首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Neurotransmitter expression can be regulated by both activity and neurotrophins in a number of in vitro systems. We examined whether either of these factors was likely to play a role in the in vivo optic nerve‐dependent regulation of a substance P‐like immunoreactive (SP‐ir) population of cells in the developing optic tectum of the frog. In contrast to our previous results with the adult system, blocking tectal cell responses to glutamate release by retinal ganglion cells with 6‐cyano‐7‐nitroquinoxaline‐2,3 dione (CNQX) did not affect the percent of SP‐ir cells in the developing tectum. Treatment with d‐(‐)‐2‐amino‐5‐phosphonovaleric acid (d‐AP‐5) was also ineffective in this regard, although both it and CNQX treatment disrupted visual map topography. Chronic treatment with brain‐derived neurotrophic factor (BDNF) and neurotrophin‐4/5 (NT‐4/5) produced increases in SP‐ir cells in the treated lobes of normal animals, which were significant in the case of NT‐4/5. Both substances also prevented the decrease of SP cells that would otherwise occur in the deafferented lobe of unilaterally optic nerve‐transected tadpoles. These changes in the percent of SP‐ir cells occurred without any detectable changes in the overall number of tectal cells. NGF had no effect on SP expression. Nor did it affect topographic map formation, which was disrupted by treatment with either BDNF or NT‐4/5. Our results demonstrate that different mechanisms regulate SP expression in the developing and adult tectum. They indicate that neurotrophin levels in the developing optic tectum may selectively regulate a specific neuropeptide‐expressing population of cells. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 131–149, 2001  相似文献   

2.
脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)在发育及成熟的中枢神经系统(central nervoussystem,CNS)中起到举足轻重的调节作用,而其中绝大部分作用由其B型酪氨酸激酶受体(tyrosine kinase receptortype B,TrkB)介导,因此TrkB在神经元中的轴浆转运过程显得尤为重要。本文从动力蛋白、潜在调节分子、细胞骨架蛋白等方面对TrkB轴浆转运分子机制的研究进展进行综述,并就其进一步研究提出一系列的问题与展望。  相似文献   

3.
《Autophagy》2013,9(12):1782-1797
Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant disease characterized by a progressive age-dependent extracellular accumulation of transforming growth factor β-induced protein (TGFBI). Corneal fibroblasts from GCD2 patients also have progressive degenerative features, but the mechanism underlying this degeneration remains unknown. Here we observed that TGFBI was degraded by autophagy, but not by the ubiquitin/proteasome-dependent pathway. We also found that GCD2 homozygous corneal fibroblasts displayed a greater number of fragmented mitochondria. Most notably, mutant TGFBI (mut-TGFBI) extensively colocalized with microtubule-associated protein 1 light chain 3β (MAP1LC3B, hereafter referred to as LC3)-enriched cytosolic vesicles and CTSD in primary cultured GCD2 corneal fibroblasts. Levels of LC3-II, a marker of autophagy activation, were significantly increased in GCD2 corneal fibroblasts. Nevertheless, levels of SQSTM1/p62 and of polyubiquitinated protein were also significantly increased in GCD2 corneal fibroblasts compared with wild-type (WT) cells. However, LC3-II levels did not differ significantly between WT and GCD2 cells, as assessed by the presence of bafilomycin A1, the fusion blocker of autophagosomes and lysosomes. Likewise, bafilomycin A1 caused a similar change in levels of SQSTM1. Thus, the increase in autophagosomes containing mut-TGFBI may be due to inefficient fusion between autophagosomes and lysosomes. Rapamycin, an autophagy activator, decreased mut-TGFBI, whereas inhibition of autophagy increased active caspase-3, poly (ADP-ribose) polymerase 1 (PARP1) and reduced the viability of GCD2 corneal fibroblasts compared with WT controls. These data suggest that defective autophagy may play a critical role in the pathogenesis of GCD2.  相似文献   

4.
Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant disease characterized by a progressive age-dependent extracellular accumulation of transforming growth factor β-induced protein (TGFBI). Corneal fibroblasts from GCD2 patients also have progressive degenerative features, but the mechanism underlying this degeneration remains unknown. Here we observed that TGFBI was degraded by autophagy, but not by the ubiquitin/proteasome-dependent pathway. We also found that GCD2 homozygous corneal fibroblasts displayed a greater number of fragmented mitochondria. Most notably, mutant TGFBI (mut-TGFBI) extensively colocalized with microtubule-associated protein 1 light chain 3β (MAP1LC3B, hereafter referred to as LC3)-enriched cytosolic vesicles and CTSD in primary cultured GCD2 corneal fibroblasts. Levels of LC3-II, a marker of autophagy activation, were significantly increased in GCD2 corneal fibroblasts. Nevertheless, levels of SQSTM1/p62 and of polyubiquitinated protein were also significantly increased in GCD2 corneal fibroblasts compared with wild-type (WT) cells. However, LC3-II levels did not differ significantly between WT and GCD2 cells, as assessed by the presence of bafilomycin A1, the fusion blocker of autophagosomes and lysosomes. Likewise, bafilomycin A1 caused a similar change in levels of SQSTM1. Thus, the increase in autophagosomes containing mut-TGFBI may be due to inefficient fusion between autophagosomes and lysosomes. Rapamycin, an autophagy activator, decreased mut-TGFBI, whereas inhibition of autophagy increased active caspase-3, poly (ADP-ribose) polymerase 1 (PARP1) and reduced the viability of GCD2 corneal fibroblasts compared with WT controls. These data suggest that defective autophagy may play a critical role in the pathogenesis of GCD2.  相似文献   

5.
目的 :为了有效的将腺病毒介导的脑源性神经营养因子 (BDNF)用于神经损伤的保护治疗。方法 :在体外用BDNF重组腺病毒 (Ad BDNF)对SH SY5Y细胞进行感染 ,在无血清培养条件下对细胞的生长分化进行了形态学的观察 ,利用MTT法检测不同浓度的Ad BDNF对SH SY5Y细胞的促存活作用 ,并对细胞凋亡作用进行了检测。结果和结论 :腺病毒介导的BDNF可有效的促进感染后的SH SY5Y细胞的存活 ,生长和分化 ,并可有效的抑制无血清状态下细胞凋亡的发生  相似文献   

6.
    
The actions of neurotrophic factors on sensory neurons of the adult nodose ganglion were studied in vitro. The ganglia were explanted in an extracellular matrix–based gel that permitted observation of the growing axons. Neurotrophin‐4 (NT‐4) was a very efficient stimulator of outgrowth of axons from the nodose ganglion and had almost doubled the outgrowth length when this was analyzed after 2 days in culture. Brain‐derived neurotrophic factor also stimulated outgrowth, but to a lesser degree, whereas NT‐3 gave only weak stimulatory tendencies. Nerve growth factor and glial cell line–derived neurotrophic factor both lacked stimulatory effects. NT‐4 is known to act via TrkB receptors, and the presence of these on growing nodose neurons was demonstrated immunohistochemically. In line with a Trk‐mediated growth effect, the NT‐4 stimulation was abolished by K252a, a selective inhibitor of neurotrophin receptor–associated tyrosine kinase activity. K252a had no effect on the unstimulated preparation. NT‐4 treatment led to activation of the mitogen‐activated protein kinase and inhibition of the latter pathway by PD98059 significantly reduced the NT‐4 stimulated outgrowth, whereas the drug had no effect on the unstimulated growth. In conclusion, the data suggest that NT‐4 can serve as a powerful growth factor for neurons of adult nodose ganglia and that the growth stimulation involves TrkB‐ and mitogen‐activated protein kinase. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 142–151, 2000  相似文献   

7.
8.
    
Several reports have shown that methyl CpG‐binding protein 2 (MeCP2), brain‐derived neurotrophic factor (BDNF), phospho‐cAMP response element‐binding protein (p‐CREB) and microRNAs may be important in regulating academic performance because of their roles in neuropsychiatry and cognitive diseases. The first goal of this study was to explore the associations among MeCP2, BDNF, CREB and academic performance. This study also examined the pathway responsible for the effects of MeCP2, BDNF, p‐CREB and microRNAs on academic performance. Scores from the basic competency test, an annual national competitive entrance examination, were used to evaluate academic performance. Subjects' plasma RNA was extracted and analyzed. This study determined that participants in the higher academic performance group had a significant difference in MECP2 mRNA expression compared with the lower academic performance group. We then used neuronal human derived neuroblastoma cell line (SH‐SY5Y) cells with inducible MeCP2 expression from a second copy of the gene as a gain‐of‐function model and found that MeCP2 overexpression positively affected p‐CREB and BDNF expression initially. After negative feedback, the p‐CREB and BDNF levels subsequently decreased. In the neuronal phenotype examination, we found a significant reduction in total outgrowth and branches in MeCP2‐induced cells compared with noninduced cells. This work describes pathways that may be responsible for the effects of MeCP2, BDNF, p‐CREB and microRNAs on academic performance. These results may shed light on the development of promising clinical treatment strategies in the area of neuropsychological adjustment.  相似文献   

9.
    
Impaired fear memory extinction (Ext) is one of the hallmark symptoms of post‐traumatic stress disorder (PTSD). However, since the precise mechanism of impaired Ext remains unknown, effective interventions have not yet been established. Recently, hippocampal‐prefrontal brain‐derived neurotrophic factor (BDNF) activity was shown to be crucial for Ext in naïve rats. We therefore examined whether decreased hippocampal‐prefrontal BDNF activity is also involved in the Ext of rats subjected to a single prolonged stress (SPS) as a model of PTSD. BDNF levels were measured by enzyme‐linked immunosorbent assay (ELISA), and phosphorylation of TrkB was measured by immunohistochemistry in the hippocampus and medial prefrontal cortex (mPFC) of SPS rats. We also examined whether BDNF infusion into the ventral mPFC or hippocampus alleviated the impaired Ext of SPS rats in the contextual fear conditioning paradigm. SPS significantly decreased the levels of BDNF in both the hippocampus and mPFC and TrkB phosphorylation in the ventral mPFC. Infusion of BDNF 24 hours after conditioning in the infralimbic cortex (ILC), but not the prelimbic cortex (PLC) nor hippocampus, alleviated the impairment of Ext. Since amelioration of impaired Ext by BDNF infusion did not occur without extinction training, it seems the two interventions must occur consecutively to alleviate impaired Ext. Additionally, BDNF infusion markedly increased TrkB phosphorylation in the ILC of SPS rats. These findings suggest that decreased BDNF signal transduction might be involved in the impaired Ext of SPS rats, and that activation of the BDNF‐TrkB signal might be a novel therapeutic strategy for the impaired Ext by stress.  相似文献   

10.
在听力损伤过程中有一大类的损伤是由于各种外界因素对于听神经的损伤而引起的。为了观察脑源性神经营养因子(BDNF)和神经营养素-3(NT3)对听神经元的营养作用,并研究基因治疗在听神经损伤治疗中的可行性。在体外建立了听神经元的培养系统,利用LacZ重组腺病毒感染培养的听神经元来研究重组腺病毒介导的外源基因的转染效率,通过X-Gal染色来显示被感染的阳性细胞,在加入100病毒感染复数(MOI)的Ad-  相似文献   

11.
This study investigated regulation of autophagy in slow-twitch soleus and fast-twitch plantaris muscles in fasting-related atrophy. Male Fischer-344 rats were subjected to fasting for 1, 2, or 3 days. Greater weight loss was observed in plantaris muscle than in soleus muscle in response to fasting. Western blot analysis demonstrated that LC3-II, a marker protein for macroautophagy, was expressed at a notably higher level in plantaris than in soleus muscle, and that the expression level was fasting duration-dependent. To identify factors related to LC3-II enhancement, autophagy-related signals were examined in both types of muscle. Phosphorylated mTOR was reduced in plantaris but not in soleus muscle. FOXO3a and ER stress signals were unchanged in both muscle types during fasting. These findings suggest that preferential atrophy of fast-twitch muscle is associated with induction of autophagy during fasting and that differences in autophagy regulation are attributable to differential signal regulation in soleus and plantaris muscle.  相似文献   

12.
Mutations or inactivation of parkin, an E3 ubiquitin ligase, are associated with familial form or sporadic Parkinson’s disease (PD), respectively, which manifested with the selective vulnerability of neuronal cells in substantia nigra (SN) and striatum (STR) regions. However, the underlying molecular mechanism linking parkin with the etiology of PD remains elusive. Here we report that p62, a critical regulator for protein quality control, inclusion body formation, selective autophagy and diverse signaling pathways, is a new substrate of parkin. P62 levels were increased in the SN and STR regions, but not in other brain regions in parkin knockout mice. Parkin directly interacts with and ubiquitinates p62 at the K13 to promote proteasomal degradation of p62 even in the absence of ATG5. Pathogenic mutations, knockdown of parkin or mutation of p62 at K13 prevented the degradation of p62. We further showed that parkin deficiency mice have pronounced loss of tyrosine hydroxylase positive neurons and have worse performance in motor test when treated with 6-hydroxydopamine hydrochloride in aged mice. These results suggest that, in addition to their critical role in regulating autophagy, p62 are subjected to parkin mediated proteasomal degradation and implicate that the dysregulation of parkin/p62 axis may involve in the selective vulnerability of neuronal cells during the onset of PD pathogenesis.  相似文献   

13.
目的:观察脑源性神经营养因子(BDNF)对大鼠后足切割疼痛的影响。方法:采用纵行切割大鼠后足作为疼痛模型,运用免疫组织化学与免疫荧光双标记方法,观察大鼠后足切割后不同时间点(1-72hr)BDNF在相应节段背根神经节与脊髓内表达的变化。腹腔或鞘内注射BDNF抗体中和内源性BDNF后,以Von Frey尼龙纤维刺激后足行机械痛敏评价。结果:大鼠后足切割后1-24hr内,BDNF在切割侧L42-L5脊髓后角表达明增加,BDNF主要位于后角神经元内与神经末梢,星形胶质细胞与小胶质细胞内未见明显表达;在L42-L5背根神经节,BNDF免疫阳性细胞百分比在切割后1-24hr内也明显增加,增加的主要为大直经神经元;鞘内给予BDNF抗体可明显增加大鼠后足切割后的缩足阈值,而腹腔给予BDNF抗体对大鼠的缩足阈值影响较小。结论:BDNF参与了大鼠后足切割后机械痛敏的过程。  相似文献   

14.
    
Improved control over spatiotemporal delivery of growth factors is needed to enhance tissue repair. Current methods are limited–requiring invasive procedures, poor tissue targeting, and/or limited control over dosage and duration. Incorporation into implantable biomaterials enables stabilized delivery and avoids burst release/fluctuating doses. Here, the physical forces of fibrils formed by self‐assembly of epitope‐containing peptides are exploited. This biomimetic hydrogel is loaded with neurotrophic factor BDNF via a shear‐induced gel–solution transition, unique to noncovalent hydrogels. This results in a biomaterial with three desirable features: a nanofibrillar scaffold, presentation of a laminin epitope, and slow release of BDNF. In a stroke‐injury model, synergistic actions of this trimodal strategy on the integration of transplanted human neural progenitor cells, and protection of peri‐infarct tissue are identified. These BDNF‐functionalized hydrogels promote the integration of transplanted human embryonic stem cell–derived neural progenitors–resulting in larger grafts with greater cortical differentiation, appropriate for neuronal replacement. Furthermore, BDNF promotes the infiltration of host endothelial cells into the graft to augment vascularization of the graft, and adjacent penumbra tissue. These findings demonstrate the benefits of multifaceted tissue‐specific hydrogels to provide biomimetics of the host tissue, while sustain protein delivery, to promote endogenous and graft‐derived tissue repair.  相似文献   

15.
    
Caspase activation and dependence on caspases has been observed in different paradigms of apoptotic cell death in vivo and in vitro. The present study examines the role of caspases in ionizing radiation‐induced apoptosis in the developing cerebellum of rats subjected to a single dose (2‐Gy γ rays) of whole‐body irradiation at postnatal day 3. Radiation‐induced apoptosis in the external granule cell layer, as defined by the presence of cells by extremely condensed, often fragmented nucleus, which were stained with the method of in situ end‐labeling of nuclear DNA fragmentation, first appeared at 3 h and peaked at 6 h following irradiation. Increased expression of the precursors of caspase 1 (ICE), 2 (Nedd2), 3 (CPP32), 6 (Mch2), and 8 (Mch5 and FLICE), and increased expression of active caspase 3, as revealed by immunohistochemistry, were observed in the external granule cell layer of the cerebellum. Radiation‐induced apoptosis was accompanied by an increase in the expression of the poly(ADP‐ribose) polymerase (PARP) fragment of about 89 kD, as revealed by Western blots of cerebellar homogenates. This was not associated with modifications of protein kinase Cδ and Lamin B. Concomitant injection in the culmen of the cerebellum in irradiated rats of high doses of Y‐VAD‐cmk, DEV‐fmk, or IETD‐fmk resulted in decreased expression of the PARP fragment in cerebellar homogenates. This was accompanied by a decrease in the expression of active caspase 3, as shown by immunohistochemistry. These observations suggest caspase activation following ionizing radiation. However, no differences in the number and morphological and biochemical characteristics of apoptotic cells, including strong nuclear and cytoplasmic c‐Jun/AP‐1 (N) expression, were observed between irradiated and both irradiated and caspase inhibitor–treated rats. Taken together, these observations suggest that the caspases examined are not essential for radiation‐induced apoptosis in the developing cerebellum. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 549–558, 1999  相似文献   

16.
Although all cells in the body require energy to survive and function properly, excessive calorie intake over long time periods can compromise cell function and promote disorders such as cardiovascular disease, type-2 diabetes and cancers. Accordingly, dietary restriction (DR; either caloric restriction or intermittent fasting, with maintained vitamin and mineral intake) can extend lifespan and can increase disease resistance. Recent studies have shown that DR can have profound effects on brain function and vulnerability to injury and disease. DR can protect neurons against degeneration in animal models of Alzheimer's, Parkinson's and Huntington's diseases and stroke. Moreover, DR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which may increase the ability of the brain to resist aging and restore function following injury. Interestingly, increasing the time interval between meals can have beneficial effects on the brain and overall health of mice that are independent of cumulative calorie intake. The beneficial effects of DR, particularly those of intermittent fasting, appear to be the result of a cellular stress response that stimulates the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors such as brain-derived neurotrophic factor (BDNF), protein chaperones such as heat-shock proteins, and mitochondrial uncoupling proteins. Some beneficial effects of DR can be achieved by administering hormones that suppress appetite (leptin and ciliary neurotrophic factor) or by supplementing the diet with 2-deoxy-d-glucose, which may act as a calorie restriction mimetic. The profound influences of the quantity and timing of food intake on neuronal function and vulnerability to disease have revealed novel molecular and cellular mechanisms whereby diet affects the nervous system, and are leading to novel preventative and therapeutic approaches for neurodegenerative disorders.  相似文献   

17.
    
Erythropoietin has been shown to promote tissue regeneration after ischaemic injury in various organs. Here, we investigated whether Erythropoietin could ameliorate ischaemic spinal cord injury in the mouse and sought an underlying mechanism. Spinal cord ischaemia was developed by cross-clamping the descending thoracic aorta for 7 or 9 min. in mice. Erythropoietin (5000 IU/kg) or saline was administrated 30 min. before aortic cross-clamping. Neurological function was assessed using the paralysis score for 7 days after the operation. Spinal cords were histologically evaluated 2 and 7 days after the operation. Immunohistochemistry was used to detect CD34(+) cells and the expression of brain-derived neurotrophic factor and vascular endothelial growth factor. Each mouse exhibited either mildly impaired function or complete paralysis at day 2. Erythropoietin-treated mice with complete paralysis demonstrated significant improvement of neurological function between day 2 and 7, compared to saline-treated mice with complete paralysis. Motor neurons in erythropoietin-treated mice were more preserved at day 7 than those in saline-treated mice with complete paralysis. CD34(+) cells in the lumbar spinal cord of erythropoietin-treated mice were more abundant at day 2 than those of saline-treated mice. Brain-derived neurotrophic factor and vascular endothelial growth factor were markedly expressed in lumbar spinal cords in erythropoietin-treated mice at day 7. Erythropoietin demonstrated neuroprotective effects in the ischaemic spinal cord, improving neurological function and attenuating motor neuron loss. These effects may have been mediated by recruited CD34(+) cells, and enhanced expression of brain-derived neurotrophic factor and vascular endothelial growth factor.  相似文献   

18.
19.
Protein kinase C-ζ interacting proteins (ZIP1-3) recruit the enzymatic activity of the atypical protein kinase C isoforms PKC-λ/ι or PKC-ζ to target proteins. In this study, we searched for binding partners of ZIP3 in the CNS and identified spartin, a multifunctional protein that is mutated in spastic paraplegia type 20. In transfected cells, spartin was present on the surface of lipid droplets (LD), whereas ZIP proteins appeared in intracellular speckles. In the presence of spartin, ZIP1 and ZIP3 were translocated to spartin-positive LD. This translocation was mediated by amino acids 196-393 of spartin that interacted with an N-terminal region of ZIP proteins. Furthermore, ZIP proteins interacted simultaneously with spartin and PKC-ζ, resulting in an enrichment of PKC-ζ on spartin/ZIP-labelled LD. Without spartin, neither ZIP proteins nor PKC-ζ were detected on LD. Interestingly, the presence of the spartin/ZIP/PKC-ζ complex increased LD size. This effect was most pronounced upon incorporation of the ZIP3 isoform into the trimer. Finally, we co-localized spartin, ZIP proteins and PKC-ζ in axon terminals of neurons in the mammalian retina. In summary, we describe spartin as new binding partner of the ZIP/PKC-ζ dimer that recruits PKC-ζ to LD and show that the expressed ZIP isoform regulates LD size.  相似文献   

20.
    
Brain‐derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurogenesis, and BDNF plasma and serum levels have been associated with depression, Alzheimer's disease, and other psychiatric and neurodegenerative disorders. In a relatively large community sample, drawn from the Baltimore Longitudinal Study of Aging (BLSA), we examine whether BDNF plasma concentration is associated with the Val66Met functional polymorphism of the BDNF gene (n = 335) and with depression‐related personality traits assessed with the NEO‐PI‐R (n = 391). Plasma concentration of BDNF was not associated with the Val66Met variant in either men or women. However, in men, but not in women, BDNF plasma level was associated with personality traits linked to depression. Contrary to the notion that low BDNF is associated with negative outcomes, we found lower plasma levels in men who score lower on depression and vulnerability to stress (two facets of Neuroticism) and higher on Conscientiousness and Extraversion. These findings challenge the prevailing hypothesis that lower peripheral levels of BDNF are a marker of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号