首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a richly documented fossil record of the evolutionary transition from ape-sized brains that are less that one-third the size of modern humans through a series of intermediate-sized brains up to the modern range. The first report on the discovery of the foot of the Stw 573 skeleton emphasized the apparent transitional nature of its great toe [Clarke, R.J., Tobias, P.V., 1995. Sterkfontein Member 2 foot bones of the oldest South African hominid. Science 269, pp. 521-524]. The hallux appeared to be intermediate in its divergence between human-like adduction and ape-like abduction. A major part of this evidence is the medial encroachment of the metatarsal I facet on the medial cuneiform. This study quantifies the variability of this feature in extant hominoids and fossil hominids. The results are consistent with the view that all currently known hominids were specialized for bipedality and lacked the ape-like ability to oppose the great toe.  相似文献   

2.
The first rib of hominoids   总被引:1,自引:0,他引:1  
Homo sapiens is unique among extant hominoids in displaying a univertebral articular pattern for the first rib; that is, the head of the first rib articulates only with the body of the first thoracic vertebra. All other hominoids, indeed virtually all other mammals, display a bivertebral pattern; that is, the head of the first rib articulates with the bodies of both the seventh cervical and the first thoracic vertebrae, as well as the intervening disk. Two fossil hominid partial first ribs, A.L. 288-lax and A.L. 333-118, show that the univertebral pattern was fully established in the hominid lineage by the appearance of Australopithecus afarensis. Four hypotheses, based in functional anatomy, can be postulated for the evolution of the univertebral pattern: (1), it increases the volume (via increased length) of the neck, which could, in turn, compensate for the functional loss of the laryngeal sac systems in hominid vocalization; (2), it is a consequence of the more barrel-shaped thorax in hominids; (3), it is a consequence of functional modifications in the hominid shoulder girdle; and/or (4), it is a consequence of modifications in hominid first rib motion while breathing in an upright stance. Fossil evidence supports all but the first hypothesis, and most strongly supports the third. However, evidence for the first hypothesis does suggest that the evolution of descent of the upper respiratory system in the hominid lineage may have been permitted by the presence of the univertebral pattern, while the reverse is probably not true. Furthermore, fossil evidence for the third hypothesis shows that, by the appearance of A. afarensis, the hominid upper limb had been freed from locomotor constraints, which concomitantly confirms full adaptation to upright posture. Thus, because of their potential relationship with upright posture, the two remaining hypotheses (i.e., "thoracic shape" and "first rib movement during breathing") also have support from the fossil evidence.  相似文献   

3.
Recent discoveries of new fossil hominid species have been accompanied by several phylogenetic hypotheses. All of these hypotheses are based on a consideration of hominid craniodental morphology. However, Collard and Wood (2000) suggested that cladograms derived from craniodental data are inconsistent with the prevailing hypothesis of ape phylogeny based on molecular data. The implication of their study is that craniodental characters are unreliable indicators of phylogeny in hominoids and fossil hominids but, notably, their analysis did not include extinct species. We report here on a cladistic analysis designed to test whether the inclusion of fossil taxa affects the ability of morphological characters to recover the molecular ape phylogeny. In the process of doing so, the study tests both Collard and Wood's (2000) hypothesis of character reliability, and the several recently proposed hypotheses of early hominid phylogeny. One hundred and ninety-eight craniodental characters were examined, including 109 traits that traditionally have been of interest in prior studies of hominoid and early hominid phylogeny, and 89 craniometric traits that represent size-corrected linear dimensions measured between standard cranial landmarks. The characters were partitioned into two data sets. One set contained all of the characters, and the other omitted the craniometric characters. Six parsimony analyses were performed; each data set was analyzed three times, once using an ingroup that consisted only of extant hominoids, a second time using an ingroup of extant hominoids and extinct early hominids, and a third time excluding Kenyanthropus platyops. Results suggest that the inclusion of fossil taxa can play a significant role in phylogenetic analysis. Analyses that examined only extant taxa produced most parsimonious cladograms that were inconsistent with the ape molecular tree. In contrast, analyses that included fossil hominids were consistent with that tree. This consistency refutes the basis for the hypothesis that craniodental characters are unreliable for reconstructing phylogenetic relationships. Regarding early hominids, the relationships of Sahelanthropus tchadensis and Ardipithecus ramidus were relatively unstable. However, there is tentative support for the hypotheses that S. tchadensis is the sister taxon of all other hominids. There is support for the hypothesis that A. anamensis is the sister taxon of all hominids except S. tchadensis and Ar. ramidus. There is no compelling support for the hypothesis that Kenyanthropus platyops shares especially close affinities with Homo rudolfensis. Rather, K. platyops is nested within the Homo + Paranthropus + Australopithecus africanus clade. If K. platyops is a valid species, these relationships suggest that Homo and Paranthropus are likely to have diverged from other hominids much earlier than previously supposed. There is no support for the hypothesis that A. garhi is either the sister taxon or direct ancestor of the genus Homo. Phylogenetic relationships indicate that Australopithecus is paraphyletic. Thus, A. anamensis and A. garhi should be allocated to new genera.  相似文献   

4.
Recently, nomina such as “Homo heidelbergensis” and “H. ergaster” have been resurrected to refer to fossil hominids that are perceived to be specifically distinct from Homo sapiens and Homo erectus. This results in a later human fossil record that is nearly as speciose as that documenting the earlier history of the family Hominidae. However, it is agreed that there remains only one extant hominid species: H. sapiens. Has human taxonomic diversity been significantly pruned over the last few hundred millennia, or have the number of taxa been seriously overestimated? To answer this question, the following null hypothesis is tested: polytypism was established relatively early and the species H. erectus can accommodate all spatio-temporal variation from ca. 1.7 to 0.5 Ma. A disproof of this hypothesis would suggest that modern human polytypism is a very recent phenomenon and that speciation throughout the course of human evolution was the norm and not the exception. Cranial variation in a taxonomically mixed sample of fossil hominids, and in a modern human sample, is analyzed with regard to the variation present in the fossils attributed to H. erectus. The data are examined using both univariate (coefficient of variation) and multivariate (determinant) analyses. Employing randomization methodology to offset the small size and non-normal distribution of the fossil samples, the CV and determinant results reveal a pattern and degree of variation in H. erectus that most closely approximates that of the single species H. sapiens. It is therefore concluded that the null hypothesis cannot be rejected. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Fossil evidence from the Plio-Pleistocene of Africa apparently has confirmed a multi-lineage interpretation of early hominid evolution. Empirical refutation of the single species hypothesis must now be matched to the evolutionary ecology theory, which can underwrite taxonomic assessment and help to explain sympatric hominid coexistence. This paper contributes to that goal by reassessing the ecological rationale provided for the single-species hypothesis. Limiting similarity concepts indicate that the allowable ecological overlap between sympatric competitors is greater than the degrees of metric overlap often advanced as standards for identifying fossil species. Optimal foraging theory and the compression hypothesis show that the initial ecological reaction of a hominid to a sympatric competitor would likely be micro-habitat divergence and possibly also temporal differentiation of resource use. The long-term, evolutionary response is niche divergence, probably involving diet as well. General niche partitioning studies suggest that diet and habitat are the most common dimensions of niche separation, although temporal separation is unusually frequent in carnivores. The equation of niche with culture, basic to the single-species hypothesis, has no analytic meaning. Finally, four minor points are discussed, suggesting that (a) extinction is not unlikely, even for a long-lived and competitively competent hominid lineage, (b)parsimony is fickle, (c)interspecific mutualism may jeopardize survival, and (d)generalists are subordinate competitors, but for hominids, seemingly, successful ones. I argue that analog models of hominid paleoecology should be replaced by the use of zoological and anthropological observations to assess the generality and reliability of ecological theory and comcepts that may encompass early hominids.  相似文献   

6.
7.
吴秀杰 《人类学学报》2003,22(3):249-255
脑演化是人类演化的一个重要组成部分,其研究可以为人类起源、演化、人群关系及语言、智力等方面提供重要的信息。脑演化的主要证据是通过研究颅内模(endocast)及颅骨的形态得到的。颅内模是从颅骨内表面得到的脑的外部形态。有时颅骨的内腔充满泥沙,并且为钙质所结固,可以自然形成颅内模。也可以人工制作颅内模。颅内模和颅骨的内表面能够提供人类脑髓及神经进化方面的直接证据。对化石人类脑演化的研究主要包括以下几个方面的内容:测量或估计脑量的大小及其和身体大小之间的关系;研究脑量随时间的变化过程;通过对早期人类颅内模表面沟回形态特征的研究,探索脑功能区在早期人类和猿类的区别及在演化上的变化;左右大脑不对称性与一侧优势关系,探讨语言的起源和惯用手的脑功能基础等;脑膜中动脉系统、静脉窦系统及与血液循环相关的排泄孔的变化,探讨大脑各部分比例的变化和功能的日益复杂对供血需求的影响;通过对人类脑演化的研究,探讨人类进化的原因。本文通过对以上几个方面及其中国化石脑演化研究的介绍,对化石人类脑演化的研究概况作综合论述和简单回顾。  相似文献   

8.
Neo-darwinian and population genetics theory assumes that the necessary and sufficient set of conditions for all genetic, therefore evolutionary, change has been identified. Punctuationalists have assumed the opposite and cite the fossil record as evidence for change too rapid to be explained in neo-darwinian theory. Data is given here to provide estimates of the rate of evolution in hominid fossils, in living populations, and of that rate which would qualify as punctuational in the hominid fossil record. Evolution in living populations is orders of magnitude greater than that found in the fossil record and far greater than necessary to create apparently instantaneous saltations in the fossil record. It is suggested that such saltations may not represent more rapid rates of evolution but, rather, the persistence of evolutionary change in a given direction for a longer than normal period.  相似文献   

9.
The ring-tailed lemurs at Beza Mahafaly Special Reserve, Madagascar, exhibit a high frequency of severe wear and antemortem tooth loss. As part of a long-term study, we collected dental data on 83 living adult ring-tailed lemurs during 2003 and 2004. Among these individuals, 192 teeth were scored as absent. The most frequently missing tooth position is M1 (24%). As M1 is the first tooth to erupt, its high frequency of absence (primarily a result of wear) is not remarkable. However, the remaining pattern of tooth loss does not correlate with the sequence of eruption. We suggest that this pattern is a function of 1) feeding ecology, as hard, tough tamarind fruit is a key fallback food of ring-tailed lemurs living in gallery forests; 2) food processing, as tamarind fruit is primarily processed in the P3-M1 region of the mouth; and 3) tooth structure, as ring-tailed lemurs possess thin dental enamel. The incongruity between thin enamel and use of a hard, tough fallback food suggests that ring-tailed lemurs living in riverine gallery forests may rely on resources not used in the past. When comparing dental health in the same individuals (n=50) between 2003 and 2004, we found that individual tooth loss can show a rapid increase over the span of one year, increasing by as much as 20%. Despite this rapid loss, individuals are able to survive, sometimes benefiting from unintentional assistance from conspecifics, from which partially processed tamarind fruit is obtained. Although less frequent in this population, these longitudinal data also illustrate that ring-tailed lemurs lose teeth due to damage and disease, similar to other nonhuman primates. The relationship between tooth loss, feeding ecology, dental structure, and individual life history in this population has implications for interpreting behavior based on tooth loss in the hominid fossil record.  相似文献   

10.
This paper examines the evidence for hominids outside East Africa during the Early Pleistocene. Most attention has focused recently on the evidence for or against a late Pliocene dispersal, ca. 1.8 Ma., of hominids out of Africa into Asia and possibly southern Europe. Here, the focus is widened to include North Africa as well as southern Asia and Europe, as well as the evidence in these regions for hominids after their first putative appearance ca. 1.8 Ma. It suggests that overall there is very little evidence for hominids in most of these regions before the Middle Pleistocene. Consequently, it concludes that the colonising capabilities of Homo erectus may have been seriously over-rated, and that even if hominids did occupy parts of North Africa, southern Europe and southern Asia shortly after 2 Ma, there is little evidence of colonisation. Whilst further fieldwork will doubtless slowly fill many gaps in a poorly documented Lower Pleistocene hominid record, it appears premature to conclude that the appearance of hominids in North Africa, Europe and Asia was automatically followed by permanent settlement. Rather, current data are more consistent with the view that Lower Pleistocene hominid populations outside East Africa were often spatially and temporally discontinuous, that hominid expansion was strongly constrained by latitude, and that occupation of temperate latitudes north of latitude 40 degrees was largely confined to interglacial periods.  相似文献   

11.
Cave bears (Ursus deningeri and U. spelaeus) and hominids (Homo heidelbergensis, H. neanderthalensis, and H. sapiens) were potential competitors for environmental resources (subterranean and open air). Here, we examined the age at death of cave bear (Ursus spelaeus Rosenmüller-Heinroth) specimens from Amutxate cave in order to shed light on the effect of resource sharing between cave bears and hominids. After studying dental wear of the deciduous and permanent dentitions, the ontogenetic development of mandibles, and incremental layers of cement (annuli), we defined five age groups differentiated by marked development and size gaps. Our findings indicate that after hibernating, bears abandoned the den, thereby leaving the subterranean environment (caves) free for temporary hominid occupation-this would explain the subtle traces of hominid presence in many dens. However, a simple calculation based on age at death of subadult and adult cave bear specimens in Amutxate cave, extrapolated to the whole cave area, showed that the area surrounding this cave hosted bears for at least 9,000 years. This length of habitation, quite similar to the time-span derived from amino acid racemization and electron spin resonance, indicates that bear populations in the Amutxate cave constituted a serious constraint for hominid exploitation of the environment.  相似文献   

12.
Great apes prefer cooked food   总被引:2,自引:1,他引:1  
The cooking hypothesis proposes that a diet of cooked food was responsible for diverse morphological and behavioral changes in human evolution. However, it does not predict whether a preference for cooked food evolved before or after the control of fire. This question is important because the greater the preference shown by a raw-food-eating hominid for the properties present in cooked food, the more easily cooking should have been adopted following the control of fire. Here we use great apes to model food preferences by Paleolithic hominids. We conducted preference tests with various plant and animal foods to determine whether great apes prefer food items raw or cooked. We found that several populations of captive apes tended to prefer their food cooked, though with important exceptions. These results suggest that Paleolithic hominids would likewise have spontaneously preferred cooked food to raw, exapting a pre-existing preference for high-quality, easily chewed foods onto these cooked items. The results, therefore, challenge the hypothesis that the control of fire preceded cooking by a significant period.  相似文献   

13.
Study of the Belohdelie frontal has demonstrated that this four-million-year-old specimen belongs to a very generalized hominid that may be close to the divergence point of the hominid and African ape clades. Features associated with the temporalis muscle in the Belohdelie frontal and other new hominids from Hadar (AL 333-125) and West Turkana (KNM-ER 17000) suggest that the earliest hominids shared a large anterior component of this muscle relative to the extinct and extant apes. Results of this study support the phylogenetic hypothesis put forward by many workers that A. afarensis gave rise to the “robust” Australopithecus and A. africanus clades.  相似文献   

14.
Taphonomic analysis of the Olduvai Hominid (OH) 8 left foot from FLK NN Level 3 and the OH 35 left leg from FLK Level 22 (Zinjanthropus level) in Middle Bed I, Olduvai Gorge, indicates that both were fed upon by crocodiles. Both bear extensive tooth marking, including bisected tooth marks diagnostic of crocodylian feeding. The location of the bisected tooth marks on the distal tibia and the talus indicates disarticulation of the foot by crocodiles. The broken proximal ends of the tibia and fibula are more typical of feeding by a leopard-like carnivore, as is damage to the OH 7 mandible and parietals that are associated with and may derive from the same individual as OH 8. Previous work showing a close articulation of the foot and the leg has been used to suggest that the two specimens belong to the same individual despite deriving from sites separated by 200 m and slightly different stratigraphic levels according to previous work. The location and agent of tooth marking and the nature of gross damage do not refute this hypothesis, but the punctures on the talus and distal tibia differ in size and sharpness. Recent work shows that the stratigraphic discrepancy between OH 8 and OH 35 is greater than previously thought, refuting the single-individual hypothesis. Although seemingly unlikely, this denotes that two hominids represented by rarely found leg and foot elements both lost their left foot to crocodiles at nearby sites within a 6,000 year interval. We cannot determine if the hominids were preyed upon by crocodiles or mammalian carnivores. However, the carnivore damage to them and associated faunal remains suggests that high predation risk constrained hominid activities involving discard of the stone artifacts found at these sites. This finding is inconsistent with the interpretation of the sites as home bases or living floors.  相似文献   

15.
16.
The earliest evidence of Australopithecus goes back to ca 4.2 Ma with the first recorded appearance of Australopithecus ‘anamensis’ at Kanapoi, Kenya. Australopithecus afarensis is well documented between 3.6 and 3.0 Ma mainly from deposits at Laetoli (Tanzania) and Hadar (Ethiopia). The phylogenetic relationship of these two ‘species’ is hypothesized as ancestor–descendant. However, the lack of fossil evidence from the time between 3.6 and 3.9 Ma has been one of its weakest points. Recent fieldwork in the Woranso-Mille study area in the Afar region of Ethiopia has yielded fossil hominids dated between 3.6 and 3.8 Ma. These new fossils play a significant role in testing the proposed relationship between Au. anamensis and Au. afarensis. The Woranso-Mille hominids (3.6–3.8 Ma) show a mosaic of primitive, predominantly Au. anamensis-like, and some derived (Au. afarensis-like) dentognathic features. Furthermore, they show that, as currently known, there are no discrete and functionally significant anatomical differences between Au. anamensis and Au. afarensis. Based on the currently available evidence, it appears that there is no compelling evidence to falsify the hypothesis of ‘chronospecies pair’ or ancestor–descendant relationship between Au. anamensis and Au. afarensis. Most importantly, however, the temporally and morphologically intermediate Woranso-Mille hominids indicate that the species names Au. afarensis and Au. anamensis do not refer to two real species, but rather to earlier and later representatives of a single phyletically evolving lineage. However, if retaining these two names is necessary for communication purposes, the Woranso-Mille hominids are best referred to as Au. anamensis based on new dentognathic evidence.  相似文献   

17.
A skull fragment (VM-0) from Orce, Granada, Spain, dated palaeomagnetically at about 1.6 Myr, is thought by some palaeontologist to be hominid, while others maintain it is equid. If hominid, it would be by far the oldest evidence ofHomo in Europe. Immunological studies on residual albumin in this fossil were carried out independently, and with different immunological methods, at the University of California, San Francisco (radioimmunoassay), and at the University of Granada, Spain (enzyme immunoassay). Other fossils attributed to hominids also studied wereVM1960 from Venta Micena, andCV-1 from Cueva Victoria, Murcia, Spain. Undisputed equid and bovid fossils from the same deposits and dated to a similar period as the Orce skull were also analyzed. Our results showed that species-specific albumin can be detected in 1.6 Myr-old hominid, equid and bovid fossils. The albumin from the Orce skull fragment and fromVM-1960 was immunologically closer to human albumin. These findings support the contention that theVM-0 andVM-1960 are hominid and that members of the genusHomo occupied southern Spain 1.6 Myr ago.  相似文献   

18.
The Recognition Concept of Species is examined for its potential usefulness in discriminating speciation events in the hominid fossil record. Controversies over species-specific characteristics amongHomo erectus and archaicHomo sapiens have centred on traits of the skull, largely because this element is most commonly preserved. Modern humans have an intuitive knowledge of their own Specific Mate Recognition System (SMRS), and therefore have the opportunity to compare their own SMRS to that of fossil hominids and the extent pongids. Such comparison suggests that our own skeletal SMRS may depend less on features of the skull than on the morphology of the postcranial anatomy. We propose that these components be further examined in this regard. We tentatively conclude that examination of the Recognition Concept of Species indicates that from lateHomo erectus onwards, the same SMRS has been shared in common by all hominids, including modernHomo sapiens. This suggests that, following the SMRS criterion, none of these forms can be categorized as separate species.  相似文献   

19.
K. Schick  N. Toth 《Human Evolution》2000,15(1-2):121-128
Around two-and-a-half million years ago, some hominid populations in Africa began to modify stones and bones in a manner that can be recognized by prehistorians as artifacts, and, by definition, produced the earliest identifiable archaeological record. It is likely that earlier hominid groups also may have had relatively rich tool-using behavioral repertoires similar to that seen in modern chimpanzees (McGrew, 1992), such tools may have been made of perishable materials or minimally modified and thus difficult to identify. This review will focus on the earliest archaeological traces and the spread of hominids out of Africa and into Eurasia.  相似文献   

20.
Diet is key to understanding the paleoecology of early hominins. We know little about the diets of these fossil taxa, however, in part because of a limited fossil record, and in part because of limitations in methods available to infer their feeding adaptations. This paper applies a new method, dental topographic analysis, to the inference of diet from fossil hominin teeth. This approach uses laser scanning to generate digital 3D models of teeth and geographic information systems software to measure surface attributes, such as slope and occlusal relief. Because it does not rely on specific landmarks that change with wear, dental topographic analysis allows measurement and comparison of variably worn teeth, greatly increasing sample sizes compared with techniques that require unworn teeth. This study involved comparison of occlusal slope and relief of the lower second molars of Australopithecus afarensis (n=15) and early Homo (n=8) with those of Gorilla gorilla gorilla (n=47) and Pan troglodytes troglodytes (n=54). Results indicate that while all groups show reduced slope and relief in progressively more worn specimens, there are consistent differences at given wear stages among the taxa. Early Homo shows steeper slopes and more relief than chimpanzees, whereas A. afarensis shows less slope and relief than any of the other groups. The differences between the two hominin taxa are on the same order as those between the extant apes, suggesting similar degrees of difference in diet. Because these chimpanzees and gorillas differ mostly in fallback foods where they are sympatric, results suggest that the early hominins may likewise have differed mostly in fallback foods, with A. afarensis emphasizing harder, more brittle foods, and early Homo relying on tougher, more elastic foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号