共查询到20条相似文献,搜索用时 8 毫秒
1.
Effect of benzoic acid on glycolytic metabolite levels and intracellular pH in Saccharomyces cerevisiae. 总被引:1,自引:0,他引:1
A D Warth 《Applied and environmental microbiology》1991,57(12):3415-3417
Low concentrations of benzoic acid stimulated fermentation rates in Saccharomyces cerevisiae. At concentrations near the maximum permitting growth, there was inhibition of fermentation, lowered ATP and intracellular pH, and relatively greater accumulation of benzoate. Changes in the levels of glycolytic intermediates suggested that fermentation was inhibited as a result of high ATP usage rather than of lowered intracellular pH. Specific inhibition of phosphofructokinase or of several other glycolytic enzymes was not observed. 相似文献
2.
Kresnowati MT Suarez-Mendez C Groothuizen MK van Winden WA Heijnen JJ 《Biotechnology and bioengineering》2007,97(1):86-98
pH affects many processes on cell metabolism, such as enzyme kinetics. To enhance the understanding of the living cells, it is therefore indispensable to have a method to monitor the pH in living cells. To accomplish this, a dynamic intracellular pH measurement method applying low concentration benzoic acid pulse was developed. The method was thoroughly validated and successfully implemented for measuring fast dynamic intracellular pH of Saccharomyces cerevisiae in response to a glucose pulse perturbation performed in the BioSCOPE set-up. Fast drop in intracellular pH followed by partial alkalinization was observed following the pulse. The low concentration benzoic acid pulse which was implemented in the method avoids the undesirable effects that may be introduced by benzoic acid to cell metabolism. 相似文献
3.
A D Warth 《Applied and environmental microbiology》1991,57(12):3410-3414
The effects of benzoic acid in the preservative-resistant yeast Zygosaccharomyces bailii were studied. At concentrations of benzoic acid up to 4 mM, fermentation was stimulated and only low levels of benzoate were accumulated. Near the MIC (10 mM), fermentation was inhibited, ATP levels declined, and benzoate was accumulated to relatively higher levels. Intracellular pH was reduced but not greatly. Changes in the levels of metabolites at different external benzoic acid levels showed that glycolysis was limited at pyruvate kinase and glyceraldehyde dehydrogenase-phosphoglycerate kinase steps. Inhibition of phosphofructokinase and several other glycolytic enzymes was not responsible for the inhibition of fermentation. Instead, the results suggest that the primary action of benzoic acid in Z. bailii is to cause a general energy loss, i.e., ATP depletion. 相似文献
4.
Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH. 总被引:2,自引:1,他引:2 下载免费PDF全文
A D Warth 《Applied microbiology》1991,57(12):3410-3414
The effects of benzoic acid in the preservative-resistant yeast Zygosaccharomyces bailii were studied. At concentrations of benzoic acid up to 4 mM, fermentation was stimulated and only low levels of benzoate were accumulated. Near the MIC (10 mM), fermentation was inhibited, ATP levels declined, and benzoate was accumulated to relatively higher levels. Intracellular pH was reduced but not greatly. Changes in the levels of metabolites at different external benzoic acid levels showed that glycolysis was limited at pyruvate kinase and glyceraldehyde dehydrogenase-phosphoglycerate kinase steps. Inhibition of phosphofructokinase and several other glycolytic enzymes was not responsible for the inhibition of fermentation. Instead, the results suggest that the primary action of benzoic acid in Z. bailii is to cause a general energy loss, i.e., ATP depletion. 相似文献
5.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA
m-Chloro-peroxy benzoic acid
- G-6-P
glucose-6-phosphate
- F-6-P
fructose-6-phosphate
- F-1,6-P2
frnctose-1,6-bisphosphate
- DAP
dihydroxyacetone phosphate
- GAP
glyceraldehyde-3-phosphate
- 2PGA
2-phosphoglycerate
- PEP
phosphoenol pyruvate
- Pyr
pyruvate
- EtOH
ethanol
- PFK
phosphofructokinase
- GAPDH
glyceraldehyde-3-phosphate dehydrogenase
- ADH
alcohol dehydrogenase
Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday 相似文献
6.
The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. 总被引:2,自引:0,他引:2 下载免费PDF全文
The relationship between viability (cell proliferation activity) and intracellular pH in the yeast Saccharomyces cerevisiae was investigated by using cells that had been deactivated by low-temperature storage, ethanol treatment, or heat treatment. The intracellular pH was measured with a microscopic image processor or a spectrofluorophotometer. At first, the intracellular pH measurements of individual cells were compared with slide culture results by microscopic image processing. A clear correlation existed between the proliferation activity and intracellular pH. Moreover, by spectrofluorophotometry analysis, it was found that there was a relationship between the viability and intracellular pH of brewing yeast under conditions of low external pH (n = 15, r = 0.960, P = 0.001). This relationship was also observed in baker's yeast (n = 13, r = 0.950, P = 0.001). On the other hand, when the fluorescein staining method was used in these experiments, the relationship between viability and staining percentage was not observed. From these results, intracellular pH was found to be a sensitive factor for estimating yeast physiology. The possible role of cell deterioration is also discussed. 相似文献
7.
Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 mM. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae. Using this experimental set-up, we found significant fast-transient (< 3000 s) increases in O(2) consumption and CO(2) production rates, of approximately 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to approximately 80% of the initial value. The intracellular metabolite profile in the new steady-state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O(2) uptake rates. 相似文献
8.
Valli M Sauer M Branduardi P Borth N Porro D Mattanovich D 《Applied and environmental microbiology》2006,72(8):5492-5499
Yeast strains expressing heterologous L-lactate dehydrogenases can produce lactic acid. Although these microorganisms are tolerant of acidic environments, it is known that at low pH, lactic acid exerts a high level of stress on the cells. In the present study we analyzed intracellular pH (pHi) and viability by staining with cSNARF-4F and ethidium bromide, respectively, of two lactic-acid-producing strains of Saccharomyces cerevisiae, CEN.PK m850 and CEN.PK RWB876. The results showed that the strain producing more lactic acid, CEN.PK m850, has a higher pHi. During batch culture, we observed in both strains a reduction of the mean pHi and the appearance of a subpopulation of cells with low pHi. Simultaneous analysis of pHi and viability proved that the cells with low pHi were dead. Based on the observation that the better lactic-acid-producing strain had a higher pHi and that the cells with low pHi were dead, we hypothesized that we might find better lactic acid producers by screening for cells within the highest pHi range. The screening was performed on UV-mutagenized populations through three consecutive rounds of cell sorting in which only the viable cells within the highest pHi range were selected. The results showed that lactic acid production was significantly improved in the majority of the mutants obtained compared to the parental strains. The best lactic-acid-producing strain was identified within the screening of CEN.PK m850 mutants. 相似文献
9.
Zaldivar J Borges A Johansson B Smits HP Villas-Bôas SG Nielsen J Olsson L 《Applied microbiology and biotechnology》2002,59(4-5):436-442
Heterologous genes for xylose utilization were introduced into an industrial Saccharomyces cerevisiae, strain A, with the aim of producing fuel ethanol from lignocellulosic feedstocks. Two transformants, A4 and A6, were evaluated
by comparing the performance in 4-l anaerobic batch cultivations to both the parent strain and a laboratory xylose-utilizing
strain: S. cerevisiae TMB 3001. During growth in a minimal medium containing a mixture of glucose and xylose (50 g/l each), glucose was preferentially
consumed. During the first growth phase on glucose, the specific growth rates were 0.26, 0.32, 0.27 and 0.30 h–1 for strains TMB 3001, A (parental strain), A4, and A6, respectively. The specific ethanol productivities were 0.04, 0.13,
0.04 and 0.03 g/g.per hour, for TMB 3001, A, A4 and A6, respectively. The specific xylose consumption rates were 0.06, 0.21 and 0.14 g/g.per hour, respectively for strains TMB 3001, A4 and A6. Xylose consumption resulted mainly in the formation of xylitol, with
biomass and ethanol being minor products. The metabolite profile of intermediates in the pentose phosphate pathway and key
glycolytic intermediates were determined during growth on glucose and xylose, respectively. The metabolite pattern differed
depending on whether glucose or xylose was utilized. The levels of intracellular metabolites were higher in the industrial
strains than in the laboratory strain during growth on xylose.
Electronic Publication 相似文献
10.
Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. 总被引:4,自引:3,他引:1 下载免费PDF全文
During batch fermentation, the rate of ethanol production per milligram of cell protein is maximal for a brief period early in this process and declines progressively as ethanol accumulates in the surrounding broth. Our studies demonstrate that the removal of this accumulated ethanol does not immediately restore fermentative activity, and they provide evidence that the decline in metabolic rate is due to physiological changes (including possible ethanol damage) rather than to the presence of ethanol. Several potential causes for the decline in fermentative activity have been investigated. Viability remained at or above 90%, internal pH remained near neutrality, and the specific activities of the glycolytic and alcohologenic enzymes (measured in vitro) remained high throughout batch fermentation. None of these factors appears to be causally related to the fall in fermentative activity during batch fermentation. 相似文献
11.
Yeast strains carrying recessive mutations representing four different loci that cause defects in pyruvate kinase, pyruvate decarboxylase, 3-phosphoglycerate kinase, and 3-phosphoglycerate mutase were isolated and partially characterized. Cells carrying these mutations were unable to use glucose as a carbon source as measured in turbidimetric growth experiments. Tetrad analysis indicated that these mutations were not linked to each other; one of the mutations, that affecting phosphoglycerate kinase, was located on chromosome III. 相似文献
12.
Bosch D Johansson M Ferndahl C Franzén CJ Larsson C Gustafsson L 《FEMS yeast research》2008,8(1):10-25
Saccharomyces cerevisiae shows a marked preference for glucose and fructose, revealed by the repression of genes whose products are involved in processing other carbon sources. This response seems to be driven by sugar phosphorylation in the first steps of glycolysis rather than by the external sugar concentration. To gain a further insight into the role of the internal sugar signalling mechanisms, were measured the levels of upper intracellular glycolytic metabolites and adenine nucleotides in three mutant strains, HXT1, HXT7 and TM6*, with progressively reduced uptake capacities in comparison with the wild type. Reducing the rate of sugar consumption caused an accumulation of hexose phosphates upstream of the phosphofructokinase (PFK) and a reduction of fructose-1,6-bisphosphate levels. Mathematical modelling showed that these effects may be explained by changes in the kinetics of PFK and phosphoglucose isomerase. Moreover, the model indicated a modified sensitivity of the pyruvate dehydrogenase and the trichloroacetic acid cycle enzymes towards the NAD/NADH in the TM6* strain. The activation of the SNF1 sugar signalling pathway, previously observed in the TM6* strain, does not correlate with a reduction of the ATP : AMP ratio as reported in mammals. The mechanisms that may control the glycolytic rate at reduced sugar transport rates are discussed. 相似文献
13.
This work reports the intracellular pH (pHi) dynamics of Saccharomyces cerevisiae cells in sporulation medium. Cells loaded with the pH-sensitive dye carboxy-seminaphthorhodafluor-1 (C.SNARF-1) exhibited an alkalization of the pHi following the extracellular pH during sporulation in the absence of buffer and almost no change in pHi or ΔpH when sporulation was carried out in buffered medium. The results indicate that the pH gradient does not appear to be directly involved in the regulation of acetate uptake during sporulation. However, the alkalization of pHi by eliciting a decrease in metabolic fluxes could account for a lower demand for acetate. 相似文献
14.
Rise in intracellular pH is concurrent with 'start' progression of Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Intracellular pH (pHi) was determined during arrest and recovery of temperature sensitive-cell division cycle mutants of Saccharomyces cerevisiae. In all mutants, pHi decreased during arrest; but when the mutants were released from arrest a rapid increase in pHi ensued in only cdc28- and cdc37-arrested cells. Both of these mutations cause arrest at 'start', the sole regulatory point in the S. cerevisiae cell cycle. In cells with cdc4 or cdc7 mutations, which arrest past start, pHi remained constant and exhibited a decrease, respectively, upon recovery of growth. The activity of plasma membrane ATPase decreased during the first 30 min of recovery of cdc28-arrested cells, concomitant with the rise in pHi. During the same period, there was no significant change in activity in cdc4-bearing cells, whereas an increase was observed for cdc7-bearing cells. Increase in pHi may be used as a specific signal by S. cerevisiae for start traversal and commitment to a new cycle. 相似文献
15.
Summary The effect of acetic acid on transport of glucose and on the activity of glycolytic enzymes of Saccharomyces cerevisiae was investigated. Acetic acid did not affect glucose transport. The inhibitory effect of the acid on the enzymes was considered from the point of view of acidification of the cytoplasm (pH dependence of the activity) and of the direct effect of the presence of acetic acid. Enolase was the enzyme most severely affected according to these two criteria. Fermentation was monitored in vivo by 31P-NMR. When ATP was available, a rise in cytoplasmic pH was observed and fermentation proceeded with a lower level of sugar phosphate. This may indicate that control was exerted at one of the early phosphorylation steps.
Offprint requests to: M. C. Loureiro-Dias 相似文献
16.
The effects of perfusion with 2.7 and 26 mM undissociated acetic acid in the absence or presence of glucose on short-term intracellular pH (pH(i)) changes in individual Saccharormyces cerevisiae and Zygosaccharomyces bailii cells were studied using fluorescence-ratio-imaging microscopy and a perfusion system. In the S. cerevisiae cells, perfusion with acetic acid induced strong short-term pH(i) responses, which were dependent on the undissociated acetic acid concentration and the presence of glucose in the perfusion solutions. In the Z. bailii cells, perfusion with acetic acid induced only very weak short-term pH(i) responses, which were neither dependent on the undissociated acetic acid concentration nor on the presence of glucose in the perfusion solutions. These results clearly show that Z. bailii is more resistant than S. cerevisiae to short-term pH(i) changes caused by acetic acid. 相似文献
17.
Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Regulation of fermentative capacity was studied in chemostat cultures of two Saccharomyces cerevisiae strains: the laboratory strain CEN.PK113-7D and the industrial bakers’ yeast strain DS28911. The two strains were cultivated at a fixed dilution rate of 0.10 h−1 under various nutrient limitation regimes: aerobic and anaerobic glucose limitation, aerobic and anaerobic nitrogen limitation on glucose, and aerobic ethanol limitation. Also the effect of specific growth rate on fermentative capacity was compared in glucose-limited, aerobic cultures grown at dilution rates between 0.05 h−1 and 0.40 h−1. Biomass yields and metabolite formation patterns were identical for the two strains under all cultivation conditions tested. However, the way in which environmental conditions affected fermentative capacity (assayed off-line as ethanol production rate under anaerobic conditions) differed for the two strains. A different regulation of fermentative capacity in the two strains was also evident from the levels of the glycolytic enzymes, as determined by in vitro enzyme assays. With the exception of phosphofructokinase and pyruvate decarboxylase in the industrial strain, no clear-cut correlation between the activities of glycolytic enzymes and the fermentative capacity was found. These results emphasise the need for controlled cultivation conditions in studies on metabolic regulation in S. cerevisiae and demonstrate that conclusions from physiological studies cannot necessarily be extrapolated from one S. cerevisiae strain to the other. 相似文献
18.
Yeast mutants blocked at different steps of the glycolytic pathways have been used to study the inactivation of several gluconeogenic enzymes upon addition of sugars. While phosphorylation of the sugars appears a requisite for the inactivation of fructose 1,6-bisphosphatase and phosphoenol-pyruvate carboxykinase, malate dehydrogenase is inactivated by fructose in mutants lacking hexokinase. The normal inactivation elicited by glucose in a mutant lacking phosphofructokinase indicates that the process does not require metabolism of the sugar beyond hexose monophosphates. A possible role for ATP in the inactivation process is suggested. 相似文献
19.
The possible mechanism of synchronization of NADH oscillations in yeasts were studied. It was shown that the synchronization time depends on cell concentration in suspension. Synchronization of oscillations after acetaldehyde addition was found in Saccharomyces carlsbergensis whereas in S. cerevisiae oscillations were synchronized after adding potassium cyanide. It is possible, that synchronization of oscillations in S. cerevisiae requires low concentration of acetaldehyde and the high acetaldehyde concentration synchronizes oscillations in S. carlsbergensis. In addition, a possible mechanism of synchronization by acetaldehyde in proposed. 相似文献
20.
The Nha1 antiporter is involved in regulation of intracellular pH in Saccharomyces cerevisiae. We report that deletion of the NHA1 gene resulted in an increase of cytoplasmic pH in cells suspended in water or acidic buffers. Addition of KCl or NaCl to exponentially growing cells lowered the internal pH but the difference between cells with or without NHA1 was maintained. Addition of KCl to starved cells resulted in much higher alkalinization of cytoplasmic pH in a strain lacking Nha1p compared to the wild-type or Nha1p-overexpressing strains. The H+/K+(Na+) exchange mechanism of Nha1p was confirmed in reconstituted plasma membrane vesicles. 相似文献