首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Studies on the wide-host-range fungus Nectria haematococca MP VI have shown a linkage between virulence on pea and five of nine PDA genes that encode the ability to detoxify the pea phytoalexin, pisatin. Most of the PDA genes are on chromosomes of approximately 1.6 megabases (Mb) and two of these genes, PDA1-2 and PDA6-1, have been demonstrated to reside on approximately 1.6-Mb chromosomes that can be lost during meiosis. Prior studies also have shown that the dispensable chromosome carrying PDA6-1 contains a gene (MAK1) necessary for maximum virulence on chickpea. The present study evaluated whether the other approximately 1.6-Mb chromosomes that carry PDA genes also are dispensable, their relationship to each other, and whether they contain genes for pathogenicity on hosts other than pea or chickpea. DNA from the PDA1-1 chromosome (associated with virulence on pea) and the PDA6-1 chromosome (associated with virulence on chickpea) were used to probe blots of contour-clamped homogeneous electric field (CHEF) gels of isolates carrying different PDA genes and genetically related Pda- isolates. All of the approximately 1.6-Mb PDA-bearing chromosomes hybridized with both probes, indicating that they share significant similarity. Genetically related Pda-progeny lacked chromosomes of approximately 1.6 Mb and there was no significant hybridization of any chromosomes to the PDA1-1 and PDA6-1 chromosome probes. When isolates carrying different PDA genes and related Pda- isolates were tested for virulence on carrot and ripe tomato, there was no significant difference in lesion sizes produced by Pda+ and Pda- isolates, indicating that genes for pathogenicity on these hosts are not on the PDA-containing chromosomes. These results support the hypothesis that the chromosomes carrying PDA genes are dispensable and carry host-specific virulence genes while genes for pathogenicity on other hosts are carried on other chromosomes.  相似文献   

2.
The HTS1 gene in the Tox2 locus of the fungal pathogen Cochliobolus carbonum race 1 is required for synthesis of a host-selective phytotoxin and for increased virulence on susceptible genotypes of maize. The locus is present in race 1 isolates but absent from isolates of the other races, which do not produce the toxin. By pulsed-field gel electrophoresis and Southern analysis with HTS1 sequences and chromosome-specific markers, the HTS1 gene was detected on a 4-Mb chromosome in one group of isolates and on a 2.3-Mb chromosome in another group, which lacked the 4-Mb chromosome. A chromosome-specific marker from C. heterostrophus hybridized to a 2.3-Mb chromosome in non-toxin-producing isolates and in toxin-producing isolates, including those with a 4-Mb chromosome. A marker from C. carbonum hybridized to the 4-Mb chromosome, but in isolates lacking the 4-Mb chromosome, this marker hybridized to a smaller, 2.0-Mb chromosome. Thus, the Tox2 locus is on different chromosomes in different groups of race 1 isolates. Single ascospore progeny from crosses between isolates having HTS1 on different chromosomes were analyzed for toxin-producing ability, virulence, and the presence and chromosomal location of HTS1. All progeny produced HC toxin in culture, incited race 1-type lesions on susceptible maize genotypes, and contained HTS1 sequences, as determined by PCR amplification with gene-specific primers. Analysis of the chromosomal complements of several progeny indicated that they all had only one Tox2-containing chromosome. Thus, despite their differences in size, these chromosomes behave as homologs during meiosis and may have arisen by a translocation.  相似文献   

3.
The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify pisatin produced as a defense response by pea, and the gene encoding this detoxification mechanism, FoPDA1, was 82% identical to the cytochrome P450 pisatin demethylase PDA1 gene in Nectria haematococca. A survey of F. oxysporum f. sp. pisi isolates demonstrated that, as in N. haematococca, the PDA gene of F. oxysporum f. sp. pisi is generally located on a small chromosome. In N. haematococca, PDA1 is in a cluster of pea pathogenicity (PEP) genes. Homologs of these PEP genes also were found in the F. oxysporum f. sp. pisi isolates, and PEP1 and PEP5 were sometimes located on the same small chromosomes as the FoPDA1 homologs. Transforming FoPDA1 into a pda(?) F. oxysporum f. sp. lini isolate conferred pda activity and promoted pathogenicity on pea to some transformants. Different hybridization patterns of FoPDA1 were found in F. oxysporum f. sp. pisi but these did not correlate with the races of the fungus, suggesting that races within this forma specialis arose independently of FoPDA1. FoPDA1 also was present in the formae speciales lini, glycines, and dianthi of F. oxysporum but they had mutations resulting in nonfunctional proteins. However, an active FoPDA1 was present in F. oxysporum f. sp. phaseoli and it was virulent on pea. Despite their evolutionary distance, the amino acid sequences of FoPDA1 of F. oxysporum f. sp. pisi and F. oxysporum f. sp. phaseoli revealed only six amino acid differences, consistent with a horizontal gene transfer event accounting for the origin of these genes.  相似文献   

4.
The mechanisms by which pathogenic fungi evolve are poorly understood. Production of the host-selective cyclic peptide HC-toxin is controlled by a complex locus, TOX2, in the plant pathogen Cochliobolus carbonum. Crosses between toxin-producing (Tox2+) and toxin-nonproducing (Tox2-) isolates, as well as crosses between isolates in which the TOX2 genes were on chromosomes of different size, yielded progeny that had lost one or more copies of one or more of the TOX2 genes. Of approximately 200 progeny analyzed, eight (4%) had lost at least one TOX2 gene. All of them still had at least one functional copy of all of the known genes required for HC-toxin production (HTS1, TOXA, TOXC, and TOXE). Most deletion strains could be explained by simple chromosome breaks resulting in the loss of major contiguous portions (0.8 to 1.4 Mb) of the 3.5-Mb TOX2 chromosome, whereas others had more complicated patterns. All deletion strains had normal growth and were fertile, indicating that the 1.4 Mb of DNA contained no essential housekeeping genes. Most strains were also still virulent (Tox2+), but two had a novel phenotype of reduced virulence (RV), characterized by smaller lesions that expanded at a reduced rate and an inability to colonize plants systemically. Although the RV strains made no detectable HC-toxin in culture, the RV phenotype was dependent on the presence of a functional copy of HTS1, which encodes the central enzyme in HC-toxin biosynthesis. We propose that the RV strains still make a low level of HC-toxin, at least in planta, and that this is due to the loss of one or more genes that contribute to, but are not absolutely required for, HC-toxin synthesis.  相似文献   

5.
Summary The ability to detoxify the phytoalexin, pisatin, an antimicrobial compound produced by pea (Pisum sativum L.), is one requirement for pathogenicity of the fungus Nectria haematococca on this plant. Detoxification is mediated by a cytochrome P-450, pisatin demethylase, encoded by any one of six Pda genes, which differ with respect to the inducibility and level of pisatin demethylase activity they confer, and which are associated with different levels of virulence on pea. A previously cloned Pda gene (PdaT9) was used in this study to characterize further the known genes and to identify additional members of the Pda family in this fungus by Southern analysis. DNA from all isolates which demethylate pisatin (Pda+ isolates) hybridized to PdaT9, while only one Pda isolate possessed DNA homologous to the probe. Hybridization intensity and, in some cases, restriction fragment size, were correlated with enzyme inducibility. XhoI/BamHI restricted DNA from reference strains with a single active Pda allele had only one fragment with homology to PdaT9; no homology attributable to alleles associated with the Pda phenotype was found. Homology to this probe was also limited to one or two restriction fragments in most of the 31 field isolates examined. Some unusual progeny from laboratory crosses that failed to inherit demethylase activity also lost the single restriction fragment homologous to PdaT9. At the chromosome level, N. haematococca is highly variable, each isolate having a unique electrophoretic karyotype. In most instances, PdaT9 hybridized to one or two chromosomes containing 1.6–2 million bases of DNA, while many Pda- isolates lacked chromosomes in this size class. The results from this study of the Pda family support the hypothesis that deletion of large amounts of genomic DNA is one mechanism that reduces the frequency of Pda genes in N. haematococca, while simultaneously increasing its karyotypic variation.  相似文献   

6.
Pea plants produce the antibiotic (+)pisatin in response to infection by the fungus Nectria haematococca, which can detoxify pisatin utilizing a cytochrome P450 monooxygenase called pisatin demethylase. Genes (PDA) have been identified that encode different whole-cell Pda phenotypes that can be distinguished by the length of the lag period and the resulting amount of enzyme activity produced: PdaSH = short lag, high activity; PdaSM = short lag, moderate activity; and PdaLL = long lag, low activity. Only the PdaSH and PdaSM phenotypes have been correlated with pathogenicity on pea. In this study, we utilize heterologous expression of the PDA LL gene PDA6-1 in Aspergillus nidulans to compare the biochemical properties of the product of this gene with the products of the PDA SH gene PDA1 expressed in N. haematococca. Preliminary measurements were also done on the PDA SM gene PDA5 expressed in N. haematococca. The PDA gene products differed somewhat in their substrate specificity and in their sensitivity to a few cytochrome P450 inhibitors. However, the enzymes produced by PDA6-1 and PDA1 both had low apparent K m values toward (+)pisatin (< 0.25 μM) and a common high degree of insensitivity to most P450 inhibitors, suggesting similar shared biochemical traits as would be expected of products of a highly homologous gene family. Our results indicate that the different whole-cell phenotypes of N. haematococca are not due to significant differences in the biochemical properties of the gene products and are consistent with recent results that indicate that the phenotypic differences are due to different degrees of expression of the genes. Received: 6 October 1997 / Accepted: 13 May 1998  相似文献   

7.
Some isolates of the plant-pathogenic fungus Nectria haematococca mating population (MP) VI metabolize maackiain and medicarpin, two antimicrobial compounds (phytoalexins) synthesized by chickpea (Cicer arietinum L.). The enzymatic modifications by the fungus convert the phytoalexins to less toxic derivatives, and this detoxification has been proposed to be important for pathogenesis on chickpea. In the present study, loci controlling maackiain metabolism (Mak genes) were identified by crosses among isolates of N. haematococca MP VI that differed in their ability to metabolize the phytoalexin. Strains carrying Mak1 or Mak2 converted maackiain to 1a-hydroxymaackiain, while those with Mak3 converted it to 6a-hydroxymaackiain. Mak1 and Mak2 were unusual in that they often failed to be inherited by progeny. Mak1 was closely linked to Pda6, a new member in a family of genes in N. haematococca MP VI that encode enzymes for detoxification of pisatin, the phytoalexin synthesized by garden pea. Like Mak1, Pda6 was also transmitted irregularly to progeny. Although the unusual meiotic behaviors of some Mak genes complicate genetic analysis, identification of these genes should afford a more through evaluation of the role of phytoalexin detoxification in the pathogenesis of N. haematococca MP VI on chickpea.  相似文献   

8.
B. Valent  L. Farrall    F. G. Chumley 《Genetics》1991,127(1):87-101
We have identified genes for pathogenicity toward rice (Oryza sativa) and genes for virulence toward specific rice cultivars in the plant pathogenic fungus Magnaporthe grisea. A genetic cross was conducted between the weeping lovegrass (Eragrostis curvula) pathogen 4091-5-8, a highly fertile, hermaphroditic laboratory strain, and the rice pathogen O-135, a poorly fertile, female-sterile field isolate that infects weeping lovegrass as well as rice. A six-generation backcrossing scheme was then undertaken with the rice pathogen as the recurrent parent. One goal of these crosses was to generate rice pathogenic progeny with the high fertility characteristic of strain 4091-5-8, which would permit rigorous genetic analysis of rice pathogens. Therefore, progeny strains to be used as parents for backcross generations were chosen only on the basis of fertility. The ratios of pathogenic to nonpathogenic (and virulent to avirulent) progeny through the backcross generations suggested that the starting parent strains differ in two types of genes that control the ability to infect rice. First, they differ by polygenic factors that determine the extent of lesion development achieved by those progeny that infect rice. These genes do not appear to play a role in infection of weeping lovegrass because both parents and all progeny infect weeping lovegrass. Second, the parents differ by simple Mendelian determinants, ``avirulence genes,' that govern virulence toward specific rice cultivars in all-or-none fashion. Several crosses confirm the segregation of three unlinked avirulence genes, Avr1-CO39, Avr1-M201 and Avr1-YAMO, alleles of which determine avirulence on rice cultivars CO39, M201, and Yashiro-mochi, respectively. Interestingly, avirulence alleles of Avr1-CO39, Avr1-M201 and Avr1-YAMO were inherited from the parent strain 4091-5-8, which is a nonpathogen of rice. Middle repetitive DNA sequences (``MGR sequences'), present in approximately 40-50 copies in the genome of the rice pathogen parent, and in very low copy number in the genome of the nonpathogen of rice, were used as physical markers to monitor restoration of the rice pathogen genetic background during introgression of fertility. The introgression of highest levels of fertility into the most successful rice pathogen progeny was incomplete by the sixth generation, perhaps a consequence of genetic linkage between genes for fertility and genes for rice pathogenicity. One chromosomal DNA segment with MGR sequence homology appeared to be linked to the gene Avr1-CO39. Finally, many of the crosses described in this paper exhibited a characteristic common to many crosses involving M. grisea rice pathogen field isolates. That is, pigment-defective mutants frequently appeared among the progeny.  相似文献   

9.
The genetic control of virulence was studied in four isolates of the fungus Pyrenophora teres f. teres, originating from various geographic regions in experiments with nine barley accessions, possessing known resistance genes. Experiments were performed with the ascospore progeny of two crosses. The results of segregation for virulence in the progeny of direct crosses were confirmed by analysis of backcrosses and sib crosses. One to four genes for avirulence toward various barley genotypes were found in the isolates under study. It is suggested that dominant suppressor genes are involved in the genetic control of avirulence toward four barley genotypes.  相似文献   

10.
Enkerli J  Reed H  Briley A  Bhatt G  Covert SF 《Genetics》2000,155(3):1083-1094
Certain isolates of the plant pathogenic fungus Nectria haematococca mating population (MP) VI contain a 1.6-Mb conditionally dispensable (CD) chromosome carrying the phytoalexin detoxification genes MAK1 and PDA6-1. This chromosome is structurally unstable during sexual reproduction. As a first step in our analysis of the mechanisms underlying this chromosomal instability, hybridization between overlapping cosmid clones was used to construct a map of the MAK1 PDA6-1 chromosome. The map consists of 33 probes that are linked by 199 cosmid clones. The polymerase chain reaction and Southern analysis of N. haematococca MP VI DNA digested with infrequently cutting restriction enzymes were used to close gaps and order the hybridization-derived contigs. Hybridization to a probe extended from telomeric repeats was used to anchor the ends of the map to the actual chromosome ends. The resulting map is estimated to cover 95% of the MAK1 PDA6-1 chromosome and is composed of two ordered contigs. Thirty-eight percent of the clones in the minimal map are known to contain repeated DNA sequences. Three dispersed repeats were cloned during map construction; each is present in five to seven copies on the chromosome. The cosmid clones representing the map were probed with deleted forms of the CD chromosome and the results were integrated into the map. This allowed the identification of chromosome breakpoints and deletions.  相似文献   

11.
Nectria haematococca MPVI can be found in many different biological habitats but has been most studied as a pathogen of pea (Pisum sativum). Genetic analyses of isolates obtained from a variety of biological sources has indicated that a number of genes control pathogenicity on pea but that one important PEa Pathogenicity (PEP) gene isPDA, which confers the ability to detoxify the pea phytoalexin pisatin. In these studies, all naturally occurring isolates that lackedPDA (i.e. Pda isolates) and all Pda progeny were essentially non-pathogenic on pea. However, we have demonstrated recently that Pda mutants created by transformation-mediated gene disruptions, while having a modest reduction in virulence, and more virulent than any naturally occurring Pda isolates. In addition we know thatPDA genes are on dispensable (DS) chromosomes in this fungus. We believed that the gene disruption mutants have allowed the detection of otherPEP genes that are present on the DS chomosomes along withPDA and that naturally occuring Pda isolates usually lack this DS chromosome. This would explain why naturally occurring Pda isolates are always low in virulence. We propose that the DS chromosomes in fungi are analogous to bacterial plasmids which allow those microorganisms to colonise different habitats, i.e. the DS chromosomes ofNectria haematococca contain genes that allow individual isolates of this broad host range pathogen to occupy different biological niches.  相似文献   

12.
13.
The genetic control of virulence was studied in four isolates of the fungus Pyrenophora teres f. teres, originating from various geographic regions in experiments with nine barley accessions, possessing known resistance genes. Experiments were performed with the ascospore progeny of two crosses. The results of segregation for virulence in the progeny of direct crosses were confirmed by analysis of backcrosses and sib crosses. One to four genes for avirulence toward various barley genotypes were found in the isolates under study. It is suggested that dominant suppressor genes are involved in the genetic control of avirulence toward four barley genotypes.  相似文献   

14.
Map-based cloning of the avirulence gene AvrLm1 of Leptosphaeria maculans was initiated utilizing a genetic map of the fungus and a BAC library constructed from an AvrLm1 isolate. Seven polymorphic DNA markers closely linked to AvrLm1 were identified. Of these, two were shown to border the locus on its 5' end and were present, with size polymorphism, in both the virulent and the avirulent isolates. In contrast, three markers, J19-1.1, J53-1.3 (in coupling phase with avirulence), and Vir1 (in repulsion phase with avirulence), cosegregated with AvrLm1 in 312 progeny from five in vitro crosses. J19-1.1 and J53-1.3 were never amplified in the virulent parents or progeny, whereas Vir1 was never amplified in the avirulent parents or progeny. J19-1.1 and J53-1.3 were shown to be separated by 40 kb within a 184-kb BAC contig. In addition, the 1.6-cM genetic distance between J53-1.3 and the nearest recombinant marker corresponded to a 121-kb physical distance. When analyzing a European Union-wide collection of 192 isolates, J53-1.3, J19-1.1, and Vir1 were found to be closely associated with the AvrLm1 locus. The results of polymerase chain reaction amplification with primers for the three markers were in accordance with the interaction phenotype for 92.2% (J53-1.3), 90.6% (J19-1.1), and 88.0% (Vir1) of the isolates. In addition, genome organization of the AvrLm1 region was highly conserved in field isolates, because 89.1% of the avirulent isolates and 79.0% of the virulent isolates showed the same association of markers as that of the parents of in vitro crosses. The large-scale analysis of field isolates with markers originating from the genetic map therefore confirms (i) the physical proximity between the markers and the target locus and (ii) that AvrLm1 is located in (or close to) a recombination-deficient genome region. As a consequence, map-based markers provided us with high-quality markers for an overview of the occurrence of race "AvrLm1" at the field scale. These data were used to propose hypotheses on evolution towards virulence in field isolates.  相似文献   

15.
In the mouse model for systemic infection, natural a/alpha strains of C. albicans are more virulent and more competitive than their spontaneous MTL-homozygous offspring, which arise primarily by loss of one chromosome 5 homologue followed by duplication of the retained homologue (uniparental disomy). Deletion of either the a or alpha copy of the MTL locus of natural a/alpha strains results in a small decrease in virulence, and a small decrease in competitiveness. Loss of the heterozygosity of non-MTL genes along chromosome 5, however, results in larger decreases in virulence and competitiveness. Natural MTL-homozygous strains are on average less virulent than natural MTL-heterozygous strains and arise by multiple mitotic cross-overs along chromosome 5 outside of the MTL region. These results are consistent with the hypothesis that a competitive advantage of natural a/alpha strains over MTL-homozygous offspring maintains the mating system of C. albicans.  相似文献   

16.
Although aphids are worldwide crop pests, little is known about aphid effector genes underlying virulence and avirulence. Here we show that controlling the genetics of both aphid and host can reveal novel recombinant genotypes with previously undetected allelic variation in both virulence and avirulence functions. Clonal F1 progeny populations were derived from reciprocal crosses and self-matings between two parental genotypes of pea aphid (Acyrthosiphon pisum) differing in virulence on a Medicago truncatula host carrying the RAP1 and RAP2 resistance genes. These populations showed Mendelian segregation consistent with aphid performance being controlled largely by a dominant virulence allele derived from only one parent. Altered segregation ratios on near-isogenic host genotypes differing in the region carrying RAP1 were indicative of additional heritable functions likely related to avirulence genes originating from both parents. Unexpectedly, some virulent F1 progeny were recovered from selfing of an avirulent parent, suggesting a reservoir of cryptic alleles. Host chlorosis was associated with virulence, whereas necrotic hypersensitive-like response was not. No maternal inheritance was found for any of these characteristics, ruling out sex-linked, cytoplasmic, and endosymbiotic factors. Our results demonstrate the tractability of dissecting the genetic basis of pest-host resistance mechanisms and indicate that the annual sexual cycle in aphids may lead to frequent novel genotypes with both increased and decreased virulence. Availability of genomes for both pest and host can facilitate definition of cognate gene-for-gene relationships, potentially leading to selection of crop genotypes with multiple resistance traits.  相似文献   

17.
Detoxification of the pea phytoalexin pisatin via demethylation, mediated by a cytochrome P-450 monooxygenase, is thought to be important for pathogenicity of the fungus Nectria haematococca on pea. To isolate a fungal gene encoding pisatin demethylating activity (pda), we transformed Aspergillus nidulans with a genomic library of N. haematococca DNA constructed in a cosmid which carried the A. nidulans trpC gene. Transformants were selected for Trp+ and then screened for pda. One transformant among 1250 tested was Pda+ and was less sensitive to pisatin in culture than Pda- A. nidulans. The cosmid containing the gene (PDA) conferring this activity was recovered by phage lambda packaging of transformant genomic DNA. When A. nidulans was transformed with the cloned cosmid, 98% of the Trp+ transformants were Pda+. RNA blots probed with a 3.35 kb subclone carrying PDA indicated that the gene is expressed constitutively in A. nidulans but is inducible by pisatin in N. haematococca.  相似文献   

18.
Sexual crosses were used to determine the genetic basis of resistance to the sterol 14 alpha-demethylase inhibitor fungicide prochloraz in the cereal eyespot pathogen Tapesia yallundae. Three different crosses between sensitive parental strains (22-432 and 22-433 [the concentration required to inhibit growth by 50% (IG(50)) for each was 相似文献   

19.
The Burkholderia multivorans strain ATCC 17616 carries three circular chromosomes with sizes of 3.4, 2.5, and 0.9 Mb. To determine the distribution and organization of the amino acid biosynthetic genes on the genome of this beta-proteobacterium, various auxotrophic mutations were isolated using a Tn5 derivative that was convenient not only for the determination of its insertion site on the genome map but also for the structural analysis of the flanking regions. Analysis by pulsed-field gel electrophoresis revealed that 20 out of 23 insertion mutations were distributed on the 3.4-Mb chromosome. More detailed analysis of the his, trp, arg, and lys mutations and their flanking regions revealed the following properties of these auxotrophic genes: (i) all nine his genes were clustered on the 3.4-Mb chromosome; (ii) seven trp genes were organized within two distinct regions, i.e., a trpEGDC cluster on the 3.4-Mb chromosome and a trpFBA cluster on the 2.5-Mb chromosome; (iii) the leu gene cluster, leuCDB, was also located close to the trpFBA cluster; and (iv) lysA and argG genes were located on the 2.5-Mb chromosome, in contrast to the argH gene, which was located on the 3.4-Mb chromosome. Southern hybridization analysis, allelic exchange mutagenesis of ATCC 17616, and complementation tests demonstrated that all of the genes examined were functional and existed as a single copy within the genome. The present findings also indicated that the 2.5-Mb chromosome carried various auxotrophic genes with no structural or functional counterparts on the remaining two chromosomes.  相似文献   

20.
Host specificity of plant pathogens can be dictated by genes that enable pathogens to circumvent host defenses. Upon recognition of a pathogen, plants initiate defense responses that can include the production of antimicrobial compounds such as phytoalexins. The pea pathogen Nectria haematococca mating population VI (MPVI) is a filamentous ascomycete that contains a cluster of genes known as the pea pathogenicity (PEP) cluster in which the pisatin demethylase (PDA) gene resides. The PDA gene product is responsible for the detoxification of the phytoalexin pisatin, which is produced by the pea plant (Pisum sativum L.). This detoxification activity allows the pathogen to evade the phytoalexin defense mechanism. It has been proposed that the evolution of PDA and the PEP cluster reflects horizontal gene transfer (HGT). Previous observations consistent with this hypothesis include the location of the PEP cluster and PDA gene on a dispensable portion of the genome (a supernumerary chromosome), a phylogenetically discontinuous distribution of the cluster among closely related species, and a bias in G + C content and codon usage compared to other regions of the genome. In this study we compared the phylogenetic history of PDA, beta-tubulin, and translation elongation factor 1-alpha in three closely related fungi (Nectria haematococca, Fusarium oxysporum, and Neocosmospora species) to formally evaluate hypotheses regarding the origin and evolution of PDA. Our results, coupled with previous work, robustly demonstrate discordance between the gene genealogy of PDA and the organismal phylogeny of these species, and illustrate how HGT of pathogenicity genes can contribute to the expansion of host specificity in plant-pathogenic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号