mutant hyperactivity derives from slower formation and faster decay of the heme-NO complex. Together, these minimize partitioning into the NO-bound form.  相似文献   

3.
Tiso M  Tejero J  Panda K  Aulak KS  Stuehr DJ 《Biochemistry》2007,46(50):14418-14428
The C-terminal tail (CT) of neuronal nitric oxide synthase (nNOS) is a regulatory element that suppresses nNOS activities in the absence of bound calmodulin (CaM). A crystal structure of the nNOS reductase domain (nNOSr) (Garcin, E. D., Bruns, C. M., Lloyd, S. J., Hosfield, D. J., Tiso, M., Gachhui, R., Stuehr, D. J., Tainer, J. A., and Getzoff, E. D. (2004) J. Biol. Chem. 279, 37918-37927) revealed how the first half of the CT interacts with nNOSr and thus provided a template for detailed studies. We generated truncation mutants in nNOS and nNOSr to test the importance of 3 different regions of the CT. Eliminating the terminal half of the CT (all residues from Ile1413 to Ser1429), which is invisible in the crystal structure, had almost no impact on NADP+ release, flavin reduction, flavin autoxidation, heme reduction, reductase activity, or NO synthesis activity, but did prevent an increase in FMN shielding that normally occurs in response to NADPH binding. Additional removal of the CT alpha-helix (residues 1401 to 1412) significantly increased the NADP+ release rate, flavin autoxidation, and NADPH oxidase activity, and caused hyper-deshielding of the FMN cofactor. These effects were associated with increased reductase activity and slightly diminished heme reduction and NO synthesis. Further removal of residues downstream from Gly1396 (a full CT truncation) amplified the aforementioned effects and in addition altered NADP+ interaction with FAD, relieved the kinetic suppression on flavin reduction, and further diminished heme reduction and NO synthesis. Our results reveal that the CT exerts both multifaceted and regiospecific effects on catalytic activities and related behaviors, and thus provide new insights into mechanisms that regulate nNOS catalysis.  相似文献   

4.
Pant K  Bilwes AM  Adak S  Stuehr DJ  Crane BR 《Biochemistry》2002,41(37):11071-11079
Eukaryotic nitric oxide synthases (NOSs) produce nitric oxide to mediate intercellular signaling and protect against pathogens. Recently, proteins homologous to mammalian NOS oxygenase domains have been found in prokaryotes and one from Bacillus subtilis (bsNOS) has been demonstrated to produce nitric oxide [Adak, S., Aulak, K. S., and Stuehr, D. J. (2002) J. Biol. Chem. 277, 16167-16171]. We present structures of bsNOS complexed with the active cofactor tetrahydrofolate and the substrate L-arginine (L-Arg) or the intermediate N(omega)-hydroxy-L-arginine (NHA) to 1.9 or 2.2 A resolution, respectively. The bsNOS structure is similar to those of the mammalian NOS oxygenase domains (mNOS(ox)) except for the absence of an N-terminal beta-hairpin hook and zinc-binding region that interact with pterin and stabilize the mNOS(ox) dimer. Changes in patterns of residue conservation between bacterial and mammalian NOSs correlate to different binding modes for pterin side chains. Residue conservation on a surface patch surrounding an exposed heme edge indicates a likely interaction site for reductase proteins in all NOSs. The heme pockets of bsNOS and mNOS(ox) recognize L-Arg and NHA similarly, although a change from Val to Ile beside the substrate guanidinium may explain the 10-20-fold slower dissociation of product NO from the bacterial enzyme. Overall, these structures suggest that bsNOS functions naturally to produce nitrogen oxides from L-Arg and NHA in a pterin-dependent manner, but that the regulation and purpose of NO production by NOS may be quite different in B. subtilis than in mammals.  相似文献   

5.
Chen Y  Panda K  Stuehr DJ 《Biochemistry》2002,41(14):4618-4625
Homodimer formation is a key step that follows heme incorporation during assembly of an active inducible nitric oxide synthase (iNOS). In cells, heme incorporation into iNOS becomes limited due to interaction between self-generated NO and cellular heme [Albakri, Q., and Stuehr, D. J. (1996) J. Biol. Chem. 271, 5414-5421]. Here we investigated if NO can regulate at points downstream in the process by inhibiting dimerization of heme-containing iNOS monomer. Heme-containing monomers were generated by treating iNOS dimer or iNOS oxygenase domain dimer (iNOSoxy) with urea. Both monomers dimerized when incubated with Arg and 6R-tetrahydrobiopterin (H4B), as shown previously [Abu-Soud, H. M., Loftus, M., and Stuehr, D. J. (1995) Biochemistry 34, 11167-11175]. The NO-releasing drug S-nitrosyl-N-acetyl-D,L-penicillamine (SNAP; 0-0.5 mM) inhibited dimerization of iNOS monomer in a dose- and time-dependent manner, without causing heme release. SNAP-pretreated monomer also did not dimerize in response to H4B plus Arg. SNAP converted Arg- and H4B-free iNOS dimer into monomer that could not redimerize, but had no effect on iNOS dimer preincubated with Arg and H4B. Anaerobic spectral analysis showed that NO from SNAP bound to the ferric heme of iNOSoxy monomer or dimer. Adding imidazole as an alternative heme ligand prevented SNAP from inhibiting iNOS monomer dimerization. We conclude that NO and related species can block iNOS dimerization at points downstream from heme incorporation. The damage to heme-containing monomer results from a reaction with the protein and appears irreversible. Although dimeric structure alone does not protect, it does enable Arg and H4B to bind and protect. Inhibition appears mediated by NO coordinating to the ferric heme iron of the monomer.  相似文献   

6.
Nitric oxide (NO), an intercellular messenger and an immuno-cytotoxic agent, is synthesized by the family of nitric oxide synthases (NOS), which are thiolate-ligated, heme-containing monooxygenases that convert L-Arg to L-citrulline and NO in a tetrahydrobiopterin (BH4)-dependent manner, using NADPH as the electron donor. The dioxygen complex of the ferrous enzyme has been proposed to be a key intermediate in the NOS catalytic cycle. In this study, we have generated a stable ferrous-O2 complex of the oxygenase domain of rat neuronal NOS (nNOS) by bubbling O2 through a solution of the dithionite-reduced enzyme at -30 degrees C in a cryogenic solvent containing 50% ethylene glycol. The most stable dioxygen complex is obtained using the oxygenase domain which has been preincubated for an extended length of time at 4 degrees C with BH4/dithiothreitol and NG-methyl-L-arginine, a substrate analogue inhibitor. The O2 complex of the nNOS oxygenase domain thus prepared exhibits UV-visible absorption (maxima at 419 and 553 nm, shoulder at approximately 585 nm) and magnetic circular dichroism spectra that are nearly identical to those of ferrous-O2 cytochrome P450-CAM. Our spectral data are noticeably blue-shifted from those seen at 10 degrees C for a short-lived transient species (lambdamax = 427 nm) for the nNOS oxygenase domain using stopped-flow rapid-scanning spectroscopy [Abu-Soud, H. M., Gachhui, R., Raushel, F. M., and Stuehr, D. J. (1997) J. Biol. Chem. 272, 17349], but somewhat similar to those of a relatively stable O2 adduct of L-Arg-free full-length nNOS (lambdamax = 415-416.5 nm) generated at -30 degrees C [Bec, N., Gorren, A. C. F., Voelder, C., Mayer, B., and Lange, R. (1998) J. Biol. Chem. 273, 13502]. Compared with ferrous-O2 P450-CAM, however, the ferrous-O2 adduct of the nNOS oxygenase domain is considerably more autoxidizable and the O2-CO exchange reaction is noticeably slower. The generation of a stable ferrous-O2 adduct of the nNOS oxygenase domain, as described herein, will facilitate further mechanistic and spectroscopic investigations of this important intermediate.  相似文献   

7.
We studied by ultrafast time-resolved absorption spectroscopy the geminate recombination of NO to the oxygenase domain of the inducible NO synthase, iNOSoxy, and to mutated proteins at position Trp-457. This tryptophan interacts with the tetrahydrobiopterin cofactor BH4, and W457A/F mutations largely reduced the catalytic formation of NO. BH4 decreases the rate of NO rebinding to the ferric iNOSoxy compared with that measured in its absence. The pterin has a larger effect on W457A/F than on the WT protein by increasing NO release from the protein. Therefore, BH4 raises the energy barrier for NO recombination to the mutated proteins in contrast with our observations on eNOS (Slama-Schwok, A., Négrerie, M., Berka, V., Lambry, J.-C., Tsai, A.-L., Vos, M., and Martin, J.-L. (2002) J. Biol. Chem. 277, 7581-7586). Thus, we show a differential effect of BH4 on NO release from eNOS and iNOS. Compared with the position of this residue in the BH4-repleted enzyme, simulations of the NO dissociation dynamics point out at a swing of Trp-457 toward the missing pterin in the absence of BH4. NO geminate-rebinding data show a more efficient NO release from eNOS than from iNOS once NO is formed. Consistently, NO produced by iNOS is regulated by its ferric nitrosyl complex in contrast with eNOS. We show that the small enhancement of the NO geminate recombination rate in W457A/F compared with that in the WT enzyme cannot explain the decrease of NO yield because of the mutation; the major effect of the mutation thus arises from an uncoupled catalysis (Wang, Z. Q., Wei, C. C., Ghosh, S., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) Biochemistry 40, 12819-12825).  相似文献   

8.
Rat neuronal nitric oxide synthase (nNOS) was expressed in Escherichia coli and purified. Although the nitric oxide (NO) complex of the ferric heme was EPR-silent, photo-illumination at 5 K to the NO complex of the ferric nNOS in the substrate-free form produced a new high spin EPR signal similar to that of the ferric heme of N(omega)-nitro-L-arginine-bound nNOS, suggesting that the photo-dissociated NO might move away from the heme. Low photo-dissociability of NO in this complex indicated less restricted movement of the dissociated NO in the distal region of the heme, which might result in the rapid rebinding of the NO to the ferric heme at 5 K. In the presence of substrate L-arginine, derivatives, or product L-citrulline, the photo-products from the ferric NO complexes exhibited large novel EPR signals with a spin-coupled interaction between the ferric heme (S = 5/2) and the photolyzed NO (S = 1/2), suggesting a stereochemically restricted interaction between the photo-dissociated NO and the guanidino- or the ureido-group of the substrate analogues at the distal heme region of nNOS. The photo-product from the NO complex produced from citrulline-bound nNOS might be the same intermediate species as that formed in the last step of the catalytic cycle.  相似文献   

9.
The influence of the heme iron coordination on nitric oxide binding dynamics was investigated for the myoglobin mutant H93G (H93G-Mb) by picosecond absorption and resonance Raman time-resolved spectroscopies. In the H93G-Mb, the glycine replacing the proximal histidine does not interact with the heme iron so that exogenous substituents like imidazole may coordinate to the iron at the proximal position. Nitrosylation of H93G-Mb leads to either 6- or 5-coordinate species depending on the imidazole concentration. At high concentrations, (imidazole)-(NO)-6-coordinate heme is formed, and the photoinduced rebinding kinetics reveal two exponential picosecond phases ( approximately 10 and approximately 100 ps) similar to those of wild type myoglobin. At low concentrations, imidazole is displaced by the trans effect leading to a (NO)-5-coordinate heme, becoming 4-coordinate immediately after photolysis as revealed from the transient Raman spectrum. In this case, NO rebinding kinetics remain bi-exponential with no change in time constant of the fast component whose amplitude increases with respect to the 6-coordinate species. Bi-exponential NO geminate rebinding in 5-coordinate H93G-Mb is in contrast with the single-exponential process reported for nitrosylated soluble guanylate cyclase (Negrerie, M., Bouzhir, L., Martin, J. L., and Liebl, U. (2001) J. Biol. Chem. 276, 46815-46821). Thus, our data show that the iron coordination state or the heme iron out-of-plane motion are not at the origin of the bi-exponential kinetics, which depends upon the protein structure, and that the 4-coordinate state favors the fast phase of NO geminate rebinding. Consequently, the heme coordination state together with the energy barriers provided by the protein structure control the dynamics and affinity for NO-binding enzymes.  相似文献   

10.
After initiating NO synthesis a majority of neuronal NO synthase (nNOS) quickly partitions into a ferrous heme-NO complex. This down-regulates activity and increases enzyme K(m,O(2)). To understand this process, we developed a 10-step kinetic model in which the ferric heme-NO enzyme forms as the immediate product of catalysis, and then partitions between NO dissociation versus reduction to a ferrous heme-NO complex. Rate constants used for the model were derived from recent literature or were determined here. Computer simulations of the model precisely described both pre-steady and steady-state features of nNOS catalysis, including NADPH consumption and NO production, buildup of a heme-NO complex, changes between pre-steady and steady-state rates, and the change in enzyme K(m,O(2)) in the presence or absence of NO synthesis. The model also correctly simulated the catalytic features of nNOS mutants W409F and W409Y, which are hyperactive and display less heme-NO complex formation in the steady state. Model simulations showed how the rate of heme reduction influences several features of nNOS catalysis, including populations of NO-bound versus NO-free enzyme in the steady state and the rate of NO synthesis. The simulation predicts that there is an optimum rate of heme reduction that is close to the measured rate in nNOS. Ratio between NADPH consumption and NO synthesis is also predicted to increase with faster heme reduction. Our kinetic model is an accurate and versatile tool for understanding catalytic behavior and will provide new perspectives on NOS regulation.  相似文献   

11.
The nitric-oxide synthase (NOS) catalyzes the oxidation of L-arginine to L-citrulline and NO through consumption of oxygen bound to the heme. Because NO is produced close to the heme and may bind to it, its subsequent role in a regulatory mechanism should be scrutinized. We therefore examined the kinetics of NO rebinding after photodissociation in the heme pocket of human endothelial NOS by means of time-resolved absorption spectroscopy. We show that geminate recombination of NO indeed occurs and that this process is strongly modulated by L-Arg. This NO rebinding occurs in a multiphasic fashion and spans over 3 orders of magnitude. In both ferric and ferrous states of the heme, a fast nonexponential picosecond geminate rebinding first takes place followed by a slower nanosecond phase. The rates of both phases decreased, whereas their relative amplitudes are changed by the presence of L-Arg; the overall effect is a slow down of NO rebinding. For the isolated oxygenase domain, the picosecond rate is unchanged, but the relative amplitude of the nanosecond binding decreased. We assigned the nanosecond kinetic component to the rebinding of NO that is still located in the protein core but not in the heme pocket. The implications for a mechanism of regulation involving NO binding are discussed.  相似文献   

12.
The function of inducible NO synthase (WT iNOS) depends on the release of NO from the ferric heme before the enzyme is reduced. Key parameters controlling ligand dynamics include the distal and proximal heme pocket amino acids, as well as the inner solvent molecules. In this work, we tested how a point mutation in the distal heme side of WT iNOS affected the geminate rebinding of NO by ultrafast kinetics and molecular dynamics simulations. The mutation sequestered much of the photodissociated NO close to the heme compared to WT iNOS, with a main picosecond phase accounting for 78% of the rebinding to the arginine-bound Val346Ile protein. Consequently, the probability of NO release from Val346Ile decreased as compared to that from WT iNOS, provided the substrate binding site is filled. These data are rationalized by a steric effect of the Ile methyl group inducing events mediated by the substrate, transmitted via the propionates to the NO and the protein. This model is consistent with the role of the H-bonding network involving the heme, the substrate, and the BH4 cofactor in controlling NO release, with a key role of the heme propionates [Gautier et al. (2006) Nitric Oxide 15, 312]. These data support the effect of Val346Ile mutation in decreasing NO release and slowing down NO synthesis compared to WT iNOS determined by single turnover catalysis [Wang et al. (2004) J. Biol. Chem. 279, 19018].  相似文献   

13.
Z Q Wang  C C Wei  S Ghosh  A L Meade  C Hemann  R Hille  D J Stuehr 《Biochemistry》2001,40(43):12819-12825
In nitric oxide synthase (NOS), (6R)-tetrahydrobiopterin (H(4)B) binds near the heme and can reduce a heme-dioxygen intermediate (Fe(II)O(2)) during Arg hydroxylation [Wei, C.-C., Wang, Z.-Q., Wang, Q., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) J. Biol. Chem. 276, 315-319]. A conserved Trp engages in aromatic stacking with H(4)B, and its mutation inhibits NO synthesis. To examine how this W457 impacts H(4)B redox function, we performed single turnover reactions with the mouse inducible NOS oxygenase domain (iNOSoxy) mutants W457F and W457A. Ferrous mutants containing Arg and H(4)B were mixed with O(2)-containing buffer, and then heme spectral transitions, H(4)B radical formation, and Arg hydroxylation were followed versus time. A heme Fe(II)O(2) intermediate was observed in W457A and W457F and had normal spectral characteristics. However, its disappearance rate (6.5 s(-1) in W457F and 3.0 s(-1) in W457A) was slower than in wild-type (12.5 s(-1)). Rates of H(4)B radical formation (7.1 s(-1) in W457F and 2.7 s(-1) in W457A) matched their rates of Fe(II)O(2) disappearance, but were slower than radical formation in wild-type (13 s(-1)). The extent of H(4)B radical formation in the mutants was similar to wild-type, but their radical decayed 2-4 times faster. These kinetic changes correlated with slower and less extensive Arg hydroxylation by the mutants (wild-type > W457F > W457A). We conclude that W457 ensures a correct tempo of electron transfer from H(4)B to heme Fe(II)O(2), possibly by stabilizing the H(4)B radical. Proper control of these parameters may help maximize Arg hydroxylation and minimize uncoupled O(2) activation at the heme.  相似文献   

14.
Some Gram-positive bacterial pathogens harbor a gene that encodes a protein (HNS, Heme domain of NO Synthase-like proteins) with striking sequence identity to the oxygenase domain of mammalian NO synthases (NOS). However, they lack the N-terminal and the Zn-cysteine motif participating to the stability of an active dimer in the mammalian isoforms. The unique properties of HNS make it an excellent model system for probing how the heme environment tunes NO dynamics and for comparing it to the endothelial NO synthase heme domain (eNOS(HD)) using ultrafast transient spectroscopy. NO rebinding in HNS from Staphylococcus aureus (SA-HNS) is faster than that measured for either Bacillus anthracis (BA-HNS) or for eNOS(HD) in both oxidized and reduced forms in the presence of arginine. To test whether these distinct rates arise from different energy barriers for NO recombination, we measured rebinding kinetics at several temperatures. Our data are consistent with different barriers for NO recombination in SA-HNS and BA-HNS and the presence of a second NO-binding site. The hypothesis that an additional NO-binding cavity is present in BA-HNS is also consistent with the effect of the NO concentration on its rebinding. The lack of the effect of NO concentration on the geminate rebinding in SA-HNS could be due to an isolated second site. We confirm the existence of a second NO site in the oxygenase domain of the reduced eNOS as previously hypothesized [A. Slama-Schwok, M. Négrerie, V. Berka, J.C. Lambry, A.L. Tsai, M.H. Vos, J.L. Martin, Nitric oxide (NO) traffic in endothelial NO synthase. Evidence for a new NO binding site dependent on tetrahydrobiopterin? J. Biol. Chem. 277 (2002) 7581-7586]. This site requires the presence of arginine and BH(4); and we propose that NO dynamic and escape from eNOS is regulated by the active site H-bonding network connecting between the heme, the substrate, and cofactor.  相似文献   

15.
To clarify the role of the autoinhibitory insert in the endothelial (eNOS) and neuronal (nNOS) nitric-oxide synthases, the insert was excised from nNOS and chimeras with its reductase domain; the eNOS and nNOS inserts were swapped and put into the normally insertless inducible (iNOS) isoform and chimeras with the iNOS reductase domain; and an RRKRK sequence in the insert suggested by earlier peptide studies to be important (Salerno, J. C., Harris, D. E., Irizarry, K., Patel, B., Morales, A. J., Smith, S. M., Martasek, P., Roman, L. J., Masters, B. S., Jones, C. L., Weissman, B. A., Lane, P., Liu, Q., and Gross, S. S. (1997) J. Biol. Chem. 272, 29769-29777) was mutated. Insertless nNOS required calmodulin (CaM) for normal NOS activity, but the Ca(2+) requirement for this activity was relaxed. Furthermore, insert deletion enhanced CaM-free electron transfer within nNOS and chimeras with the nNOS reductase, emphasizing the involvement of the insert in modulating electron transfer. Swapping the nNOS and eNOS inserts gave proteins with normal NOS activities, and the nNOS insert acted normally in raising the Ca(2+) dependence when placed in eNOS. Insertion of the eNOS insert into iNOS and chimeras with the iNOS reductase domain significantly lowered NOS activity, consistent with inhibition of electron transfer by the insert. Mutation of the eNOS RRKRK to an AAAAA sequence did not alter the eNOS Ca(2+) dependence but marginally inhibited electron transfer. The salt dependence suggests that the insert modulates electron transfer within the reductase domain prior to the heme/reductase interface. The results clarify the role of the reductase insert in modulating the Ca(2+) requirement, electron transfer rate, and overall activity of nNOS and eNOS.  相似文献   

16.
NO generated by inducible NOS (iNOS) causes buildup of S-nitrosated GAPDH (SNO-GAPDH) in cells, which then inhibits further iNOS maturation by limiting the heme insertion step (Chakravarti, R., Aulak, K. S., Fox, P. L., and Stuehr, D. J. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009). We investigated what regulates this process utilizing a slow-release NO donor (NOC-18) and studying changes in cellular SNO-GAPDH levels during and after NO exposure. Culturing macrophage-like cells with NOC-18 during cytokine activation caused buildup of heme-free (apo) iNOS and SNO-GAPDH. Upon NOC-18 removal, the cells quickly recovered their heme insertion capacity in association with rapid SNO-GAPDH denitrosation, implying that these processes are linked. We then altered cell expression of thioredoxin-1 (Trx1) or S-nitrosoglutathione reductase, both of which can function as a protein denitrosylase. Trx1 knockdown increased SNO-GAPDH levels in cells, made heme insertion hypersensitive to NO, and increased the recovery time, whereas Trx1 overexpression greatly diminished SNO-GAPDH buildup and protected heme insertion from NO inhibition. In contrast, knockdown of S-nitrosoglutathione reductase expression had little effect on these parameters. Experiments utilizing C152S GAPDH confirmed that the NO effects are all linked to S-nitrosation of GAPDH at Cys-152. We conclude (i) that NO inhibition of heme insertion and its recovery can be rapid and dynamic processes and are inversely linked to the S-nitrosation of GAPDH and (ii) that the NO sensitivity of heme insertion can vary depending on the Trx1 expression level due to Trx1 acting as an SNO-GAPDH denitrosylase. Together, our results identify a new way that cells regulate heme protein maturation during inflammation.  相似文献   

17.
In vitro, ferrous deoxy-hemes in hemoglobin (Hb) react with nitrite to generate nitric oxide (NO) through a nitrite reductase reaction. In vivo studies indicate Hb with nitrite can be a source of NO bioactivity. The nitrite reductase reaction does not appear to account fully for this activity because free NO is short lived especially within the red blood cell. Thus, the exporting of NO bioactivity both out of the RBC and over a large distance requires an additional mechanism. A nitrite anhydrase (NA) reaction in which N2O3, a potent S-nitrosating agent, is produced through the reaction of NO with ferric heme-bound nitrite has been proposed (Basu, S., Grubina, R., Huang, J., Conradie, J., Huang, Z., Jeffers, A., Jiang, A., He, X., Azarov, I., Seibert, R., Mehta, A., Patel, R., King, S. B., Hogg, N., Ghosh, A., Gladwin, M. T., and Kim-Shapiro, D. B. (2007) Nat. Chem. Biol. 3, 785–794) as a possible mechanism. Legitimate concerns, including physiological relevance and the nature of the mechanism, have been raised concerning the NA reaction. This study addresses these concerns demonstrating NO and nitrite with ferric hemes under near physiological conditions yield an intermediate having the properties of the purported NA heme-bound N2O3 intermediate. The results indicate that ferric heme sites, traditionally viewed as a source of potential toxicity, can be functionally significant, especially for partially oxygenated/partially met-R state Hb that arises from the NO dioxygenation reaction. In the presence of low levels of nitrite and either NO or a suitable reductant such as l-cysteine, these ferric heme sites can function as a generator for the formation of S-nitrosothiols such as S-nitrosoglutathione and, as such, should be considered as a source of RBC-derived and exportable bioactive NO.  相似文献   

18.
Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the ubiquitous protein chaperone hsp90. We have shown previously that nNOS expressed in Sf9 cells where endogenous heme levels are low is activated from the apo- to the holo-enzyme by addition of exogenous heme to the culture medium, and this activation is inhibited by radicicol, a specific inhibitor of hsp90 (Billecke, S. S., Bender, A. T., Kanelakis, K. C., Murphy, P. J. M., Lowe, E. R., Kamada, Y., Pratt, W. B., and Osawa, Y. (2002) J. Biol. Chem. 278, 15465-15468). In this work, we examine heme binding by apo-nNOS to form the active enzyme in a cell-free system. We show that cytosol from Sf9 cells facilitates heme-dependent apo-nNOS activation by promoting functional heme insertion into the enzyme. Sf9 cytosol also converts the glucocorticoid receptor (GR) to a state where the hydrophobic ligand binding cleft is open to access by steroid. Both cell-free heme activation of purified nNOS and activation of steroid binding activity of the immunopurified GR are inhibited by radicicol treatment of Sf9 cells prior to cytosol preparation, and addition of purified hsp90 to cytosol partially overcomes this inhibition. Although there is an hsp90-dependent machinery in Sf9 cytosol that facilitates heme binding by apo-nNOS, it is clearly different from the machinery that facilitates steroid binding by the GR. hsp90 regulation of apo-nNOS heme activation is very dynamic and requires higher concentrations of radicicol for its inhibition, whereas GR steroid binding is determined by assembly of stable GR.hsp90 heterocomplexes that are formed by a purified five-chaperone machinery that does not activate apo-nNOS.  相似文献   

19.
Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the Hsp90/Hsp70-based chaperone machinery, which regulates signaling proteins by modulating ligand binding clefts (Pratt, W. B., Morishima, Y., and Osawa, Y. (2008) J. Biol. Chem. 283, 22885-22889). We have previously shown that nNOS turnover is due to Hsp70/CHIP-dependent ubiquitination and proteasomal degradation. In this work, we use an intracellular cross-linking approach to study both chaperone binding and nNOS ubiquitination in intact HEK293 cells. Treatment of cells with N(G)-nitro-L-arginine, a slowly reversible competitive inhibitor that stabilizes nNOS, decreases both nNOS ubiquitination and binding of Hsp90, Hsp70, and CHIP. Treatment with the calcium ionophore A23187, which increases Ca(2+)-calmodulin binding to nNOS, increases nNOS ubiquitination and binding of Hsp90, Hsp70, and CHIP in a manner that is specific for changes in the heme/substrate binding cleft. Both Hsp90 and Hsp70 are bound to the expressed nNOS oxygenase domain, which contains the heme/substrate binding cleft, but not to the reductase domain, and binding is increased to an expressed fragment containing both the oxygenase domain and the calmodulin binding site. Overexpression of Hsp70 promotes nNOS ubiquitination and decreases nNOS protein, and overexpression of Hsp90 inhibits nNOS ubiquitination and increases nNOS protein, showing the opposing effects of the two chaperones as they participate in nNOS quality control in the cell. These observations support the notion that changes in the state of the heme/substrate binding cleft affect chaperone binding and thus nNOS ubiquitination.  相似文献   

20.
We have previously demonstrated that phosphorylation of neuronal nitric-oxide synthase (nNOS) at Ser(847) by Ca(2+)/calmodulin-dependent protein kinases (CaM kinases) attenuates the catalytic activity of the enzyme in vitro (Hayashi Y., Nishio M., Naito Y., Yokokura H., Nimura Y., Hidaka H., and Watanabe Y. (1999) J. Biol. Chem. 274, 20597-20602). In the present study we determined that CaM kinase IIalpha (CaM-K IIalpha) can directly phosphorylate nNOS on Ser(847), leading to a reduction of nNOS activity in cells. The phosphorylation abilities of purified CaM kinase Ialpha (CaM-K Ialpha), CaM-K IIalpha, and CaM-kinase IV (CaM-K IV) on Ser(847) were analyzed using the synthetic peptide nNOS-(836-859) (Glu-Glu-Arg-Lys-Ser-Tyr-Lys-Val-Arg-Phe-Asn-Ser-Val-Ser-Ser-Tyr-Ser- Asp-Ser-Arg-Lys-Ser-Ser-Gly) from nNOS as substrate. The relative V(max)/K(m) ratios of CaM kinases for nNOS-(836-859) were found to be as follows: CaM-K IIalpha, 100; CaM-K Ialpha, 54.5; CaM-K IV, 9.1. Co-transfection of constitutively active CaM-K IIalpha1-274 but not inactive CaM-K IIalpha1-274, generated by mutation of Lys(42) to Ala, with nNOS into NG108-15 cells, resulted in increased Ser(847) phosphorylation in the presence of okadaic acid, an inhibitor of protein phosphatase (PP)1 and PP2A, with a concomitant inhibition of NOS enzyme activity. In addition, this latter decrease could be reversed by treatment with exogenous PP2A. Cells expressing mutant nNOS (S847A) proved resistant to phosphorylation and a decrease of NOS activity. Thus, our results indicate that Ca(2+) triggers cross-talk signal transduction between CaM kinase and NO and CaM-K IIalpha phosphorylating nNOS on Ser(847), which in turn decreases the gaseous second messenger NO in neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号