首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In normal anaphase of crane fly spermatocytes, the autosomes traverse most of the distance to the poles at a constant, temperature-dependent velocity. Concurrently, the birefringent kinetochore fibers shorten while retaining a constant birefringent retardation (BR) and width over most of the fiber length as the autosomes approach the centrosome region. To test the dynamic equilibrium model of chromosome poleward movement, we abruptly cooled or heated primary spermatocytes of the crane fly Nephrotoma ferruginea (and the grasshopper Trimerotropis maritima) during early anaphase. According to this model, abrupt cooling should induce transient depolymerization of the kinetochore fiber microtubules, thus producing a transient acceleration in the poleward movement of the autosomal chromosomes, provided the poles remain separated. Abrupt changes in temperature from 22 degrees C to as low as 4 degrees C or as high as 31 degrees C in fact produced immediate changes in chromosome velocity to new constant velocities. No transient changes in velocity were observed. At 4 degrees C (10 degrees C for grasshopper cells), chromosome movement ceased. Although no nonkinetochore fiber BR remained at these low temperatures, kinetochore fiber BR had changed very little. The cold stability of the kinetochore fiber microtubules, the constant velocity character of chromosome movement, and the observed Arrhenius relationship between temperature and chromosome velocity indicate that a rate-limiting catalyzed process is involved in the normal anaphase depolymerization of the spindle fiber microtubules. On the basis of our birefringence observations, the kinetochore fiber microtubules appear to exist in a steady-state balance between comparatively irreversible, and probably different, physiological pathways of polymerization and depolymerization.  相似文献   

2.
Sites of microtubule assembly and disassembly in the mitotic spindle   总被引:82,自引:0,他引:82  
T Mitchison  L Evans  E Schulze  M Kirschner 《Cell》1986,45(4):515-527
We have microinjected biotinylated tubulin into mitotic fibroblast cells to identify the sites in the spindle at which new subunits are incorporated into microtubules (MTs). Labeled subunits were visualized in the electron microscope using an antibody to biotin followed by a secondary antibody coupled to colloidal gold. Astral MTs incorporate labeled subunits very rapidly by elongation of existing MTs and by new nucleation from the centrosome. At a slower rate, kinetochore MTs incorporate subunits at the kinetochore progressively during metaphase, suggesting a slow poleward flux of subunits in the kinetochore fiber. When cells injected in metaphase were examined in anaphase, a significant fraction of kinetochore MTs was unlabeled, suggesting that depolymerization had occurred at the kinetochore concomitant with chromosome to pole movement. The existence of opposite fluxes at the kinetochore during metaphase and anaphase suggests that two separate forces are responsible for chromosome congression and anaphase movement.  相似文献   

3.
The positions of the two sets of chromosome kinetochores, the spindle poles, cell membrane adjacent to the poles, and cleavage furrow of grasshopper neuroblasts in culture at 38°C were determined at short-time intervals during anaphase. The percent of motion due to poleward movement and spindle elongation, which coincide in time, were calculated for each minute, the former falling from 61% in the first minute to 15% in the seventh minute, and increasing to 86% in the final minute, probably as a result of pressure and bending of the spindle. Of the total chromosome movement during anaphase 44.6% is due to poleward movement of the daughter kinetochores and 55.4% to spindle elongation. The maximum velocity of a set of kinetochores is 3.41 m/min and the mean velocity 1.86 m/min (one-half the rate of separation). Various studies of anaphase chromosome movement in different cells and different species suggest certain generalizations, some of which are based on very small samples and so must be considered quite tentative: (1) The combination of poleward movement and spindle elongation is much more frequent than either acting alone. (2) These components of movement may coincide in time, overlap, or spindle elongation may follow poleward movement, but spindle elongation never begins before poleward chromosome movement. (3) There is an optimum temperature for the rate of chromosome movement, above and below which the rate gradually decreases. (4) In homoiothermic animals this optimum occurs at normal body temperature. (5) In homoiothermic animals the velocity falls more rapidly with a decrease in temperature than in poikilothermic animals. (6) Animals with large chromosomes (amphibia, grasshoppers) have higher chromosome velocities than those with small chromosomes. (7) Non-meiotic cells and secondary spermatocytes have higher velocities than primary spermatocytes of the same species. (8) Chromosome velocity is lower in malignant than non-malignant cells. (9) Chromosome velocity tends to be positively correlated with the distance the chromosomes travel during anaphase.  相似文献   

4.
Chromosome segregation in most animal cells is brought about through two events: the movement of the chromosomes to the poles (anaphase A) and the movement of the poles away from each other (anaphase B). Essential to an understanding of the mechanism of mitosis is information on the relative movements of components of the spindle and identification of sites of subunit loss from shortening microtubules. Through use of tubulin derivatized with X-rhodamine, photobleaching, and digital imaging microscopy of living cells, we directly determined the relative movements of poles, chromosomes, and a marked domain on kinetochore fibers during anaphase. During chromosome movement and pole-pole separation, the marked domain did not move significantly with respect to the near pole. Therefore, the kinetochore microtubules were shortened by the loss of subunits at the kinetochore, although a small amount of subunit loss elsewhere was not excluded. In anaphase A, chromosomes moved on kinetochore microtubules that remained stationary with respect to the near pole. In anaphase B, the kinetochore fiber microtubules accompanied the near pole in its movement away from the opposite pole. These results eliminate models of anaphase in which microtubules are thought to be traction elements that are drawn to and depolymerized at the pole. Our results are compatible with models of anaphase in which the kinetochore fiber microtubules remain anchored at the pole and in which microtubule dynamics are centered at the kinetochore.  相似文献   

5.
Mitosis in Tilia americana endosperm   总被引:5,自引:4,他引:1       下载免费PDF全文
The endosperm cells of the American basswood Tilia americana are favorable experimental material for investigating the birefringence of living plant spindles and anaphase movement of chromosomes. The behavior of the chromosomes in anaphase and the formation of the phragmoplast are unique. The numerous (3 n equals 123), small chromosomes move in precise, parallel rows until midanaphase when they bow away from the poles. Such a pattern of anaphase chromosome distribution has been described once before, but was ascribed to fusion of the chromosomes. The bowing of chromosome rows in Tilia is explainable quantitatively by the constant poleward velocity of the chromosomes during anaphase. Peripheral chromosomes are moving both relative to the spindle axis and laterally closer to the axis, whereas chromosomes lying on the spindle axis possess no lateral component in their motion, and thus at uniform velocity progress more rapidly than peripheral chromosomes relative to the spindle axis. The chromosomes are moved poleward initially by pole-to-pole elongation of the spindle, then moved farther apart by shortening of the kinetochore fibers. In contrast to other plant cells where the phragmoplast forms in telophase, the phragmoplast in Tilia endosperm is formed before midanaphase and the cell during midanaphase, while the chromosomes are still in poleward transit.  相似文献   

6.
Summary— kinetochore spindle fibers in meiosis I and II grasshopper spermatocytes were cut with a heterochromatic ultraviolet (UV) microbeam converging on the specimen to form a slit-shaped microspot 1.5 × 8 μm or 3 × 8 μm. A total exposure of 3 × 10?8 joules per μm2 was administered within 0.8–2.4 s, which was sufficient for severing. The cells were observed with a high extinction polarizing microscope or phase contrast optics and a record made by time-lapse video microscopy, continuously before, during and after the irradiation. When kinetochore fibers were irradiated i anaphase with UV, an area of reduced birefringence (ARB) was produced at the exposed site. The newly created + ends of the microtubules rapidly disassembled poleward, at a constant speed of 17 μm/min. The — ends at the edge of ARB also depolymerized at a slower rate. When a kinetochore fiber was cut with UV in early anaphase at which time its associated chromosome had not disjoined from the partner chromosome, the chromosome of the irradiated kinetochore fiber moved rapidly back to its partner. The speed during this movement was faster than the normal poleward chromosome movement in anaphase by an order to magnitude or more. When a kinetochore and its associated kinetochore fiber were included in the irradiation are, the effects were more pronounced than the effects of irradiation on a kinetochore fiber alone; the direction of the line connecting the irradiated half-bivalent with the partner half-bivalent deviated so much from the longitudinal axis of the original spindle with time that the division assumed a tripolar figure.  相似文献   

7.
Living crane fly spermatocytes were irradiated in various areas, and changes in chromosome movement and changes in spindle fiber birefringence were measured.The traction system was localized in the chromosomal spindle fibers; an undamaged traction fiber extending at least 1/2 the fiber length (from the chromosome) is necessary for normal movement. The results suggest, however, that the birefringent fiber is separate from the traction fiber, and therefore that the chromosomal spindle fiber is composed of at least 2 components. Otherwise, the following results characterize the traction fiber: birefringence is not necessary for movement, birefringence and movement are affected independently, the birefringent fiber moves poleward when the associated chromosome does not move, and the birefringent fiber moves poleward at a rate not related to that of the associated chromosome. These and other results are more easily explained under the assumptions: (1) during anaphase, the birefringent fiber is independent of the traction fiber, and (2) prior to anaphase, the birefringent fiber is not independent of the traction fiber.The traction system was further characterized as follows: the anaphase movements of sister dyads are interdependent; in a cell, different sister dyad pairs are independent during anaphase but are not independent prior to anaphase; the initial separation of dyads is autonomous; the spindle organization changes markedly between metaphase and anaphase; and, something in the interzonal region is necessary for the subsequent division.It was suggested that the interdependent movement of sister dyads is mediated via functioning kinetochores. It was further suggested that this interdependence is mediated via kinetochore-interzonal region interactions, and that the interzonal region is involved with regulating the amount of force on the chromosome.Portions of this paper were presented to Dartmouth College in partial fullfilment of the requirements for the degree of Doctor of Philosophy.  相似文献   

8.
Anchorage of microtubule minus ends at spindle poles has been proposed to bear the load of poleward forces exerted by kinetochore-associated motors so that chromosomes move toward the poles rather than the poles toward the chromosomes. To test this hypothesis, we monitored chromosome movement during mitosis after perturbation of nuclear mitotic apparatus protein (NuMA) and the human homologue of the KIN C motor family (HSET), two noncentrosomal proteins involved in spindle pole organization in animal cells. Perturbation of NuMA alone disrupts spindle pole organization and delays anaphase onset, but does not alter the velocity of oscillatory chromosome movement in prometaphase. Perturbation of HSET alone increases the duration of prometaphase, but does not alter the velocity of chromosome movement in prometaphase or anaphase. In contrast, simultaneous perturbation of both HSET and NuMA severely suppresses directed chromosome movement in prometaphase. Chromosomes coalesce near the center of these cells on bi-oriented spindles that lack organized poles. Immunofluorescence and electron microscopy verify microtubule attachment to sister kinetochores, but this attachment fails to generate proper tension across sister kinetochores. These results demonstrate that anchorage of microtubule minus ends at spindle poles mediated by overlapping mechanisms involving both NuMA and HSET is essential for chromosome movement during mitosis.  相似文献   

9.
A microheater was used to produce a temperature gradient within the mitotic spindle of living cells. The slope of the temperature gradient was estimated from thermal conductivity calculations and confirmed by measurements of spindle birefringence and by experiments on striated muscle. When the microheater was placed at one spindle pole or at one group of kinetochores, the gradient was steep enough to cause a large difference in birefringence between the two half-spindles, but the velocity of chromosome movement in anaphase was nearly the same in the warmer and cooler half-spindles. When the heater was shifted from the pole toward the interzone, the average velocity of chromosome movement increased approximately two-fold but was, again, nearly uniform in the two half-spindles. The rate of spindle elongation was especially sensitive to the site of heating, increasing ten-fold when the heater was shifted from the pole to the interzone. Regardless of heater position, the rate of chromosome movement was determined largely by the temperature of the coolest spindle region —chromosomes in the warmer half-spindle moved more slowly than expected from estimates of the temperature in that region. Since the microheater produces a substantial temperature gradient within the spindle, the near uniformity of chromosome velocity in both half-spindles must be due to some biological property of the spindle. Two very different explanations for the results are considered the most likely. According to one explanation, the near uniformity of velocity in both half-spindles is determined by the structure of the interpolar spindle, while changes in velocity involve force producers located both in the half-spindles and in the interzone. On the other explanation, the velocity is nearly the same in both half-spindles because the force producers are located exclusively in the interzone (Margolis et al., 1978).This paper is dedicated to Professor Sally Hughes-Schrader with admiration and affection  相似文献   

10.
In higher eukaryotic cells, the spindle forms along with chromosome condensation in mitotic prophase. In metaphase, chromosomes are aligned on the spindle with sister kinetochores facing toward the opposite poles. In anaphase A, sister chromatids separate from each other without spindle extension, whereas spindle elongation takes place during anaphase B. We have critically examined whether such mitotic stages also occur in a lower eukaryote, Schizosaccharomyces pombe. Using the green fluorescent protein tagging technique, early mitotic to late anaphase events were observed in living fission yeast cells. S. pombe has three phases in spindle dynamics, spindle formation (phase 1), constant spindle length (phase 2), and spindle extension (phase 3). Sister centromere separation (anaphase A) rapidly occurred at the end of phase 2. The centromere showed dynamic movements throughout phase 2 as it moved back and forth and was transiently split in two before its separation, suggesting that the centromere was positioned in a bioriented manner toward the poles at metaphase. Microtubule-associating Dis1 was required for the occurrence of constant spindle length and centromere movement in phase 2. Normal transition from phase 2 to 3 needed DNA topoisomerase II and Cut1 but not Cut14. The duration of each phase was highly dependent on temperature.  相似文献   

11.
Anaphase can be categorized into the two subphases of anaphase A and B, but anaphase B has not been clearly described in higher plant cells. In this study, we time-sequentially followed the dynamics of chromosome segregation and spindle elongation in tobacco BY-2 cells using histone-red fluorescent protein (RFP) and green fluorescent protein (GFP)-tubulin, respectively. Construction of kymographs and determination of the positions of chromosomes and spindle edges by image processing revealed that anaphase B contributed to about 40% of the chromosome separation in distance, which is comparable with that in animal cells. These results suggest that higher plant cells potentially possess the process of anaphase B.  相似文献   

12.
Poleward microtubule flux is a conserved process during mitosis and meiosis in metazoan cells and is defined as the translocation of spindle microtubules toward spindle poles coupled to the depolymerization of their minus-ends. In some cell types, the rate of poleward microtubule flux matches that of poleward chromatid movement during anaphase A, suggesting that it pulls chromatids poleward. However, in other cell types, the rate of poleward microtubule flux is significantly slower than chromatid movement during anaphase A, suggesting that it makes little contribution to chromatid movement. This discrepancy led to speculation that flux is maintained in these cells to fulfill other functional roles aside from contributing to anaphase A chromatid movement. These roles include contributing to chromosome alignment, regulating spindle size and microtubule turnover, and correcting errors in chromosome attachment to spindle microtubules. Here, we discuss recent data that begin to pinpoint the functional roles of poleward microtubule flux during mitosis and meiosis.  相似文献   

13.
During mitotic spindle assembly, Aurora B kinase is part of an error correction mechanism that detaches microtubules from kinetochores that are under low mechanical tension. During anaphase, however, kinetochore-microtubule attachments must be maintained despite a drop of tension after removal of sister chromatid cohesion. Consistent with this requirement, Aurora B relocates away from chromosomes to the central spindle at the metaphase-anaphase transition. By ribonucleic acid interference screening using a phosphorylation biosensor, we identified two PP1-targeting subunits, Sds22 and Repo-Man, which counteracted Aurora B-dependent phosphorylation of the outer kinetochore component Dsn1 during anaphase. Sds22 or Repo-Man depletion induced transient pauses during poleward chromosome movement and a high incidence of chromosome missegregation. Thus, our study identifies PP1-targeting subunits that regulate the microtubule-kinetochore interface during anaphase for faithful chromosome segregation.  相似文献   

14.
The oscillations of chromosomes associated with a single spindle pole in monocentric and bipolar spindles were analysed by time-lapse cinematography in mitosis of primary cultures of lung epithelium from the newt Taricha granulosa. Chromosomes oscillate toward and away from the pole in all stages of mitosis including anaphase. The duration, velocity, and amplitude of such oscillations are the same in all stages of mitosis. The movement away from the pole in monocentric spindle is rapid enough to suggest the existence of a previously unrecognized active component in chromosome movement, presumably resulting from a pushing action of the kinetochore fiber. During prometaphase oscillations, chromosomes may approach the pole even more closely than at the end of anaphase. Together, these observations demonstrate that a monopolar spindle is sufficient to generate the forces for chromosome transport, both toward and away from the pole. The coordination of the aster/centrosome migration in prophase with the development of the kinetochore fibers determines the course of mitosis. After the breaking of the nuclear envelope in normal mitosis, aster/centrosome separation is normally followed by the rapid formation of bipolar chromosomal fibers. There are two aberrant extremes that may result from a failure in coordination between these processes: (a) A monocentric spindle will arise when aster separation does not occur, and (b) an anaphaselike prometaphase will result if the aster/centrosomal complexes are already well-separated and bipolar chromosomal fibers do not form. In the latter case, the two monopolar prometaphase half-spindles migrate apart, each containing a random number of two chromatid (metaphase) monopolar-oriented chromosomes. This random segregation of prometaphase chromosome displays many features of a standard anaphase and may be followed by a false cleavage. The process of polar separation during prometaphase occurs without any visible interzonal structures. Aster/centrosomes and monopolar spindles migrate autonomously by an unknown mechanism. There are, however, firm but transitory connections between the aster center and the kinetochores as demonstrated by the occasional synchrony of centrosome-kinetochore movement. The data suggest that aster motility is important in the progress of both prometaphase and anaphase in normal mitosis.  相似文献   

15.
Irradiation of the mitotic spindle in living Nephrotoma suturalis (Loew) spermatocytes with an ultraviolet microbeam of controlled dose produced a localized area of reduced birefringence in the spindle fibers. The birefringence was reduced only at the site irradiated, and only on the spindle fibers irradiated. Areas of reduced birefringence, whether produced during metaphase or during anaphase, immediately began to move toward the pole in the direction of the chromosomal fiber, even though the associated chromosomes did not necessarily move poleward. Both the poleward and the chromosomal sides of the area of reduced birefringence on each chromosomal fiber moved poleward with about the same, constant, velocity. On the average, the areas of reduced birefringence moved poleward with about the same velocities as did the chromosomes during anaphase. The area of reduced birefringence was interpreted as a region in which most, though not necessarily all, of the previously oriented material was disoriented by the irradiation. The poleward movement of the areas of reduced birefringence indicates that the spindle fibers are not static, nonchangeable structures. The poleward movement possibly represents the manner in which the birefringent spindle fibers normally become organized. All the experiments reported were on primary spermatocytes which completed the second meiotic division subsequent to the experimentation. Since both the irradiated and the control cells completed the two meiotic divisions, the movement and irradiation effects studied in the first division were nondegenerative.  相似文献   

16.
Cell division and the microtubular cytoskeleton]   总被引:1,自引:0,他引:1  
K Izutsu 《Human cell》1991,4(2):100-108
Kinetochore microtubules result from an interaction between astral microtubules and the kinetochore of the chromosomes after breakdown of the nuclear envelope at the end of prophase. In this process, the end of a microtubule projecting from one of the polar regions contacts the primary constriction of a chromosome. The latter then undergoes rapid poleward movement. Concerning the mechanism of anaphase chromosome movement, the motive force for the chromosome-to-pole movement appears to be generated at the kinetochore or in the region very close to it. It has not been determined whether chromosomes propel themselves along stationary kinetochore microtubules by a motor at the kinetochore, or they are pulled poleward by a traction fiber consisting of kinetochore microtubules and associated motors. As chromosomes move poleward coordinate disassembly of kinetochore microtubules might occur from their kinetochore ends. In diatom and yeast spindles, elongation of the spindle in anaphase (anaphase B) may be explained by microtubule assembly at polar microtubule ends in the spindle mid-zone and sliding of the antiparallel microtubules from the opposite poles. The sliding force appears to be generated through an ATP-dependent microtubule motor. In isolated sea urchin spindles, the microtubule assembly at the equator alone might provide the force for spindle elongation, although, in addition, involvement of microtubule sliding by a GTP-requiring mechanochemical enzyme cannot be excluded. Discussions were made on possible participation in anaphase chromosome movement of such microtubule motors as dynein, kinesin, dynamin and the claret segregation protein.  相似文献   

17.
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward through each half-spindle and then were lost from microtubule minus ends at the spindle poles. The average poleward velocity of approximately 0.7 microm/min for speckles within kinetochore microtubules at metaphase increased during anaphase to approximately 0.9 microm/min. Segregating half-bivalents had an average poleward velocity of approximately 0.5 microm/min, about half that of speckles within shortening kinetochore fibers. When injected during anaphase, rhtubulin was incorporated at kinetochores, and kinetochore fiber fluorescence spread poleward as anaphase progressed. The results show that tubulin subunits are added to the plus end of kinetochore microtubules and are removed from their minus ends at the poles, all while attached chromosomes move poleward during anaphase A. The results cannot be explained by a Pac-man model, in which 1) kinetochore-based, minus end-directed motors generate poleward forces for anaphase A and 2) kinetochore microtubules shorten at their plus ends. Rather, in these cells, kinetochore fiber shortening during anaphase A occurs exclusively at the minus ends of kinetochore microtubules.  相似文献   

18.
Summary. We used an ultraviolet microbeam to cut individual kinetochore spindle fibres in metaphase crane-fly spermatocytes. We then followed the growth of the “kinetochore stubs”, the remnants of kinetochore fibres that remain attached to kinetochores. Kinetochore stubs elongate with constant velocity by adding tubulin subunits at the kinetochore, and thus elongation is related to tubulin flux in the kinetochore microtubules. Stub elongation was blocked by cytochalasin D and latrunculin A, actin inhibitors, and by butanedione monoxime, a myosin inhibitor. We conclude that actin and myosin are involved in generating elongation and thus in producing tubulin flux in kinetochore microtubules. We suggest that actin and myosin act in concert with a spindle matrix to propel kinetochore fibres poleward, thereby causing stub elongation and generating anaphase chromosome movement in nonirradiated cells. Correspondence: A. Forer, Biology Department, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.  相似文献   

19.
Injection of CREST antikinetochore antiserum (AKA) containing antibodies to the kinetochore into living prometaphase PtK2 cells decreased chromosome velocity to near zero. Injection of either phosphate-buffered saline or CREST antiserum without antikinetochore antibodies (antikinetochore negative: AKN) had no effect on prometaphase oscillations. AKA antiserum injected into anaphase cells at the beginning of chromatid separation had no effect on anaphase chromosome velocity, spindle elongation, or cytokinesis. Visible binding of antikinetochore antibodies in prometaphase cells at room temperature occurred between 5 and 15 minutes after injection. Anaphase cells injected at the beginning of chromatid separation had bound antibody at the end of anaphase. AKA antiserum recognizes in Western blots proteins associated with the primary constriction: CENP-B, -C, and -D, as reported by other workers. The control antiserum, AKN, does not recognize these proteins. These results imply that the antigens recognized by CREST antibodies are important for chromosome movement. Whether or not these antigens are themselves motor molecules cannot be addressed by the present data. In addition, the results suggest that these antigens are not involved in an important way in anaphase movement.  相似文献   

20.
During cell division, chromosome segregation must be coordinated with cell cleavage so that cytokinesis occurs after chromosomes have been safely distributed to each spindle pole. Polo-like kinase 1 (Plk1) is an essential kinase that regulates spindle assembly, mitotic entry and chromosome segregation, but because of its many mitotic roles it has been difficult to specifically study its post-anaphase functions. Here we use small molecule inhibitors to block Plk1 activity at anaphase onset, and demonstrate that Plk1 controls both spindle elongation and cytokinesis. Plk1 inhibition did not affect anaphase A chromosome to pole movement, but blocked anaphase B spindle elongation. Plk1-inhibited cells failed to assemble a contractile ring and contract the cleavage furrow due to a defect in Rho and Rho-GEF localization to the division site. Our results demonstrate that Plk1 coordinates chromosome segregation with cytokinesis through its dual control of anaphase B and contractile ring assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号