共查询到20条相似文献,搜索用时 0 毫秒
1.
The prevention of latanoprost on osteoclastgenesis in vitro and lipopolysaccharide‐induced murine calvaria osteolysis in vivo 下载免费PDF全文
Xing Xu Yufei Yan Zhuochao Liu Jin Qi Niandong Qian Hanbing Zhou Qi Zhou Tianqi Wang Ping Huang Lei Guo Min Jiang Lianfu Deng 《Journal of cellular biochemistry》2018,119(6):4680-4691
2.
3.
Lichun Guan Zhimei Che Xiangdong Meng Yong Yu Minghui Li Ziqin Yu Hui Shi Dicheng Yang Min Yu 《Journal of cellular and molecular medicine》2019,23(11):7830-7843
Mitochondrial dynamic disorder is involved in myocardial ischemia/reperfusion (I/R) injury. To explore the effect of mitochondrial calcium uniporter (MCU) on mitochondrial dynamic imbalance under I/R and its related signal pathways, a mouse myocardial I/R model and hypoxia/reoxygenation model of mouse cardiomyocytes were established. The expression of MCU during I/R increased and related to myocardial injury, enhancement of mitochondrial fission, inhibition of mitochondrial fusion and mitophagy. Suppressing MCU functions by Ru360 during I/R could reduce myocardial infarction area and cardiomyocyte apoptosis, alleviate mitochondrial fission and restore mitochondrial fusion and mitophagy. However, spermine administration, which could enhance MCU function, deteriorated the above‐mentioned myocardial cell injury and mitochondrial dynamic imbalanced. In addition, up‐regulation of MCU promoted the expression and activation of calpain‐1/2 and down‐regulated the expression of Optic atrophy type 1 (OPA1). Meantime, in transgenic mice (overexpression calpastatin, the endogenous inhibitor of calpain) I/R model and OPA1 knock‐down cultured cell. In I/R models of transgenic mice over‐expressing calpastatin, which is the endogenous inhibitor of calpain, and in H/R models with siOPA1 transfection, inhibition of calpains could enhance mitochondrial fusion and mitophagy, and inhibit excessive mitochondrion fission and apoptosis through OPA1. Therefore, we conclude that during I/R, MCU up‐regulation induces calpain activation, which down‐regulates OPA1, consequently leading to mitochondrial dynamic imbalance. 相似文献
4.
W S Choi E H Lee C W Chung Y K Jung B K Jin S U Kim T H Oh T C Saido Y J Oh 《Journal of neurochemistry》2001,77(6):1531-1541
Two cysteine protease families, caspase and calpain, are known to participate in cell death. We investigated whether a stress-specific protease activation pathway exists, and to what extent Bcl-2 plays a role in preventing drug-induced protease activity and cell death in a dopaminergic neuronal cell line, MN9D. Staurosporine (STS) induced caspase-dependent apoptosis while a dopaminergic neurotoxin, MPP(+) largely induced caspase-independent necrotic cell death as determined by morphological and biochemical criteria including cytochrome c release and fluorogenic caspase cleavage assay. At the late stage of both STS- and MPP(+)-induced cell death, Bax was cleaved into an 18-kDa fragment. This 18-kDa fragment appeared only in the mitochondria-enriched heavy membrane fraction of STS-treated cells, whereas it was detected exclusively in the cytosolic fraction of MPP(+)-treated cells. This proteolytic cleavage of Bax appeared to be mediated by calpain as determined by incubation with [(35)S]methionine-labelled Bax. Thus, cotreatment of cells with calpain inhibitor blocked both MPP(+)- and STS-induced Bax cleavage. Intriguingly, overexpression of baculovirus-derived inhibiting protein of caspase, p35 or cotreatment of cells with caspase inhibitor blocked STS- but not MPP(+)-induced Bax cleavage. This appears to indicate that calpain activation may be either dependent or independent of caspase activation within the same cells. However, cotreatment with calpain inhibitor rescued cells from MPP(+)-induced but not from STS-induced neuronal cell death. In these paradigms of dopaminergic cell death, overexpression of Bcl-2 prevented both STS- and MPP(+)-induced cell death and its associated cleavage of Bax. Thus, our results suggest that Bcl-2 may play a protective role by primarily blocking drug-induced caspase or calpain activity in dopaminergic neuronal cells. 相似文献
5.
A novel anti‐cancer agent,FPDHP, induces anoikis in various human cancer cells through activation of calpain,and downregulation of anoikis‐related molecules 下载免费PDF全文
Seon Goo Kim Ji Hea Yooun Dong Eun Kim Eung‐Seok Lee Taeg Kyu Kwon Shin Kim Jong Wook Park 《Journal of cellular biochemistry》2018,119(7):5620-5631
6.
The calpains play an important role in cell death and cell signalling. Caspases catalyse wholesale destruction of cellular proteins which is a major cause of cellular death. The current study looks at the function of μ‐calpain and caspase 9, using RNAi (RNA interference)‐mediated silencing, and to observe the mRNA expression level of caspase genes during satellite cell growth. The satellite cells were treated with siRNA (small interfering RNA) of μ‐calpain and caspase 9 separately. There was reduction of 16 and 24% in CAPN1 (calpain1)‐siRNA2 and CAPN1‐siRNA3 transfected cells respectively, whereas it was 60 and 56% in CAPN1‐siRNA1 and CAPN1‐siRNA4 transfected cells respectively. CAPN1‐siRNA4 and CAPN1‐siRNA1 treated cells showed more reduction in caspase 3 and 7 gene expression. CARD9 (caspase recruitment domain 9)‐siRNA1 and CARD9‐siRNA2‐treated cells showed reduction of 40 and 49% respectively. CARD9‐siRNA1 and CARD9‐siRNA2 showed an increase in caspase 3 gene expression, whereas CARD9‐siRNA2 showed reduction in caspase 7 gene expression. These results suggest a strong cross‐talk between μ‐calpain and the caspase enzyme systems. Suppression of target genes, such as μ‐calpain and caspase 9, might have genuine potential in the treatment of skeletal muscle atrophy. 相似文献
7.
Giuseppina Samengo Anna Avik Brian Fedor Daniel Whittaker Kyu H. Myung Michelle Wehling‐Henricks James G. Tidball 《Aging cell》2012,11(6):1036-1045
Sarcopenia, the age‐related loss of muscle mass, is a highly‐debilitating consequence of aging. In this investigation, we show sarcopenia is greatly reduced by muscle‐specific overexpression of calpastatin, the endogenous inhibitor of calcium‐dependent proteases (calpains). Further, we show that calpain cleavage of specific structural and regulatory proteins in myofibrils is prevented by covalent modification of calpain by nitric oxide (NO) through S‐nitrosylation. We find that calpain in adult, non‐sarcopenic muscles is S‐nitrosylated but that aging leads to loss of S‐nitrosylation, suggesting that reduced S‐nitrosylation during aging leads to increased calpain‐mediated proteolysis of myofibrils. Further, our data show that muscle aging is accompanied by loss of neuronal nitric oxide synthase (nNOS), the primary source of muscle NO, and that expression of a muscle‐specific nNOS transgene restores calpain S‐nitrosylation in aging muscle and prevents sarcopenia. Together, the findings show that in vivo reduction of calpain S‐nitrosylation in muscle may be an important component of sarcopenia, indicating that modulation of NO can provide a therapeutic strategy to slow muscle loss during old age. 相似文献
8.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase‐activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N‐terminus, generating a potent proapoptotic 18‐kDa fragment (Bax/p18). Both the calpain‐mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane‐enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase‐3, cleavage of poly(ADP‐ribose) polymerase, and fragmentation of DNA. Unlike the full‐length Bax, Bax/p18 did not interact with the antiapoptotic Bcl‐2 protein in the mitochondrial fraction of drug‐treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and caspase‐3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase‐3‐mediated apoptosis that was not blocked by overexpression of Bcl‐2 protein. Therefore, Bax/p18 has a cytochrome c–releasing activity that promotes cell death independent of Bcl‐2. Finally, Bcl‐2 overexpression inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution. J. Cell. Biochem. 80:53–72, 2000. © 2000 Wiley‐Liss, Inc. 相似文献
9.
10.
Early CALP2 expression and microglial activation are potential inducers of spinal IL‐6 up‐regulation and bilateral pain following motor nerve injury 下载免费PDF全文
Shao‐Xia Chen Shao‐Kun Wang Pei‐Wen Yao Guang‐Jie Liao Xiao‐Dong Na Yong‐Yong Li Wei‐an Zeng Xian‐Guo Liu Ying Zang 《Journal of neurochemistry》2018,145(2):154-169
11.
Alejandra Romero lvaro San Hiplito‐Luengo Laura A. Villalobos Susana Vallejo Ins Valencia Patrycja Michalska Natalia Pajuelo‐Lozano Isabel Snchez‐Prez Rafael Len Jos Luis Bartha María Jesús Sanz Jorge D. Erusalimsky Carlos F. Snchez‐Ferrer Tania Romacho Concepcin Peir 《Aging cell》2019,18(3)
Endothelial cell senescence is a hallmark of vascular aging that predisposes to vascular disease. We aimed to explore the capacity of the renin–angiotensin system (RAS) heptapeptide angiotensin (Ang)‐(1‐7) to counteract human endothelial cell senescence and to identify intracellular pathways mediating its potential protective action. In human umbilical vein endothelial cell (HUVEC) cultures, Ang II promoted cell senescence, as revealed by the enhancement in senescence‐associated galactosidase (SA‐β‐gal+) positive staining, total and telomeric DNA damage, adhesion molecule expression, and human mononuclear adhesion to HUVEC monolayers. By activating the G protein‐coupled receptor Mas, Ang‐(1‐7) inhibited the pro‐senescence action of Ang II, but also of a non‐RAS stressor such as the cytokine IL‐1β. Moreover, Ang‐(1‐7) enhanced endothelial klotho levels, while klotho silencing resulted in the loss of the anti‐senescence action of the heptapeptide. Indeed, both Ang‐(1‐7) and recombinant klotho activated the cytoprotective Nrf2/heme oxygenase‐1 (HO‐1) pathway. The HO‐1 inhibitor tin protoporphyrin IX prevented the anti‐senescence action evoked by Ang‐(1‐7) or recombinant klotho. Overall, the present study identifies Ang‐(1‐7) as an anti‐senescence peptide displaying its protective action beyond the RAS by consecutively activating klotho and Nrf2/HO‐1. Ang‐(1‐7) mimetic drugs may thus prove useful to prevent endothelial cell senescence and its related vascular complications. 相似文献
12.
13.
14.
15.
Zhe Liu Jian Liu Xichen Dong Xin Hu Yuliang Jiang Lina Li Tan Du Lei Yang Tao Wen Guangyu An Guosheng Feng 《Journal of cellular and molecular medicine》2019,23(3):2083-2092
Tn antigen is a truncated O‐glycan, frequently detected in colorectal cancer (CRC), but its precise role in CRC metastasis is not well addressed. Here we investigated the effects of Core 1 β3Gal‐T specific molecular chaperone (Cosmc) deletion‐mediated Tn antigen exposure on CRC metastasis and its underlying mechanism. We first used CRISPR/Cas9 technology to knockout Cosmc, which is required for normal O‐glycosylation, and thereby obtained Tn‐positive CRC cells. We then investigated the biological consequences of Tn antigen expression in CRC. The results showed that Tn‐positive cells exhibited an enhanced metastatic capability both in vitro and in vivo. A further analysis indicated that Tn antigen expression induced typical activation of epithelial‐mesenchymal transition (EMT). Mechanistically, we found that H‐Ras, which is known to drive EMT, was markedly up‐regulated in Tn‐positive cells, whereas knockdown of H‐Ras suppressed Tn antigen induced activation of EMT. Furthermore, we confirmed that LS174T cells (Tn‐positive) transfected with wild‐type Cosmc, thus expressing no Tn antigen, had down‐regulation of H‐Ras expression and subsequent inhibition of EMT process. In addition, analysis of 438 samples in TCGA cohort demonstrated that Cosmc expression was reversely correlated with H‐Ras, underscoring the significance of Tn antigen‐H‐Ras signalling in CRC patients. These data demonstrated that Cosmc deletion‐mediated Tn antigen exposure promotes CRC metastasis, which is possibly mediated by H‐Ras‐induced EMT activation. 相似文献
16.
Acute ethanol exposure‐induced autophagy‐mediated cardiac injury via activation of the ROS‐JNK‐Bcl‐2 pathway 下载免费PDF全文
Zhongxin Zhu Yewei Huang Lingchun Lv Youli Tao Minglong Shao Congcong Zhao Mei Xue Jia Sun Chao Niu Yang Wang Sunam Kim Weitao Cong Wei Mao Litai Jin 《Journal of cellular physiology》2018,233(2):924-935
17.
Amit Singh Anjali Verma Michelle A. Sallin Florian Lang Ranjan Sen Jyoti Misra Sen 《Aging cell》2019,18(3)
In mutant mice, reduced levels of Klotho promoted high levels of active vitamin D in the serum. Genetic or dietary manipulations that diminished active vitamin D alleviated aging‐related phenotypes caused by Klotho down‐regulation. The hypomorphic Klotho [kl/kl] allele that decreases Klotho expression in C3H, BALB/c, 129, and C57BL/6 genetic backgrounds substantially increases 1,25(OH)2D3 levels in the sera of susceptible C3H, BALB/c, and 129, but not C57BL/6 mice. This may be attributed to increased basal expression of Cyp24a1 in C57BL/6 mice, which promotes inactivation of 1,25(OH)2D3. Decreased expression of Cyp24a1 in susceptible strains was associated with genetic alterations in noncoding regions of Cyp24a1 gene, which were strongly reminiscent of super‐enhancers that regulate gene expression. These observations suggest that higher basal expression of an enzyme required for catabolizing vitamin D renders B6‐kl/kl mice less susceptible to changes in Klotho expression, providing a plausible explanation for the lack of aging phenotypes on C57BL/6 strain. 相似文献
18.
19.
Ye Feng Yiyuan Xia Guang Yu Xiji Shu Haoliang Ge Kuan Zeng Jianzhi Wang Xiaochuan Wang 《Journal of neurochemistry》2013,126(2):234-242
Glycogen synthase kinase‐3 beta (GSK‐3β) dysfunction may play an essential role in the pathogenesis of psychiatric, metabolic, neurodegenerative diseases, in which oxidative stress exists concurrently. Some studies have shown that GSK‐3β activity is up‐regulated under oxidative stress. This study evaluated how oxidative stress regulates GSK‐3β activity in human embryonic kidney 293 (HEK293)/Tau cells treated with hydrogen peroxide (H2O2). Here, we show that H2O2 induced an obvious increase of GSK‐3β activity. Surprisingly, H2O2 dramatically increased phosphorylation of GSK‐3β at Ser9, an inactive form of GSK‐3β,while there were no changes of phosphorylation of GSK‐3β at Tyr216. Moreover, H2O2 led to a transient [Ca2+]i elevation, and simultaneously increased the truncation of GSK‐3β into two fragments of 40 kDa and 30 kDa, whereas inhibition of calpain decreased the truncation and recovered the activity of GSK‐3β. Furthermore, tau was hyperphosphorylated at Ser396, Ser404, and Thr231, three most common GSK‐3β targeted sites after 100 μM H2O2 administration in HEK293/Tau cells, whereas inhibition of calpain blocked the tau phosphorylation. In addition, we found that there were no obvious changes of Cyclin‐dependent kinase 5 (CDK5) expression (responsible for tau phosphorylation) and of p35 cleavage, the regulatory subunit of CDK5 in H2O2‐treated HEK293/Tau cells. In conclusion, Ca2+‐dependent calpain activation leads to GSK‐3β truncation, which counteracts the inhibitory effect of Ser9 phosphorylation, up‐regulates GSK‐3β activity, and phosphorylates tau in H2O2‐treated HEK293/Tau cells. 相似文献