首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this study, 22 new betulinic acid (BA) derivatives were synthesized and tested for their inhibition of the chymotrypsin-like activity of 20S proteasome. From the SAR study, we concluded that the C-3 and C-30 positions are the pharmacophores for increasing the proteasome inhibition effects, and larger lipophilic or aromatic side chains are favored at these positions. Among the BA derivatives tested, compounds 13, 20, and 21 showed the best proteasome inhibition activity with IC(50) values of 1.42, 1.56, and 1.80 μM, respectively, which are three to fourfold more potent than the proteasome inhibition controls LLM-F and lactacystin.  相似文献   

2.
Betulinic acid (BA) derivatives with a side chain at C-3 can inhibit HIV-1 maturation. On the other hand, BA derivatives with a side chain at C-28 can block HIV-1 entry. In order to combine the anti-maturation and anti-entry activities in a single molecule, new bi-functional BA derivatives containing side chains at C-3 and C-28 have been synthesized. The most potent compound ([[N-[3beta-O-(3',3'-dimethylsuccinyl)-lup-20(29)-en-28-oyl]-7-aminoheptyl]-carbamoyl]methane) inhibited HIV-1 at an EC50 of 0.0026 microM and was at least 20 times more potent than either the anti-maturation lead compound DSB or the anti-entry lead compound IC9564. This bi-functional BA derivative was active against both HIV entry and maturation. These results suggest that bi-functional BA derivatives with dual mechanisms of action have the potential to become clinically useful for AIDS therapy.  相似文献   

3.
The secosteroid hormone 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is metabolized in its target tissues through modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the main side chain modification pathway is initiated by hydroxylation at C-24 of the side chain and leads to the formation of the end product, calcitroic acid. The C-23 and C-26 oxidation pathways, the minor side chain modification pathways are initiated by hydroxylations at C-23 and C-26 of the side chain and lead to the formation of the end product, calcitriol lactone. The C-3 epimerization pathway, the newly discovered A-ring modification pathway is initiated by epimerization of the hydroxyl group at C-3 of the A-ring to form 1alpha,25(OH)(2)-3-epi-D(3). A rational design for the synthesis of potent analogs of 1alpha,25(OH)(2)D(3) is developed based on the knowledge of the various metabolic pathways of 1alpha,25(OH)(2)D(3). Structural modifications around the C-20 position, such as C-20 epimerization or introduction of the 16-double bond affect the configuration of the side chain. This results in the arrest of the C-24 hydroxylation initiated cascade of side chain modifications at the C-24 oxo stage, thus producing the stable C-24 oxo metabolites which are as active as their parent analogs. To prevent C-23 and C-24 hydroxylations, cis or trans double bonds, or a triple bond are incorporated in between C-23 and C-24. To prevent C-26 hydroxylation, the hydrogens on these carbons are replaced with fluorines. Furthermore, testing the metabolic fate of the various analogs with modifications of the A-ring, it was found that the rate of C-3 epimerization of 5,6-trans or 19-nor analogs is decreased to a significant extent. Assembly of all these protective structural modifications in single molecules has then produced the most active vitamin D(3) analogs 1alpha,25(OH)(2)-16,23-E-diene-26,27-hexafluoro-19-nor-D(3) (Ro 25-9022), 1alpha,25(OH)(2)-16,23-Z-diene-26,27-hexafluoro-19-nor-D(3) (Ro 26-2198), and 1alpha,25(OH)(2)-16-ene-23-yne-26,27-hexafluoro-19-nor-D(3) (Ro 25-6760), as indicated by their antiproliferative activities.  相似文献   

4.
A series of lanostane-type triterpenoids, identified as ganoderma alcohols and ganoderma acids, were isolated from the fruiting body of Ganoderma lingzhi. Some of these compounds were confirmed as active inhibitors of the in vitro human recombinant aldose reductase. This paper aims to explain the structural requirement for α-glucosidase inhibition. Our structure–activity studies of ganoderma alcohols showed that the OH substituent at C-3 and the double-bond moiety at C-24 and C-25 are necessary to increase α-glucosidase inhibitory activity. The structure–activity relationships of ganoderma acids revealed that the OH substituent at C-11 is an important feature and that the carboxylic group in the side chain is essential for the recognition of α-glucosidase inhibitory activity. Moreover, the double-bond moiety at C-20 and C-22 in the side chain and the OH substituent at C-3 of ganoderma acids improve α-glucosidase inhibitory activity.These results provide an approach with which to consider the structural requirements of lanostane-type triterpenoids from G. lingzhi. An understanding of these requirements is considered necessary in order to improve a new type of α-glucosidase inhibitor.  相似文献   

5.
Betulinic acid (BA), a pentacyclic triterpenoid, exhibits broad spectrum antiproliferative activity, but generally with only modest potency. To improve BA’s pharmacological properties, fluorine was introduced as a single atom at C-2, creating two diastereomers, or in a trifluoromethyl group at C-3. We evaluated the impact of these groups on antiproliferative activity against five human tumor cell lines. A racemic 2-F-BA (compound 6) showed significantly improved antiproliferative activity, while each diastereomer exhibited similar effects. We also demonstrated that 2-F-BA is a topoisomerase (Topo) I and IIα dual inhibitor in cell-based and cell-free assays. A hypothetical mode of binding to the Topo I-DNA suggested a difference between the hydrogen bonding of BA and 2-F-BA to DNA, which may account for the difference in bioactivity against Topo I.  相似文献   

6.
The HIV-1 auxiliary protein Vpr and Vpr-fusion proteins can be copackaged with Gag precursor (Pr55Gag) into virions or membrane-enveloped virus-like particles (VLP). Taking advantage of this property, we developed a simple and sensitive method to evaluate potential inhibitors of HIV-1 assembly in a living cell system. Two proteins were coexpressed in recombinant baculovirus-infected Sf9 cells, Pr55Gag, which formed the VLP backbone, and luciferase fused to the N-terminus of Vpr (LucVpr). VLP-encapsidated LucVpr retained the enzymatic activity of free luciferase. The levels of luciferase activity present in the pelletable fraction recovered from the culture medium correlated with the amounts of extracellular VLP released by Sf9 cells assayed by conventional immunological methods. Our luciferase-based assay was then applied to the characterization of betulinic acid (BA) derivatives that differed from the leader compound PA-457 (or DSB) by their substituant on carbon-28. The beta-alanine-conjugated and lysine-conjugated DSB could not be evaluated for their antiviral potentials due to their high cytotoxicity, whereas two other compounds with a lesser cytotoxicity, glycine-conjugated and ε-NH-Boc-lysine-conjugated DSB, exerted a dose-dependent negative effect on VLP assembly and budding. A fifth compound with a low cytotoxicity, EP-39 (ethylene diamine-conjugated DSB), showed a novel type of antiviral effect. EP-39 provoked an aberrant assembly of VLP, resulting in nonenveloped, morula-like particles of 100-nm in diameter. Each morula was composed of nanoparticle subunits of 20-nm in diameter, which possibly mimicked transient intermediates of the HIV-1 Gag assembly process. Chemical cross-linking in situ suggested that EP-39 favored the formation or/and persistence of Pr55Gag trimers over other oligomeric species. EP-39 showed a novel type of negative effect on HIV-1 assembly, targeting the Pr55Gag oligomerisation. The biological effect of EP-39 underlined the critical role of the nature of the side chain at position 28 of BA derivatives in their anti-HIV-1 activity.  相似文献   

7.
A series of lanostane-type triterpenoids, known as ganoderma acids were isolated from the fruiting body of Ganoderma lucidum. Some of these compounds were identified as active inhibitors of the in vitro human recombinant aldose reductase. To clarify the structural requirement for inhibition, some structure–activity relationships were determined. Our structure–activity studies of ganoderma acids revealed that the OH substituent at C-11 is an important feature and the carboxylic group in the side chain is essential for the recognition of aldose reductase inhibitory activity. Moreover, double bond moiety at C-20 and C-22 in the side chain contributes to improving aldose reductase inhibitory activity. In the case of ganoderic acid C2, all of OH substituent at C-3, C-7 and C-15 is important for potent aldose reductase inhibition. These results provide an approach to understanding the structural requirements of ganoderma acids from G. lucidum for aldose reductase inhibitor. This understanding is necessary to design a new-type of aldose reductase inhibitor.  相似文献   

8.
4-O-Thiocarbamoylmethyl-Neu5Ac2en 3 has strong inhibitory activity toward human parainfluenza virus type 1 (hPIV-1) sialidase compared with the parent Neu5Ac2en 2. We synthesized analogs having thiocarbamoylethyl- 4 and thiocarbamoylpropyl group 5 at the C-4 position of 2. The inhibition degrees of 4 and 5 were weaker than that of thiocarbamoylmethyl analog 3, indicating a remarkable effect of the carbon chain length in thiocarbamoylalkyl groups at the C-4 position on inhibitory activities against hPIV-1 sialidase.  相似文献   

9.
Jiang XR  Sowell JW  Zhu BT 《Steroids》2006,71(5):334-342
Estrogen receptor (ER) pure antagonists such as ICI-182,780 (fulvestrant) are effective alternatives to tamoxifen (an ER antagonist/weak partial agonist) in the treatment of postmenopausal, receptor-positive human breast cancers. Structurally, these pure antagonists contain the basic core structure of 17beta-estradiol (E(2)) with a long side chain attached to its C-7alpha position. We explored and compared in this study various synthetic routes for preparing a number of C-7alpha-substituted derivatives of E(2), which are highly useful for the design and synthesis of high-affinity ER antagonists, ER-based imaging ligands, and other ER-based multi-functional agents. Using E(2) as the starting material and 1-iodo-6-benzyloxyhexane as a precursor for the C-7alpha side chain, a seven-step synthetic procedure afforded 3,17beta-bis(acetoxy)-7alpha-(6-hydroxyhexanyl)-estra-1,3,5(10)-triene (one of the derivatives prepared) in an overall yield of approximately 45% as compared to other known procedures that afforded substantially lower overall yield (8-27%). The synthetic steps for this representative compound include: (1) protection of the C-3 and C-17beta hydroxyls of E(2) using methoxymethyl groups; (2) hydroxylation of the C-6 position of the bismethoxymethyl ether of E(2); (3) Swern oxidation of the C-6 hydroxy to the ketone group; (4) C-7alpha alkylation of the C-6 ketone derivative of E(2); (5) deprotection of the two methoxymethyl groups; (6) reprotection of the C-3 and C-6 free hydroxyls with acetyl groups; (7) removal of the C-6 ketone and the benzyl group on the side chain by catalytic hydrogenation in acetic acid. As predicted, two of the representative C-7alpha-substituted derivatives of E(2) synthesized in the present study retained strong binding affinities (close to those of E(2) and ICI-182,780) for the human ERalpha and ERbeta subtypes as determined using the radioligand-receptor binding assays.  相似文献   

10.
O-Alkylated quercetin analogs were synthesized and their anticancer activities were assessed by a high-throughout screening (HTS) method. The structure–activity relationships (SAR) showed that introduction of long alkyl chain such as propyl group at the C-3 OH position or short alkyl chain such as ethyl group at the C-4′ OH position were very important for keeping inhibitory activities against the 16 cancer cell lines. Furthermore, when the two n-butyl groups were introduced into the C-3, C-7 or C-4′, C-7 positions, the anticancer activity was enhanced.  相似文献   

11.
The secosteroid hormone 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] is metabolized in its target tissues through modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the previously well established main side chain modification pathway, is initiated by hydroxylation at C-24 of the side chain. The C-3 epimerization pathway, the newly discovered A-ring modification pathway, is initiated by epimerization of the hydroxyl group at C-3 of the A-ring. The end products of the metabolism of 1alpha,25(OH)2D3 through the C-24 oxidation and the C-3 epimerization pathways are calcitroic acid and 1alpha,25-dihydroxy-3-epi-vitamin-D3 respectively. During the past two decades, numerous noncalcemic analogs of 1alpha,25(OH)2D3 were synthesized. Several of the analogs have altered side chain structures and as a result some of these analogs have been shown to resist their metabolism through side chain modifications. For example, two of the analogs, namely, 1alpha,25-dihydroxy-16-ene-23-yne-vitamin D3 [1alpha,25(OH)2-16-ene-23-yne-D3] and 1alpha,25-dihydroxy-16-ene-23-yne-20-epi-vitamin D3 [1alpha,25(OH)2-16-ene-23-yne-20-epi-D3], have been shown to resist their metabolism through the C-24 oxidation pathway. However, the possibility of the metabolism of these two analogs through the C-3 epimerization pathway has not been studied. Therefore, in our present study, we investigated the metabolism of these two analogs in rat osteosarcoma cells (UMR 106) which are known to express the C-3 epimerization pathway. The results of our study indicate that both analogs [1alpha,25(OH)2-16-ene-23-yne-D3 and 1alpha,25(OH)2-16-ene-23-yne-20-epi-D3] are metabolized through the C-3 epimerization pathway in UMR 106 cells. The identity of the C-3 epimer of 1alpha,25(OH)2-16-ene-23-yne-D3 [1alpha,25(OH)2-16-ene-23-yne-3-epi-D3] was confirmed by GC/MS analysis and its comigration with synthetic 1alpha,25(OH)2-16-ene-23-yne-3-epi-D3 on both straight and reverse-phase HPLC systems. The identity of the C-3 epimer of 1alpha,25(OH)2-16-ene-23-yne-20-epi-D3 [1alpha,25(OH)2-16-ene-23-yne-20-epi-3-epi-D3] was confirmed by GC/MS and 1H NMR analysis. Thus, we indicate that vitamin D analogs which resist their metabolism through the C-24 oxidation pathway, have the potential to be metabolized through the C-3 epimerization pathway. In our present study, we also noted that the rate of C-3 epimerization of 1alpha,25(OH)2-16-ene-23-yne-20-epi-D3 is about 10 times greater than the rate of C-3 epimerization of 1alpha,25(OH)2-16-ene-23-yne-D3. Thus, we indicate for the first time that certain structural modifications of the side chain such as 20-epi modification can alter significantly the rate of C-3 epimerization of vitamin D compounds.  相似文献   

12.
13.
He L  Jagtap PG  Kingston DG  Shen HJ  Orr GA  Horwitz SB 《Biochemistry》2000,39(14):3972-3978
Extensive structure-activity studies done with Taxol have identified the side chain at C-13 as one of the requirements for biological activity. Baccatin III, an analogue of Taxol lacking the C-13 side chain, has none of the biological characteristics of Taxol. Since 2-m-azido Taxol, a Taxol derivative with a m-azido substituent in the C-2 benzoyl ring, has greater activity than Taxol, we questioned whether 2-m-azido baccatin III might be active. 2-m-Azido baccatin III inhibited the proliferation of human cancer cells at nanomolar concentrations, blocked cells at mitosis, and reorganized the interphase microtubules into distinct bundles, a typical morphological change induced by Taxol. In contrast to 2-m-azido baccatin III, 2-p-azido baccatin III was similar to baccatin III, having no Taxol-like activity, further indicating the specificity and significance of the 2-meta position substituent. Molecular modeling studies done with the C-2 benzoyl ring of Taxol indicated that it fits into a pocket formed by His227 and Asp224 on beta-tubulin and that the 2-m-azido, in contrast to the 2-p-azido substituent, is capable of enhancing the interaction between the benzoyl group and the side chain of Asp224. The observation that the C-13 side chain is not an absolute requirement for biological activity in a taxane molecule has enabled the development of a new common pharmacophore model between Taxol and the epothilones.  相似文献   

14.
The structure–activity relationship of the boronic acid derivatives of tyropeptin, a proteasome inhibitor, was studied. Based on the structure of a previously reported boronate analog of tyropeptin (2), 41 derivatives, which have varying substructure at the N-terminal acyl moiety and P2 position, were synthesized. Among them, 3-phenoxyphenylacetamide 6 and 3-fluoro picolinamide 22 displayed the most potent inhibitory activity toward chymotryptic activity of proteasome and cytotoxicity, respectively. The replacement of the isopropyl group in the P2 side chain to H or Me had negligible effects on the biological activities examined in this study.  相似文献   

15.
白桦脂酸(betulinic acid,BA)有良好的抗心血管氧化应激损伤作用。然而,BA对脂多糖lipopolysaccharide,LPS)诱导血管收缩功能损伤是否具有保护作用,该保护作用是否与抗氧化应激有关,尚不清楚。本研究给予雄性SD大鼠白桦脂酸灌胃(25 mg/kg/d,3 d)预处理,于第4 d腹腔注射LPS(10 mg/kg),4 h后麻醉处死,分离血浆及胸主动脉,测定大鼠胸主动脉环收缩性,测定炎症因子白细胞介素6(interleukin-6,IL-6)及氧化应激指标。结果显示,白桦脂酸明显抑制LPS诱导的血浆及胸主动脉IL-6水平(P<0.01),降低LPS对苯肾上腺素、KCl及Ca2+血管收缩反应的抑制作用(84.8%±9.09% vs 42.80%±9.00%,P<0.01;127.48%±12.02% vs 99.78%±6.02%,P<0.01;52.07%±13.48% vs 20.83%±5.04%,P<0.01),减少LPS诱导的胸主动脉丙二醛水平(P<0.01)及诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)活性(P<0.01),缓解LPS对超氧化物歧化酶(superoxide dismutase,SOD)的抑制作用(P<0.01)。上述结果提示,白桦脂酸抑制LPS诱导血管收缩功能障碍的机制可能与增加机体SOD活性,抑制氧化应激及iNOS活性有关。  相似文献   

16.
In our previous study, the isolation of ugonin J, K, and L, which are luteolin derivatives, from the roots of Helminthostachys zeylanica and their identification as potent melanogenesis inhibitors, was described. The structure activity relationship (SAR) investigation in that study revealed that the catechol moiety in the B-ring of the flavone skeleton of ugonin K was important for its melanogenesis inhibitory activity, and the presence of the low polarity substituents at the C-7 position enhanced this activity. In order to further investigate the SAR of the C-7-substituent in the luteolin derivatives, different groups were selectively introduced at the C-7 position of luteolin after borax protection of the catechol hydroxyl group and the C-5 hydroxyl group. NMR and MS analysis of the borax protected derivatives revealed that the borax protects not only hydroxyl groups of catechol on the B ring but also the 5-hydroxyl group on the A ring. Eight luteolin derivatives were synthesized and evaluated for melanogenesis inhibitory effect in B16 melanoma cells. Two bulky groups and six alkoxyl groups were introduced at the C-7 position. The resulting luteolin derivatives showed improved melanogenesis and cell proliferation inhibitory activities. From among these derivatives, 7-O-hexylluteolin (7) showed the highest activity and inhibited the melanogenesis to 14% at 6.25?μM. The present study also revealed that the length of the carbon chain rather than the bulky substituent was more important for the melanogenesis inhibitory activity.  相似文献   

17.
In order to define the effect of a side chain hydroxy group on bile acid (BA) physicochemical and biological properties, 23-hydroxylated bile acids were synthesized following a new efficient route involving the alpha-oxygenation of silylalkenes. 22-Hydroxylated bile acids were also studied. The synthesized bile acids included R and S epimers of 3 alpha,7 alpha,23-trihydroxy-5 beta-cholan-24-oic acid (23R epimer: phocaecholic acid), 3 alpha,12 alpha,23-trihydroxy-5 beta-cholan-24-oic (23R epimer: bitocholic acid), and 3 alpha,7 beta,23-trihydroxy-5 beta-cholan-24-oic acid. A 3 alpha,7 alpha,22-trihydroxy-5 beta-cholan-24-oic acid (haemulcholic acid) was also studied. The presence of a hydroxy group on the side chain slightly modified the physicochemical behavior in aqueous solution with respect to common BA: the critical micellar concentration (CMC) and the hydrophilicity were similar to naturally occurring trihydroxy BA such as cholic acid. The pKa value was lowered by 1.5 units with respect to common BA, being 3.8 for all the C-23 hydroxy BA. C-22 had a higher pKa (4.2) as a result of the increased distance of the hydroxy group from the carboxy group. When the C-23 hydroxylated BA were intravenously administered to bile fistula rats, they were efficiently recovered in bile (more than 80% unmodified) while the corresponding analogs, lacking the 23- hydroxy group, were almost completely glycine- or taurine-conjugated. On the other hand, the C-22 hydroxylated BA were extensively conjugated with taurine and less than 40% of the administered dose was secreted without being conjugated. In the presence of intestinal bacteria, they were mostly metabolized to the corresponding 7-dehydroxylated compound similar to common BA with the exception of bitocholic acid which was relatively stable. The presence of a hydroxy group at the C-23 position increased the acidity of the BA and this accounted for poor absorption within the biliary tree and efficient biliary secretion without the need for conjugation. 3 alpha,7 beta-23 R/S trihydroxy-5 beta-cholan-24-oic acids could improve the efficiency of ursodeoxycholic acid (UDCA) for gallstone dissolution or cholestatic syndrome therapy, as it is relatively hydrophilic and efficiently secreted into bile without altering the glycine and taurine hepatic pool.  相似文献   

18.
Ginsenoside Rg3, a known anti-cancer agent, is usually prepared by enzyme-mediated and acid hydrolysis of ginsenoside Rb1 and Rd. In this study, we used the bacterium Cellulosimicrobium cellulans sp. 21 to transform Rb1 into Rg3. When Rb1 was used as the sole substrate, the transformation products included Rg3, Rh2, C-K and PPD. However, when Rb1 and Re were mixed, the yield of Rg3 was significantly higher, indicating that Re attenuates the activity of β-1,2-glucosidase secreted by C. cellulans sp. 21. β-1,2-glucosidase hydrolyzes the β-1,2-glucose moiety at the C-3 position of Rb1, but Re dose not modify enzymes that produce Rg3 by hydrolyzing glucose at the C-20 position in aglycon. We also tested the inhibitory effects from various ginsenosides on β-1,2-glucosidase, and discovered that sugar chains played key roles in inhibiting β-1,2 glucosidase activity, whereas aglycones of protopanaxadiol and protopanaxatriol had little inhibitory effects. Some sugar chains with different linkages, such as C-20, C-3 and C-6, exhibited different inhibitory effects. Overall, our findings demonstrate that a combination of substrates, in addition to microorganism-secreted enzymes, can be used for selective biotransformation. This approach provides a novel strategy for natural product preparations via microbial transformation.  相似文献   

19.
Development of C-20 modified betulinic acid derivatives as antitumor agents   总被引:6,自引:0,他引:6  
Chemical modifications were performed on C-20 position of betulinic acid for a structure-activity relationship study. The evaluation of the compounds using human colon carcinoma HCT-116, human prostate adenocarcinoma PC3, and human melanoma cell lines M14-MEL, SK-MEL-2, and UACC-257 did not show any selective cytotoxicity towards melanoma cells. The results from both MTT reduction assay and SRB staining assay were comparable that no remarkable differences in cytotoxicity profile of the compounds were noticed. The C-20 position was found to be sensitive to the size and the electron density of the substituents in retaining the cytotoxicity of betulinic acid and was found to be undesirable position to derivatize.  相似文献   

20.
In this study, we provide evidence that endoplasmic reticulum (ER) stress suppresses DNA double-strand break (DSB) repair and increases radiosensitivity of tumor cells by altering Rad51 levels. We show that the ER stress inducer tunicamycin stimulates selective degradation of Rad51 via the 26S proteasome, impairing DSB repair and enhancing radiosensitivity in human lung cancer A549 cells. We also found that glucose deprivation, which is a physiological inducer of ER stress, triggered similar events. These findings suggest that ER stress caused by the intratumoral environment influences tumor radiosensitivity, and that it has potential as a novel target to improve cancer radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号