首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Novobiocin and nalidixic acid, inhibitors of the bacterial enzyme DNA gyrase, inhibit DNA, RNA and protein synthesis in several human and rodent cell lines. The sensitivity of DNA synthesis (both replicative and repair) to inhibition by novobiocin and nalidixic acid is greater than that of protein synthesis. Novobiocin inhibits RNA synthesis about half as effectively as it does DNA synthesis, whereas nalidixic acid inhibits both equally well. Replicative DNA synthesis, as measured by incorporation of [3H]thymidine, is blocked by novobiocin in a number of cell strains; the inhibition is reversible with respect to both DNA synthesis and cell killing, and continues for as long as 20--30 h if the cells are kept in novobiocin-containing growth medium. Both novobiocin and nalidixic acid inhibit repair DNA synthesis (measured by BND-cellulose chromatography) induced by ultraviolet light or N-methyl-N'-nitro-N-nitrosoguanidine (but not that induced by methyl methanesulfonate) at lower concentration (as low as 5 micrograms/ml) than those required to inhibit replicative DNA synthesis (50 micrograms/ml or greater). Neither novobiocin nor nalidixic acid alone induces DNA repair synthesis. Incubation of ultraviolet-irradiated cells with 10--100 micrograms/ml novobiocin results in little, if any, further reduction of colony-forming ability (beyond that caused by the ultraviolet irradiation). Novobiocin at sufficiently low concentrations (200 micrograms/ml) apparently generates a quiescent state (in terms of cellular DNA metabolism) from which recovery is possible. Under more drastic conditions of time in contact with cells and concentration, however, novobiocin itself induces mammalian cell killing.  相似文献   

6.
7.
8.
Novobiocin inhibits passive chromatin assembly in vitro.   总被引:7,自引:2,他引:5       下载免费PDF全文
L Sealy  M Cotten    R Chalkley 《The EMBO journal》1986,5(12):3305-3311
Novobiocin, an inhibitor of prokaryotic DNA gyrase and eukaryotic type II topoisomerase enzymes, interferes with in vitro chromatin assembly using purified histones, DNA and nucleoplasmin. The target of inhibition is not topoisomerase II; this energy-independent assembly system lacks any ATP and Mg2+-dependent type II topoisomerase or gyrase activities. Rather, novobiocin interacts with histones, disrupting histone-histone associations required for octamer formation, and causing histones to precipitate from both nucleoplasmin-histone and histone-DNA complexes. Thus, novobiocin is able to generate 'dynamic' chromatin in vitro in the absence of ATP and Mg2+ by removing histones from previously assembled static chromatin, so that the DNA supercoils, previously constrained by conventional nucleosomes, become susceptible to removal by topoisomerase I.  相似文献   

9.
10.
11.
Involvement of DNA gyrase in the transcription of ribosomal RNA   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

12.
Formation of a rate-limiting intermediate in 5S RNA gene transcription   总被引:50,自引:0,他引:50  
J J Bieker  P L Martin  R G Roeder 《Cell》1985,40(1):119-127
  相似文献   

13.
14.
The action of novobiocin and coumermycin (two coumarins which interact with the gyrB subunit of eubacterial DNA gyrase) and ciprofloxacin (a fluoroquinolone which interacts with the gyrA subunit of DNA gyrase) was tested on several archaebacteria, including five methanogens, two halobacteria, and a thermoacidophile. Most strains were sensitive to doses of coumarins (0.02 to 10 micrograms/ml) which specifically inhibit DNA gyrase in eubacteria. Ciprofloxacin inhibited growth of the haloalkaliphilic strain Natronobacterium gregoryi and of the methanogen Methanosarcina barkeri. In addition, ciprofloxacin partly relieved the sensitivity to coumarins (and vice versa). Novobiocin inhibited DNA replication in Halobacterium halobium rapidly and specifically. Topological analysis has shown that the 1.7-kilobase plasmid from Halobacterium sp. strain GRB is negatively supercoiled; this plasmid was relaxed after novobiocin treatment. These results support the existence in archaebacteria of a coumarin and quinolone target related to eubacterial DNA gyrase.  相似文献   

15.
16.
17.
R J Thompson  G Mosig 《Cell》1987,48(2):281-287
We have characterized regulation of a complex Chlamydomonas reinhardtii chloroplast (PA) whose activity is stimulated by the DNA gyrase inhibitor novobiocin, both in the alga itself and in a heterologous Escherichia coli plasmid system. Since novobiocin is known to reduce torsional stress in E. coli DNA, we interpret our results to mean that PA is regulated by torsional stress in the chloroplast DNA. In E. coli, where we could readily manipulate PA, we found that this regulation depends on sequences upstream of PA. These sequences contain at least two different kinds of silencing elements that inhibit PA in the absence of novobiocin. Novobiocin stimulates PA only when the promoter-distal silencing element is present.  相似文献   

18.
19.
The halophilic archaebacterium Halobacterium strain GRB harbours a multicopy plasmid of 1.7 kb which is negatively supercoiled. After addition of novobiocin to culture medium all 1.7 kb plasmid molecules become positively supercoiled. Positive supercoiling occurs at the same dose of novobiocin inhibiting the eubacterial DNA gyrase in vitro. Novobiocin also induces positive supercoiling of pHV2, a 6.3 kb plasmid from Halobacterium volcanii. These results indicate the existence of a mechanism producing positive superturns in halobacteria. The 1.7 kb plasmid from Halobacterium GRB could be used to produce high amounts of pure positively supercoiled DNA for biophysical and biochemical studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号