首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Mechanisms controlling pigment movements in the melanophore of the blue damselfish, Chrysiptera cyanea, were studied. Histological observations revealed that the melanophore had three-dimensionally developed processes to envelop overlying small iridophores, and thus participated in the construction of a simple dermal chromatophore unit. Nervous stimulation, catecholamines and melatonin brought about melanosome aggregation in the melanophore. The actions of the nervous stimulation and catecholamines were antagonized by alpha adrenolytic agents. A beta adrenergic agonist, metaproterenol, adenosine and adenine nucleotides, and alpha-MSH acted as pigment-dispersing agents. These results indicate that the melanophore of the present material is controlled quite orthodoxly by adrenergic nerves and endocrines, notwithstanding the fact that it has quite a unique morphology among fish species, and that its motile rate is remarkably high.  相似文献   

2.
The mechanism regulating the movements of the unique motile iridophores of the blue damselfish, Chyrsiptera cyanea, was studied. The reaction in which the cells become reflective to light rays of longer wavelength, i.e. from the near u.v. region to the green region, was designated as the "coloring response", while the reverse process was labeled the "clearing response". Both nervous stimuli and adrenergic agonists gave rise to the coloring response, which could be antagonized by alpha adrenolytic agents. The clearing response was accelerated by adenosine and inhibited by theophylline. None of the hormonal substances tested had any effect on the motile response of the cells. It was concluded that the motile iridophores are solely under the control of the sympathetic adrenergic system, and that the co-transmitter, adenosine, may function to antagonize quickly the true transmitter-induced colored state of the cells.  相似文献   

3.
1. The mechanism of the action of atropine, which is known to accelerate the dispersion response of fish melanophores, was examined by use of various receptor antagonists.2. The effects of atropine were found to be independent of adenosine receptors, beta-adrenoceptors and MSH receptors on the melanophore membrane.3. Analogs of atropine, such as scopolamine, also had a potent pigment-dispersing effect on melanophores, whereas the quaternary ammonium derivatives, which are positively charged molecules, had only a small effect.4. These results suggest that the possible site of atropine action is within the chromatophores themselves.5. In addition to the melanosome-dispersing effect, atropine caused a shift in the spectral peak of reflected light toward shorter wavelengths and the dispersion of leucosomes in the motile iridophores of the blue damselfish and in the leucophores of the medaka, respectively.  相似文献   

4.
Conflicting results have been published concerning the effects of cyclic nucleotides on amphibian cell differentiation. Here we report the effects of cyclic adenosine monophosphate (cAMP) and dibutyryl-cyclic adenosine monophosphate (db-cAMP) on isolated explants from late blastulae of Ambystoma mexicanum and Xenopus laevis. Both cAMP and db-cAMP (10(-4)-10(-9) M) promote 'neuralizing' differentiation in Ambystoma explants. Xenopus explants treated with the nucleotides (10(-4), 10(-6), 10(-8) M) LiCl or heparan sulphate only give rise to ciliated aggregates or dissociation. The results confirm observations that different amphibian species react in different ways to activating chemicals.  相似文献   

5.
In addition to melanophores and xanthophores, there existed two types of iridophore in the dermis of the scalycheek damselfish, Pomacentrus lepidogenys. There are dendritic iridophores which reflect white light-rays by Tyndall scattering, and the round or somewhat ellipsoidal iridophores which reflect rays with a relatively narrow spectral peak from blue to green through the non-ideal thin-film interference. Most of the dendritic iridophores were covered with xanthophores and were situated over melanophores, thus constituting a kind of chromatophore unit which produces a yellow or yellowish-green color. The characteristic yellowish-green hue of the integument results from a compound effect of small contributions by more elementary colors. During color changes of the skin, the position of the spectral peak does not shift. Unlike the iridophores of the blue damselfish, both types of iridophore of the scalycheek damselfish were found to be inactive. It appears, therefore, that the aggregation and dispersion of pigment within the melanophores is the primary mechanism responsible for the changes in color of this species.  相似文献   

6.
Goda M  Fujii R 《Zoological science》1998,15(3):323-333
Measurements of spectral reflectance from the sky-blue portion of skin from the common surgeonfish, Paracanthurus hepatus, showed a relatively steep peak at around 490 nm. We consider that a multilayer thin-film interference phenomenon of the non-ideal type, which occurs in stacks of very thin light-reflecting platelets in iridophores of that region, is primarily responsible for the revelation of that hue. The structural organization of the iridophore closely resembles that of bluish damselfish species, although one difference is the presence of iridophores in a monolayer in the damselfish compared to the double layer of iridophores in the uppermost part of the dermis of surgeonfish. If compared with the vivid cobalt blue tone of the damselfish, the purity of the blue hue of the surgeonfish is rather low. This may be ascribable mainly to the double layer of iridophores in the latter since incident lightrays are complicatedly reflected and scattered in the strata. The dark-blue hue of the characteristic scissors-shaped pattern on the trunk of surgeonfish is mainly due to the dense population of melanophores, because iridophores are only present there in a scattered fashion. Photographic and spectral reflectance studies in vivo, as well as photomicrographic, photo-electric, and spectrometric examinations of the state of chromatophores in skin specimens in vitro, indicate that both melanophores and iridophores are motile. Physiological analyses disclosed that melanophores are under the control of the sympathetic nervous and the endocrine systems, while iridophores are regulated mainly by nerves. The body color of surgeonfish shows circadian changes, and becomes paler at night; this effect may be mediated by the pineal hormone, melatonin, which aggregates pigment in melanophores.  相似文献   

7.
Glucagon (10nM) prevented insulin (10nM) from activating the plasma-membrane cyclic AMP phosphodiesterase. This effect of glucagon was abolished by either PIA [N6-(phenylisopropyl)adenosine] (100nM) or adenosine (10 microM). Neither PIA nor adenosine exerted any effect on the plasma-membrane cyclic AMP phosphodiesterase activity either alone or in combination with glucagon. Furthermore, PIA and adenosine did not potentiate the action of insulin in activating this enzyme. 2-Deoxy-adenosine (10 microM) was ineffective in mimicking the action of adenosine. The effect of PIA in preventing the blockade by glucagon of insulin's action was inhibited by low concentrations of theophylline. Half-maximal effects of PIA were elicited at around 6nM-PIA. It is suggested that adenosine is exerting its effects on this system through an R-type receptor. This receptor does not appear to be directly coupled to adenylate cyclase, however, as PIA did not affect either the activity of adenylate cyclase or intracellular cyclic AMP concentrations. Insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase, in the presence of both glucagon and PIA, was augmented by increasing intracellular cyclic AMP concentrations with either dibutyryl cyclic AMP or the cyclic AMP phosphodiesterase inhibitor Ro-20-1724. PIA also inhibited the ability of glucagon to uncouple (desensitize) adenylate cyclase activity in intact hepatocytes. This occurred at a half-maximal concentration of around 3 microM-PIA. However, if insulin (10 nM) was also present in the incubation medium, PIA exerted its action at a much lower concentration, with a half-maximal effect occurring at around 4 nM.  相似文献   

8.
Adenosie, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phophodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell suface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides has no effect on the accumulation of cyclic AMP. Among other adenine nucleotides was tested, adenosine 5′-monophosphoramidate, but not adenosine 5′-monosulfate, significantly increased cyclic AMP especially with the addition of papaverine. Neither 2′- nor 3′-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

9.
Using the medaka, Oryzias latipes (orange-red variety), the mechanisms of action on leucophores of adenosine and adenine nucleotides, including cyclic AMP, were studied. All these substances were found to be very effective in dispersing leucosomes. Their pigment-dispersing action was antagonized by methylxanthines. These substances did not aggregate leucosomes. It was concluded that leucophores possess specific binding sites for adenosine, i.e. adenosine receptors, on the cell membrane, which mediate leucosome dispersion. Further, it was shown that even the action of an established intracellular second messenger, cyclic AMP, is primarily manifested through the receptors.  相似文献   

10.
A variety of effects of cyclic AMP on cellular and subcellular phenomena suggest that there may be other modes of action of cyclic AMP then activation of protein kinase. It is also known that developing embryos contain cyclic AMP and its related enzymes. In order to explore the role of cyclic AMP in embryogenesis, a survey of proteins capable of binding cyclic AMP in the embryonic supernatant of Drosophila melanogaster was carried out. As the result, two cyclic AMP-binding proteins were found and characterized. The one (L) is, as expected, associated with protein kinase and has a dissociation constant of about 10(-9) M. Its molecular weight of 21 000 daltons is extremely small when compared with similar proteins in other organisms. The other (H), whose function is yet to be found, has a molecular weight of about 200 000 daltons and has a dissociation constant of about 10-7 M. Some laxity in binding specificity of the latter protein among adenosine nucleotides was observed, but cyclic AMP is the strongest ligand among them.  相似文献   

11.
A method using the principle of charge-transfer chromatography has been developed for the determination of cyclic AMP levels in intact prelabeled cells. The ATP pool was prelabeled by incubating the cells in the presence of radioactive adenine. The cyclic AMP formed from ATP was extracted with HC10(4) and separated from adenine and other adenosine-related nucleotides by chromatography on acriflavin-Sephadex G-25. This method provides a rapid and sensitive isolation of cyclic AMP with high recovery (95-100%) and low blnks. Further, no contamination of the cyclic AMP fractions was found by either adenine or adenosine nucleotides such as ATP, ADP or AMP. This procedure is applicable to a variety of cell or tissue systems.  相似文献   

12.
Studies were carried out with rat epididymal fat pads first to compare the effects of the synthetic N-terminal 1-34 peptide of bovine parathyroid hormone and of the native hormone to determine whether this portion of the molecule is responsible for the lipolytic action of the hormone and second to determine whether this biologic action of parathyroid hormone is mediated by cyclic adenosine 3',5'-monophosphate. The N-terminal polypeptide was as effective as the native hormone in stimulating lipolysis in the concentration range between 10(-8) M and 10(-6) M. Parathyroid hormone stimulated lipolysis by isolated fat cells. The concentration of cyclic adenosine 3',5'-monophosphate in the fat pads was significantly increased by the hormone (10(-6)M). Lipolytic stimulation by parathyroid hormone (10(-6)M) was diminished by insulin (100 muU/ml) and prostaglandin E1 (1 mug/ml), both of which are known inhibitors of lipolysis. The findings indicate that the amino-terminal 1-34 peptide portion of parathyroid hormone is responsible for the lipolytic action and that this effect is mediated through cyclic adenosine 3',5'-monophosphate.  相似文献   

13.
Adenosine, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phosphodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell surface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides had no effect on the accumulation of cyclic AMP. Among other adenine nucleotides we tested, adenosine 5'-monophosphoramidate, but not adenosine 5'-monosulfate significantly increased cyclic AMP especially with the addition of papaverine. Neither 2'- nor 3'-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

14.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3',5'-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 . 10(9), Ka(2) = 1.7 . 10(8), Ka(3) = 1.0 . 10(7)). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

15.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

16.
The action of adenosine on lutropin (LH)-stimulated cyclic AMP production and LH-induced desensitization of adenylate cyclase in rat Leydig tumour cells was investigated. Adenosine and N6-(phenylisopropyl)adenosine caused a dose-dependent potentiation of LH-stimulated cyclic AMP production at concentrations (0.01-10 microM) which alone did not produce an increase in cyclic AMP production. However, 2-deoxyadenosine had no effect either alone or in combination with LH on cyclic AMP production. The potentiation produced by adenosine was unaffected by concentrations of the specific nucleoside-transport inhibitor dipyridamole, which inhibited [3H]adenosine uptake by up to 90%. The phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, but not RO-10-1724, inhibited the adenosine-induced potentiation. In the presence of adenosine, the kinetics of LH-stimulated cyclic AMP production were linear with time up to 2h, compared with those with LH alone, which showed a characteristic decrease in rate of cyclic AMP production after the first 15-20 min. Consistent with the altered kinetics, adenosine also inhibited the LH-induced desensitization of adenylate cyclase. These results suggest that adenosine has effects on rat tumour Leydig cells through receptors on the external surface of the plasma membrane. This receptor has characteristics similar to those of the R-type receptors, which have been shown either to stimulate or to inhibit adenylate cyclase. However, the effects of adenosine in the present studies does not involve a direct inhibition or activation of adenylate cyclase, but may involve an as yet undefined receptor-mediated modulation of adenylate cyclase.  相似文献   

17.
Binding properties of the subtypes of adenosine A2 receptors in membrane preparations and the effects of adenosine receptor ligands on cAMP accumulation in slices from the optic tectum of neonatal chicks have been investigated. [3H]2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxaminoadenosine (CGS 21680), a selective ligand for adenosine A2a receptors, did not bind to optic tectal membranes, as observed with rat striatal membranes. CGS 21680 also did not induce cyclic AMP accumulation in optic tectum slices. However, 5'-N-ethylcarboxamidoadenosine (NECA), 2-chloro-adenosine or adenosine induced a 2.5- to 3-fold increase on cyclic AMP accumulation in this preparation. [3H]NECA binds to fresh non-washed-membranes obtained from optic tectum of chicks, displaying one population of binding sites, which can be displaced by NECA, 8-phenyltheophylline, 2-chloro-adenosine, but is not affected by CGS 21680. The estimated KD value was 400.90 ± 80.50 nM and the Bmax was estimated to be 2.51 ± 0.54 pmol/mg protein. Guanine nucleotides, which modulate G-proteins activity intracellularly, are also involved in the inhibition of glutamate responses by acting extracellularly. Moreover, we have previously reported that guanine nucleotides potentiate, while glutamate inhibits, adenosine-induced cyclic AMP accumulation in slices from optic tectum of chicks. However, the guanine nucleotides, GMP or GppNHp and the metabotropic glutamate receptors agonist, 1S,3R-ACPD did not alter the [3H]NECA binding observed in fresh non-washed-membranes. Therefore, the adenosine A2 receptor found in the optic tectum must be the adenosine A2b receptor which is available only in fresh membrane preparations, and its not modulated by guanine nucleotides or glutamate analogs.  相似文献   

18.
Two forms of soluble phosphodiesterase of cyclic nucleotides separating by DEAE-cellulose ion-exchange chromatography and not only differing in physicochemical and catalytic parameters but also differently regulated by calmodulin are found in the doe myometrium. Calmodulin with 10(-7)-10(-5) M concentrations of Ca2+ promotes the two-fold activation of the 3':5'-AMP (but not of 3':5'-GMP) hydrolysis by the first form of phosphodiesterase. Trifluoperazine (10 microM) lowers the activating action of calmodulin. The second form of soluble phosphodiesterase is not sensitive to the action of both calmodulin and Ca2+. 3':5'-GMP (10 microM) inhibits the 3':5'-AMP hydrolysis by the first form of phosphodiesterase; calmodulin exerts no effect on this process. The data obtained testify to the possible participation of Ca2+ and calmodulin in Ca2+-calmodulin-dependent phosphodiesterase regulation of the content of cyclic nucleotides (3':5'-AMP, in particular) in the doe myometrium.  相似文献   

19.
Mammalian erythropoiesis, as assayed by erythroid colony formation in vitro, is enhanced by cyclic adenosine nucleotides and agents which are capable of raising intracellular cyclic AMP (cAMP) levels. With canine marrow cells as target, this enhancement was shown to be specific for cAMP and its mono- and dibutyryl derivatives. Adenosine and its derivatives, such as AMP, ADP and ATP, and other cyclic nucleotides, such as cGMP, dibutyryl-cGMP, cCMP and cIMP and sodium butyrate were inactive. The phosphodiesterase inhibitor, RO-20-1724, and the adenyl cyclase stimulator, cholera enterotoxin, both markedly increased colony numbers. Studies with tritiated thymidine showed that about 50% of the cells responding to either erythropoietin (ESF) or dibutyryl cAMP (db-cAMP) were in DNA synthesis. However, by unit gravity sedimentation velocity analysis, the peak of ESF-responsive colony forming cells sedimented more rapidly (8-7 +/- 0-2 mm/hr) than the peak of db-cAMP-responsive cells (7-5 +/- 0 mm/hr). These results demonstrate that adenyl cyclase-linked mechanisms influence in vitro erythropoietic proliferation and suggest that other hormones and simple molecules might interact with surface receptors and thus modulate the action of ESF at the cellular level.  相似文献   

20.
The following evidence suggests that inhibition of hepatoma cell (HTC) growth by cyclic nucleotides is an adenosine-like effect that is greatly modified by the type and treatment of serum used in the culture medium and is probably not mediated by cyclic AMP-dependent protein kinase: 1) Heating serum reduces its phosphodiesterase content, thereby slowing metabolism of cyclic AMP and reducing the inhibition of HTC cell growth by cyclic AMP; 2) Using medium that contains phosphodiesterase but lacks adenosine deaminase causes adenosine to accumulate from cyclic AMP and increases the toxicity of cyclic AMP; 3) Uridine or cytidine reverses the growth inhibition caused by adenosine, 5'-AMP or cyclic AMP; 4) adenosine, 5'-AMP and N6-(delta 2-isopentenyl) adenosine are more toxic for HTC cells than is cyclic AMP, and N6,O2-dibutyryl cyclic AMP is not toxic; and 5) N6,O2'-dibutyryl cyclic AMP inhibits growth of Reuber H35 cells, but uridine prevents this inhibition of growth. We conclude that most, if not all, of the inhibitory effects of cyclic AMP and N6,O2'-dibutyryl cyclic AMP on HTc and Reuber H35 hepatoma cell growth are due to the generation of toxic metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号