首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Both the protein kinase C (PK-C) activator, phorbol 12-myristate 13-acetate (PMA), and the cyclic AMP-dependent protein kinase (PK-A) activator, 8-bromo-cyclic AMP (8-BR), have been shown to increase 32P incorporation into glial fibrillary acidic protein (GFAP) and vimentin in cultured astrocytes. Also, treatment of astrocytes with PMA or 8-BR results in the morphological transformation of flat, polygonal-shaped cells into stellate, process-bearing cells, suggesting the possibility that signals mediated by these two kinase systems converge at the level of protein phosphorylation to elicit similar changes in cell morphology. Therefore, studies were conducted to determine whether treatment with PMA and 8-BR results in the phosphorylation of the same tryptic peptide fragments on GFAP and vimentin in astrocytes. Treatment with PMA increased 32P incorporation into all the peptide fragments that were phosphorylated by 8-BR on both vimentin and GFAP; however, PMA also stimulated phosphorylation of additional fragments of both proteins. The phosphorylation of vimentin and GFAP resulting from PMA or 8-BR treatment was restricted to serine residues in the N-terminal domain of these proteins. Studies were also conducted to compare the two-dimensional tryptic phosphopeptide maps of GFAP and vimentin from intact cells treated with PMA and 8-BR with those produced when the proteins were phosphorylated with purified PK-C or PK-A. PK-C phosphorylated the same fragments of GFAP and vimentin that were phosphorylated by PMA treatment. Additionally, PK-C phosphorylated some tryptic peptide fragments of these proteins that were not observed with PMA treatment in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Mouse neuroblastoma X embryonic Chinese hamster brain explant hybrid cell line (NCB-20) forms functional synapses when intracellular cyclic AMP levels are elevated for a prolonged period of time. NCB-20 cells were labeled with [32P]orthophosphate under conditions where 2-chloroadenosine gave maximum increases of 32P incorporation into tyrosine hydroxylase in nerve growth factor dibutyryl cyclic AMP-differentiated PC12 (pheochromocytoma) cells. When NCB-20 cells were exposed to activators [5-hydroxytryptamine (5-HT), prostaglandin E1, or forskolin], resulting in activation of cyclic AMP-dependent protein kinase, increased 32P incorporation into two major proteins [130 kilodaltons (kDa) and 90 kDa] occurred. 5-HT (in the presence of phosphodiesterase inhibitor, isobutylmethylxanthine) gave a three- to fourfold increase, and forskolin a four- to sevenfold increase in 32P incorporation into the 90-kDa protein. [D-Ala2,D-Leu5]-enkephalin, which decreased cyclic AMP levels and reversed the 2-chloroadenosine-stimulated phosphorylation of tyrosine hydroxylase in differentiated PC12 cells, also reversed the stimulation of phosphorylation of the 90-kDa protein in NCB-20 cells. Pretreatment of NCB-20 cells with a calcium ionophore, A23187, gave increased phosphorylation of the 90- and 130-kDa proteins, but phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (tumor promoting agent), cell depolarization with high K+, or pretreatment with dibutyryl cyclic GMP had no effect on phosphorylation of these proteins. In contrast, phosphorylation of an 80-kDa protein was decreased by forskolin, but increased following activation of the calcium/phospholipid-dependent kinase with tumor promoting agent. Neither the 90-kDa nor the 80-kDa protein showed any immunological cross-reactivity with synapsin, a major synaptic protein known to be phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase, but not calcium/phospholipid-dependent protein kinase. This suggests that in NCB-20 cells, several unique proteins can be phosphorylated by cyclic AMP-dependent protein kinase in response to hormonal elevation of cyclic AMP levels. In contrast, an 80-kDa protein is the primary substrate for calcium/phospholipid-dependent protein kinase, and its phosphorylation is inhibited by agents that elevate cyclic AMP levels and thereby activate cyclic AMP-dependent protein kinase.  相似文献   

3.
These studies describe a cytoskeletal-associated protein kinase activity in astrocytes that phosphorylated the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin and that appeared to be distinct from protein kinase C (PK-C) and the cyclic AMP-dependent protein kinase (PK-A). The cytoskeletal-associated kinase activity phosphorylated intermediate filament proteins in the presence of 10 mM MgCl2 and produced an even greater increase in 32P incorporation into these proteins in the presence of calcium/calmodulin. Tryptic peptide mapping of phosphorylated intermediate filament proteins showed that the intermediate filament protein kinase activity produced unique phosphopeptide maps, in both the presence and the absence of calcium/calmodulin, as compared to that of PK-C and PK-A, although there were some common sites of phosphorylation among the kinases. In addition, it was determined that the intermediate filament protein kinase activity phosphorylated both serine and threonine residues of the intermediate filament proteins, vimentin and GFAP. However, the relative proportion of serine and threonine residues phosphorylated varied depending on the presence or absence of calcium/calmodulin. The magnesium-dependent activity produced the highest proportion of threonine phosphorylation, suggesting that the calcium/calmodulin-dependent kinase activity acts mainly at serine residues. PK-A and PK-C phosphorylated mainly serine residues. Also, the intermediate filament protein kinase activity phosphorylated both the N-and the C-terminal domains of vimentin and the N-terminal domain of GFAP. In contrast, both PK-C and PK-A are known to phosphorylate the N-terminal domains of both proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
DEAE-cellulose chromatography of the 20,000g supernatant fraction of homogenates of C-1300 murine neuroblastoma (clone N2a) yields one major and two minor peaks of cyclic AMP-dependent protein kinase activity. Assessment of the endogenous activation state of the enzyme(s) reveals that the enzyme is fully activated by the treatment of whole cells with adenosine (10 μM) in the presence of the phosphodiesterase inhibitor Ro 20 1724 (0.7 mM). This treatment produces a large elevation in the cyclic AMP content of the cells. The treatment of whole cells with adenosine alone (1–100 μM) or Ro 20 1724 alone (0.1–0.7 mM) produces minimal elevations in cyclic AMP but nevertheless causes significant activations of cyclic AMP-dependent protein kinase. The autophosphorylation of whole homogenates of treated and untreated cells was studied using [γ-32P] ATP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Treatments which activate cyclic AMP-dependent protein kinase selectively stimulate the incorporation of 32P into several proteins. This stimulation is most prominent in the 15,000-dalton protein band. The addition of cyclic AMP to phosphorylation reactions containing homogenate of untreated cells stimulates the phosphorylation of the same protein bands. These results indicate that adenosine may have regulatory functions through its effect on the cyclic AMP: cyclic AMP-dependent protein kinase system.  相似文献   

5.
To examine whether or not the activation of cyclic AMP-dependent protein kinase is coupled to the exocytosis of amylase from rat parotid cells, the effect of protein kinase inhibitors on amylase release and protein phosphorylation was studied. A membrane-permeable inhibitor of cyclic AMP-dependent protein kinase, N-[2-(methylamino)ethyl]-5-isoquinolinesulphonamide (H-8), and peptide fragments of the heat-stable protein kinase inhibitor [PKI-(5-24)-peptide and PKI-(14-24)-amide] strongly inhibited cyclic AMP-dependent protein kinase activity in the cell homogenate. However, H-8 had no inhibitory effect on amylase release from either intact or saponin-permeabilized parotid cells stimulated by isoproterenol or cyclic AMP. Moreover, PKI-(5-24)-peptide and PKI-(14-24)-amide did not inhibit cyclic AMP-evoked amylase release from saponin-permeabilized cells, whereas cyclic AMP-dependent phosphorylations of 21 and 26 kDa proteins in intact or permeabilized cells were markedly inhibited by these inhibitors. These results suggest that cyclic AMP-dependent protein phosphorylation is not directly involved in the exocytosis of amylase regulated by cyclic AMP.  相似文献   

6.
The presence of a protein kinase capable of phosphorylating endogenous as well as exogenously added myelin basic proteins has been demonstrated in a myelin-like membrane fraction isolated from reaggregating and surface adhering, primary cultures of cells dissociated from embryonic mouse brain. Only the large and small components of myelin basic proteins were found to be phosphorylated when myelin-like membrane fraction was incubated with [-32P]ATP. The protein kinase endogenous to the myelin-like membrane fraction was mainly of the cyclic AMP independent type. There was very little cyclic AMP dependent or cyclic GMP dependent protein kinase activities in this myelin-like fraction. Although the myelin basic proteins were the only endogenous proteins phosphorylated, protein kinase of the myelin-like membrane was capable of catalyzing the phosphorylation of exogenous substrates, such as histones.  相似文献   

7.
Purified P400 protein was phosphorylated by both purified Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and the catalytic subunit of cyclic AMP-dependent protein kinase (A-kinase). Because P400 protein was suggested to function as an integral membrane protein, we investigated the phosphorylation of P400 protein using crude mitochondrial and microsomal fractions (P2/P3 fraction). Incubation of the P2/P3 fraction from mouse cerebellum with cyclic AMP or the catalytic subunit of A-kinase stimulated the phosphorylation of P400 protein. The phosphorylation of P400 protein was not observed in the P2/P3 fraction from mouse forebrain. Cyclic AMP and A-kinase enhanced the phosphorylation of several proteins, including P400 protein, suggesting that P400 protein is one of the best substrates for A-kinase in the P2/P3 fraction. Although endogenous and exogenous CaM kinase II stimulated the phosphorylation of some proteins in the P2/P3 fraction, the phosphorylation of P400 protein was weak. Immunoprecipitation with the monoclonal antibody to P400 protein confirmed that the P400 protein itself was definitely phosphorylated by the catalytic subunit of A-kinase and CaM kinase II. A-kinase phosphorylated only the seryl residue in P400 protein. Immunoblot analysis of the cells in primary culture of mouse cerebellum confirmed the expression of P400 protein, which migrated at the same position on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that in the P2/P3 fraction. Incubation of the cultured cerebellar cells with [32P]orthophosphate resulted in the labeling of P400 protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A 50 kDa, calcium-dependent protein kinase (CDPK) was purified about 1000-fold from cultured cells of alfalfa (Medicago varia) on the basis of its histone H1 phosphorylation activity. The major polypeptide from bovine histone H1 phosphorylated by either animal protein kinase C (PK-C) or by the alfalfa CDPK gave an identical phosphopeptide pattern. The phosphoamino acid determination showed phosphorylation of serine residues in histone H1 by the plant enzyme. Histone-related oligopeptides known to be substrates for animal histone kinases also served as substrates for the alfalfa kinase. Both of the studied peptides (GKKRKRSRKA; AAASFKAKK) inhibited phosphorylation of H1 histones by bovine and alfalfa kinases. The results of competition studies with the nonapeptide (AAASFKAKK), which is a PK-C specific substrate, suggest common features in target recognition between the plant Ca2+-dependent kinase and animal protein kinase C. We also propose that synthetic peptides like AAASFKAKK can be used as a tool to study substrates of plant kinases in crude cell extracts.  相似文献   

9.
High-resolution two-dimensional gel electrophoresis of proteins labeled with either 32Pi or [35S]methionine was used to study interactions between cyclic AMP and tetradecanoyl phorbol acetate (TPA) at the level of intracellular protein phosphorylation. Cultured S49 mouse lymphoma cells were used as a model system, and mutant sublines lacking either the catalytic subunit of cyclic AMP-dependent protein kinase or the guanyl nucleotide-binding "Ns" factor of adenylate cyclase provided tools to probe mechanisms underlying the interactions observed. Three sets of phosphoproteins responded differently to TPA treatment of wild-type and mutant cells: Phosphorylations shown previously to be responsive to activation of intracellular cyclic AMP-dependent protein kinase were stimulated by TPA in wild-type cells but not in mutant cells, a subset of phosphorylations stimulated strongly by TPA in mutant cells was inhibited in wild-type cells, and two novel phosphoprotein species appeared in response to TPA only in wild-type cells. The latter two classes of TPA-mediated responses specific to wild-type cells could be evoked in adenylate cyclase-deficient cells by treating concomitantly with TPA and either forskolin or an analog of cyclic AMP. Three conclusions are drawn from our results: 1) TPA stimulates adenylate cyclase in wild-type cells causing increased phosphorylation of endogenous substrates by cyclic AMP-dependent protein kinase, 2) activated cyclic AMP-dependent protein kinase inhibits phosphorylation (or enhances dephosphorylation) of a specific subset of TPA-dependent phosphoproteins, and 3) cyclic AMP-dependent events facilitate TPA-dependent phosphorylation of some substrate proteins.  相似文献   

10.
Protein phosphorylation in intact S49 mouse lymphoma cells was studied by using high-resolution two-dimensional gel electrophoresis of proteins labelled with [35S]methionine or [32P]Pi. In wild-type cells substrates for cyclic AMP-stimulatable phosphorylation exhibited high basal phosphorylation; in mutant cells deficient in activities of either cyclic AMP-dependent protein kinase or adenylate cyclase, basal phosphorylation of most of these substrates was negligible. Analysis of tryptic phosphopeptides from proteins labelled with [32P]Pi in wild-type cells suggested that identical sites were phosphorylated under conditions of both basal and hormonally elevated concentrations of cyclic AMP. These results argue that most basal phosphorylation is a consequence of partial activation of cyclic AMP-dependent protein kinase and that this activation is attributable to basal concentrations of cyclic AMP. For the intermediate filament protein vimentin, basal phosphorylation was largely at a site distinct from that stimulated by increased cyclic AMP, and basal phosphorylation was not markedly different in mutant and wild-type cells. Vimentin phosphorylated at both sites was not observed. Cyclic AMP treatment resulted in enhanced phosphorylation at the cyclic AMP-specific site and decreased phosphorylation at the cyclic AMP-independent site.  相似文献   

11.
Two protein kinase activities were fractionated from purified virions of avian myeloblastosis virus. Distinguishing characteristics of these two protein kinases included: (i) their binding properties during purification by ion-exchange chromatography; (ii) their estimated molecular weights; and (iii) their phosphoacceptor protein specificities. The protein kinase that bound to the anion exchanger DEAE-cellulose (pH 7.2) had an estimated molecular weight of 60,000 to 64,000 and preferred basic phosphoacceptor proteins. The protein kinase that bound to the cation exchanger phosphocellulose (pH 7.2) had an estimated molecular weight of 42,000 to 46,000 and preferred acidic phosphoacceptor proteins. The protein kinase preferring basic phosphoacceptor proteins was further purified and characterized. Optimal transfer of phosphate catalyzed by this enzyme required a divalent metal ion, a sulfhydryl-reducing agent, and ATP as phosphate donor. GTP was not an effective phosphate donor at concentrations comparable to ATP; and the cyclic nucleotides cyclic AMP and cyclic GMP neither stimulated nor inhibited protein phosphorylation by the protein kinase. The specificity of the protein kinase for basic phosphoacceptor proteins extended to proteins from avian myeloblastosis virus, in that the neutral to basic virion proteins p12, p19, and p27 served as phosphate acceptors. In addition, the protein kinase also appeared to phosphorylate itself. The role(s) of this virion-associated protein kinase is discussed.  相似文献   

12.
Reduced Protein Kinase C Activity in Ischemic Spinal Cord   总被引:5,自引:4,他引:1  
Protein phosphorylation was evaluated in a rabbit spinal cord ischemia model under conditions where cyclic AMP-dependent protein kinase (PK-A) and calcium/phospholipid-dependent protein kinase (PK-C) were activated. One hour of ischemia did not affect PK-A activity significantly; however, PK-C activity was reduced by more than 60%. In vitro phosphorylation of endogenous proteins by endogenous PK-C revealed that eight particulate and five cytosolic proteins showed stimulated phosphorylation by PK-C activators in control tissue, although this stimulation was virtually absent in ischemic samples. When control and ischemic particulate fractions were combined, the endogenous protein phosphorylation pattern under PK-C-activating conditions was similar to the ischemic sample, which suggests that inhibitory molecules may be present in the ischemic particulate fraction. In vitro phosphorylation of endogenous proteins under PK-A-activating conditions in ischemic tissue was similar to that in control tissue. The results suggest that the PK-C phosphorylation system is selectively impaired in ischemic spinal cord. In addition to reduced PK-C-dependent phosphorylation, an Mr 64,000 protein was phosphorylated in ischemic cytosolic samples, but not in control samples. The phosphorylation of the Mr 64,000 protein was neither PK-C-dependent nor PK-A-dependent. These altered phosphorylation reactions may play critical roles in neuronal death during the course of ischemia.  相似文献   

13.
Cellular signal transduction and the reversal of malignancy   总被引:3,自引:0,他引:3  
Animal cells contain only a few defined molecular systems that transduce hormonal and growth signals from the external environment to the intracellular milieu to regulate cellular growth and differentiation. Among the most ubiquitous of these "second messenger" pathways are those utilizing cyclic AMP and phosphatidylinositide turnover. The former activates protein kinase A, while the latter leads to the activation of protein kinase C and mobilization of intracellular calcium. Lesions induced by oncogenes in signal transduction systems may be responsible for the cancerous transformation of cells. In many tumor cell lines, including some transformed by the ras and sis oncogenes, activation of protein kinase A by elevation of cyclic AMP or activation of protein kinase C by addition of phorbol esters can restore many normal aspects of growth and morphology. Such "reverse transformation" is accompanied by the phosphorylation of unique cellular proteins and alterations in the phosphoinositide cycle. Molecular mechanisms by which activation of signal transduction systems can attenuate the malignant phenotype are considered in the context of cellular growth and differentiation.  相似文献   

14.
Interleukin 2 (IL 2) is a polypeptide growth factor essential for the proliferation and differentiation of T lymphocytes, large granulocytic lymphocytes, and, potentially, cells of the antibody-producing lineage, B lymphocytes. Many of the biological properties of IL 2 may be mimicked or potentiated by a potent class of tumor promoters, phorbol esters. Phorbol esters have recently been shown to associate with and activate a unique phospholipid/Ca2+-dependent phosphotransferase, protein kinase C (PK-C). Utilizing two-dimensional gel electrophoresis, we have compared the IL 2 and diacylglycerol-induced protein phosphorylation patterns of several IL 2-dependent murine cell lines. Both IL 2 and synthetic diacylglycerol, 1-oleyl-2-acetylglycerol (OAG), stimulated phosphorylation of a number of protein substrates in intact cells compared to unstimulated controls. Three groups of substrates were identified; the first showed increased phosphorylation following stimulation with either IL 2 or OAG, while the second and third groups showed increased phosphorylation following stimulation with IL 2 but not OAG, and with OAG but not IL 2, respectively. Here, we characterize the kinetics of phosphorylation of one cellular substrate, p68, which appears to be phosphorylated in response to direct activators of PK-C or lymphoid or myeloid growth factors in their respective lineage cell lines. The observation that IL 2 also stimulates a unique series of phosphoproteins in addition to those induced by direct PK-C activators suggests that IL 2 may initiate additional protein kinase activities, unrelated to PK-C, which may also be critical for the ligand-receptor signal transduction process regulating growth and gene expression.  相似文献   

15.
Jakobs, Bauer & Watanabe [(1985) Eur. J. Biochem. 151, 425-430] reported that treatment of platelets with phorbol 12-myristate 13-acetate (PMA) prevented GTP- and agonist-induced inhibition of adenylate cyclase in membranes from the platelets. This was attributed to the phosphorylation of the inhibitory guanine nucleotide-binding protein (Gi) by protein kinase C. In the present study, the effects of PMA on cyclic [3H]AMP formation and protein phosphorylation were studied in intact human platelets labelled with [3H]adenine and [32P]Pi. Incubation mixtures contained indomethacin to block prostaglandin synthesis, phosphocreatine and creatine kinase to remove ADP released from the platelets, and 3-isobutyl-1-methylxanthine to inhibit cyclic AMP phosphodiesterases. Under these conditions, PMA partially inhibited the initial formation of cyclic [3H]AMP induced by prostaglandin E1 (PGE1), but later enhanced cyclic [3H]AMP accumulation by blocking the slow decrease in activation of adenylate cyclase that follows addition of PGE1. PMA had more marked and exclusively inhibitory effects on cyclic [3H]AMP formation induced by prostaglandin D2 and also inhibited the action of forskolin. Adrenaline, high thrombin concentrations and, in the absence of phosphocreatine and creatine kinase, ADP inhibited cyclic [3H]AMP formation induced by PGE1. The actions of adrenaline and thrombin were attenuated by PMA, but that of ADP was little affected, suggesting differences in the mechanisms by which these agonists inhibit adenylate cyclase. sn-1,2-Dioctanoylglycerol (diC8) had effects similar to those of PMA. The actions of increasing concentrations of PMA or diC8 on the modulation of cyclic [3H]AMP formation by PGE1 or adrenaline correlated with intracellular protein kinase C activity, as determined by 32P incorporation into the 47 kDa substrate of the enzyme. Parallel increases in phosphorylation of 20 kDa and 39-41 kDa proteins were also observed. Platelet-activating factor, [Arg8]vasopressin and low thrombin concentrations, all of which inhibit adenylate cyclase in isolated platelet membranes, did not affect cyclic [3H]AMP formation in intact platelets. However, the activation of protein kinase C by these agonists was insufficient to account for their failure to inhibit cyclic [3H]AMP formation. Moreover, high thrombin concentrations simultaneously activated protein kinase C and inhibited cyclic [3H]AMP formation. The results show that, in the intact platelet, the predominant effects of activation of protein kinase C on adenylate cyclase activity are inhibitory, suggesting actions additional to inactivation of Gi.  相似文献   

16.
Abstract: The cyclic AMP (cAMP)-induced inhibitory effect on cell proliferation was examined through inhibition of mitogen-activated protein kinase (MAP kinase) activation in cultured rat cortical astrocytes. Basic fibroblast growth factor (bFGF) at 10 ng/ml maximally stimulated MAP kinase activity, which peaks during 10 min and prolonged for 24 h. Likewise, DNA synthesis was maximally potentiated with 10 ng/ml bFGF and correlated with MAP kinase activity in a dose-dependent manner. Dibutyryl cAMP (dbcAMP) at 1 m M and isoproterenol at 10 µ M inhibited MAP kinase activation and DNA synthesis potentiation with bFGF and platelet-derived growth factor to the control level in cultured astrocytes and C6 glioma cells. The stimulation with bFGF caused a prominent translocation of MAP kinase from the cytosol to the nucleus after 1 h in astrocytes. Treatment of the cells with dbcAMP and isoproterenol completely prevented the translocation of MAP kinase. In experiments with 32P-labeled cultured astrocytes, phosphorylation of Raf-1 was apparently stimulated with bFGF. Treatment with dbcAMP or isoproterenol had a greatly inhibitory effect on the stimulation of Raf-1 phosphorylation with bFGF. Consistent with the effect on Raf-1 phosphorylation, dbcAMP and isoproterenol completely prevented bFGF-induced phosphorylation of MAP kinase kinases, target proteins of Raf-1. Our observations suggest that cAMP-induced suppression of cell growth in astrocytes is due to the inhibitory effect on activation of MAP kinase and its translocation to the nucleus and that the site of the cAMP action is located at Raf-1 or the upstream site of Raf-1.  相似文献   

17.
Abstract: The effect of protein kinase A on the catalytic activity and phosphorylation of brain tryptophan hydroxylase was examined. Stimulation of endogenous protein kinase A by cyclic AMP or its analogues, dibutyryl-cyclic AMP and 8-thiomethyl-cyclic AMP, failed to activate tryptophan hydroxylase. The activation of tryptophan hydroxylase by calcium/calmodulin-phosphorylating conditions was not modified by cyclic AMP. Endogenous protein kinase A phosphorylated a large number of proteins and tryptophan hydroxylase could be identified as one substrate by sucrose gradient centrifugation, immunoprecipitation, and immunoblotting. These results indicate that tryptophan hydroxylase is phosphorylated by protein kinase A in brain and question whether this protein kinase exerts direct regulatory influence over tryptophan hydroxylase activity via phosphorylation.  相似文献   

18.
W B Benjamin  I Singer 《Biochemistry》1975,14(15):3301-3309
Endogenous and hormone-induced protein (polypeptide) phosphorylations were studied in isolated rat fat cells, in fat pads, and in subcellular fractions obtained from fat tissue under different physiological conditions. Insulin (25-100 muU/ml) increased the incorporation of 32P into two proteins: insulin-phosphorylated proteins (IPP 140 and IPP 50; similar to 140,000 and 50,000 daltons, respectively). Epinephrine (10(-7)-10(-6) M) increased the incorporation of 32P into another protein: epinephrine-phosphorylated protein (EPP 60-65; similar to 60,000-65,000 daltons). Endogenous IPP 140 phosphorylation in fat cells obtained from fasted and refed rats was similar to that of insulin in normal cells. Studies of insulin and epinephrine interactions showed that insulin increased IPP 140 phosphorylation even in the presence of epinephrine or lithium (25 mM times 10(-3) M). dibutyryl cyclic AMP (5 times 10(-4) M) markedly stimulated EPP 60-65 phosphorylation, but neither epinephrine (10(-7)-10(-6) M) nor dibutyryl cyclic AMP reproduced insulin's phosphorylation of APP 140. Lithium inhibited both endogenous and epinephrine-stimulate EPP 60-65 phosphorylation, but did not inhibit that induced by dibutyryl cyclic AMP. These findings suggest that insulin stimulated a specific, cyclic AMP independent protein kinase for IPP 140 phosphorylation. Cell-free extracts from insulin-treated fat tissue catalyzed the specific transfer of 32P from ATP to IPP 140 more rapidly than control extracts. No differences in the total receptor protein or total protein kinase activity using [gamma(-32P]ATP were noted between insulin-treated and control preparations. IPP 140 may be either (a) an insulin-sensitive protein kinase (phosphotransferase) or (b) a protein whose function is regulated by an insulin-sensitive protein kinase or phosphatase.  相似文献   

19.
Effects of protein kinase inhibitors on pig oocyte maturation in vitro.   总被引:1,自引:0,他引:1  
Normal oocyte maturation depends on signal transmission between granulosa cells and the oocyte. We have analysed the effects of inhibiting (I) cyclic AMP-dependent protein kinase (protein kinase A, PK-A), (II) Ca2+/phospholipid-dependent protein kinase (protein kinase C, PK-C) and (III) calmodulin (CaM) on pig oocyte maturation in vitro, protein synthesis and phosphorylation. The inhibition of PK-A using a specific inhibitor H8, decreased the maturation rate (rate of germinal vesicle breakdown, GVBD) of cumulus-enclosed pig oocytes in a dose-dependent manner by approximately 12%, reaching a plateau at 100 microM. The inhibition of PK-C with H7, an inhibitor with some side-effects on PK-A, decreased the maturation rate of cumulus-enclosed oocytes in a dose-dependent manner to a maximum of 20% at a concentration of 100 microM. The calmodulin antagonist W7 up to a concentration of 200 microM had no effects on maturation of cumulus-enclosed pig oocytes. None of the inhibitors (H7, H8 and W7) altered the patterns of protein synthesis of either pig oocytes and cumulus cells after maturation in vitro. Oocyte phosphoprotein patterns were, however, clearly changed by W7. Cumulus cell protein phosphorylation patterns were changed by all 3 agents. Since inhibition of cyclic AMP and Ca2+ phospholipid pathways by PK-A and PK-C blocking chemicals affected only a limited proportion of oocytes (12 and 20%, respectively) and inhibition of Ca2+ binding to CaM was without effect on oocyte maturation, we conclude that these pathways modulate rather than regulate oocyte maturation in the pig.  相似文献   

20.
The morphological conversion of Chinese hamster ovary cells induced by treatment with dibutyryl cyclic AMP is correlated with increases in the intracellular level of cyclic AMP and the activation of cyclic AMP-dependent protein kinase. When cholera toxin is used to induce the increase in intracellular cyclic AMP, a similar correlation is obtained. Treatment of cells with prostaglandin E1, which causes a transient increase in intracellular cyclic AMP and a transient activation of protein kinase activity, does not result in the morphology change. From these studies we conclude that a stable activation of the cyclic AMP-dependent protein kinase, which results from an increase in intracellular cyclic AMP, induces the morphological conversion of Chinese hamster ovary cells through phosphorylation of one or more cellular components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号