首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ALA-D (EC 4.2.1.24) is the first cytosolic enzyme in the haem metabolic pathway. Some metals compete with its major cofactor Zn(2+), modifying both enzyme structure and function. Our purpose was to contribute to the understanding of the biochemical role of metals such as Pb(2+), Cd(2+), Cu(2+), Mg(2+), Zn(2+), Na(+), K(+) and Li(+) on ALA-D, using chicken embryos as experimental model. Mg(2+) and Zn(2+) showed enzyme activation in yolk sac membrane (YSM) (113% at 10(-5) M Mg(2+) and from 10(-4) M Zn(2+)), and slight inactivation in liver. Cd(2+) and Cu(2+) caused a non allosteric inhibition in both tissues (100% from 10(-4) M). Surprisingly Pb(2+) was not such a strong inhibitor. Interference of cations during the Schiff base formation in enzymatic catalysis process is explained considering their Lewis acid-base capacity, coordination geometry and electron configuration of valence. Interactions among monovalent cations and biochemical substances are governed chiefly by its electrostatic potential. 0.1 M K(+) and 0.4 M Na(+) produced 30% of enzymatic inhibition by the interference on interactions among the functional subunits. Li(+) activated the YSM enzyme (130% at 10(-5) M) due to a more specific interaction. This study may contribute to elucidate for the first time the possible structural differences between the YSM and liver enzymes from chicken embryo.  相似文献   

2.
Y Mauras  P Allain 《Enzyme》1979,24(3):181-187
Inhibition of blood delta-aminolevulinic acid dehydratase(ALA-D) activity by lead was studied in vivo and in vitro. In vivo, a negative linear correlation (r = -0.85) was found between the logarithmic values of ALA-D activity and blood lead levels. In vitro the inhibitory effect of lead on blood ALA-D activity increased both with contact time and contact temperature of lead with blood before ALA-D assay. Maximum enzyme inhibition occurred after 14 h of contact at 25 degrees C. Inhibition of ALA-D activity by lead, in vivo as well as in vitro, is suppressed by the addition of zinc or cysteine. The logarithmic values of the activity ratios increase linearly with blood lead concentrations. The increase in ALA-D activity brought about by the addition of zinc or cysteine can be used to identify cases of low enzyme activity with no lead intoxication involved. The same technique can also detect cases in which ALA-D inhibition may be concealed by a presumably high initial enzyme activity as observed in some patients.  相似文献   

3.
It was shown that low concentrations of ATP (1..10(-4)M) and 10-fold concentrations of AMP (1.10(-3)M) at three constant L-threonine concentrations activated the L-threonine dehydratase activity of L-threonine-L-serine dehydratase from human liver, but had no effect on the L-serine dehydratase activity of this enzyme. Higher concentrations of both nucleotides inhibited the enzyme. The effects of ATP and AMP were specific. The activating and inhibiting effects of various concentrations of ATP and AMP were revealed as changes in the shapes of the curves for the initial reaction rate of the L-threonine dehydratase reaction versus initial substrate concentration. For this reaction the curves were not hyperbolic and were characterized by intermediary plateaux. ATP and AMP also influenced the maximal rate of the enzymatic reaction. Using the desensitization method it was shown that the activating effects of ATP and AMP are of allosteric nature. Thus, human liver L-threonine-L-serine dehydratase is an allosteric enzyme, for which positive allosteric effectors are low concentrations of ATP and AMP and negative allosteric effectors are high concentrations of these nucleotides. A possible mechanism of allosteric regulation of the enzyme under catalysis of the L-threonine dehydratase reaction and the lack of regulation under catalysis of the L-serine dehydratase reaction as well as specificity of the allosteric sites of this enzyme to the two nucleotides and the physiological significance of this process are discussed.  相似文献   

4.
Ribonucleotide reductases are a family of essential enzymes that catalyze the reduction of ribonucleotides to their corresponding deoxyribonucleotides and provide cells with precursors for DNA synthesis. The different classes of ribonucleotide reductase are distinguished based on quaternary structures and enzyme activation mechanisms, but the components harboring the active site region in each class are evolutionarily related. With a few exceptions, ribonucleotide reductases are allosterically regulated by nucleoside triphosphates (ATP and dNTPs). We have used the surface plasmon resonance technique to study how allosteric effects govern the strength of quaternary interactions in the class Ia ribonucleotide reductase from Escherichia coli, which like all class I enzymes has a tetrameric alpha(2) beta(2) structure. The component alpha(2)called R1 harbors the active site and two types of binding sites for allosteric effector nucleotides, whereas the beta(2) component called R2 harbors the tyrosyl radical necessary for catalysis. Our results show that only the known allosteric effector nucleotides, but not non-interacting nucleotides, promote a specific interaction between R1 and R2. Interestingly, the presence of substrate together with allosteric effector nucleotide strengthens the complex 2-3 times with a similar free energy change as the mutual allosteric effects of substrate and effector nucleotide binding to protein R1 in solution experiments. The dual allosteric effects of dATP as positive allosteric effector at low concentrations and as negative allosteric effector at high concentrations coincided with an almost 100-fold stronger R1-R2 interaction. Based on the experimental setup, we propose that the inhibition of enzyme activity in the E. coli class Ia enzyme occurs in a tight 1:1 complex of R1 and R2. Most intriguingly, we also discovered that thioredoxin, one of the physiological reductants of ribonucleotide reductases, enhances the R1-R2 interaction 4-fold.  相似文献   

5.
N Despaux  E Comoy  C Bohuon  C Boudène 《Biochimie》1979,61(9):1021-1028
Human delta-aminolevulinic acid dehydratase (ALA-D) was purified 9 000-fold by salt precipitation, ion-exchange chromatography and gel filtration. These methods resulted into an electrophoretically and immunologically pure protein. The optimum pH of the enzyme is 6.6 and its Km with ALA : 4.8 X 10(-4) M. The enzymatic activity was increased by thiol-containing substances, such as dithiothreitol (DTT), which protect the -SH groups of the protein. Zinc, a portion of the enzyme molecule, was partly lost during the purification procedure; its addition enhances the enzymatic activity. Determination of molecular weights and electron microscopy study are in favor of an octameric structure.  相似文献   

6.
Pigeon liver pyruvate carboxylase (pyruvate: CO2 ligase (ADP forming), EC 6.4.1.1) shows allosteric properties similar to those of chicken or rat liver enzyme. Kinetic methods have been used to determine the effect of Ca2+ on this enzyme. The Ca2+ activation effect is absolutely dependent on the Mg2+ concentration; in the absence of Mg2+, pyruvate carboxylase has no catalytic activity. Furthermore, Ca2+ cannot replace Mg2+ and also shows a paradoxical effect on the liver enzyme activity. It is an activator at low pyruvate or Mg2+ concentrations; at increased pyruvate concentrations, however, it becomes an inhibitor. At low levels of ATP a pronounced activation of pigeon liver pyruvate carboxylase by Ca2+ has been demonstrated. The results of this communication demonstrate pigeon liver pyruvate carboxylase to be different from pyruvate carboxylase from other sources.  相似文献   

7.
J P Flikweert  R K Hoorn  G E Staal 《Biochimie》1975,57(6-7):677-681
Ca2+ ions have a biphasic effect on the allosteric pyruvate kinase (EC 2.7.1.40) from human erythrocytes: Ca2+ is an activator at low phosphoenolpyruvate (PEP) concentrations: at increased PEP concentrations Ca2+ behaves as an inhibitor. In the presence of ATP the same effect was observed and at low PEP concentrations Ca2+ ions can completely abolish the ATP inhibitory effect. At high Ca2+ concentrations there is a loss of the cooperativity towards PEP. The enzyme activated by fructose-1,6-diphosphate (FDP) is inhibited by Ca2+ ions at all concentrations of PEP tested. Mg2+ ions are not able to counteract the activation by Ca2+ ions at low PEP concentrations. The results are interpreted on the basis of the model of Monod.  相似文献   

8.
T M Martensen  T E Mansour 《Biochemistry》1976,15(23):4973-4980
The allosteric regulation of heart phosphofructokinase was studied at pH 6.9 with an alternative substrate, fructose 6-sulfate. The alternative substrate allowed kinetic studies to be carried out at high enzyme concentrations (0.1 mg/ml) where the effect of allosteric ligands on enzyme physical structure has been studied. A Km for ATP binding (8-10 muM) in the presence of saturating AMP concentrations was found which agreed well with the value obtained at pH 8.2, ATP inhibitory effects closely followed saturation of its substrate site. Hill plots for ATP inhibition gave an interaction coefficient of 3.5 indicating cooperatively between at least four enzyme subunits. Neither AMP nor fructose 6-sulfate affected the cooperativity between the ATP inhibitory sites but only increased the inhibitory threshold. As the ATP concentration was increased from suboptimal to inhibitory levels, interaction coefficients for AMP and fructose 6-sulfate changed from 1 to 2. Increasing citrate concentration resulted in an increase in the interaction coefficient for fructose 6-sulfate to a value of 1.9. Citrate inhibition was synergistic with ATP inhibition with an interaction coefficient of 2. The data indicate that allosteric kinetics of the enzyme can be shown at high enzyme concentrations with the alternative substrate. ATP inhibition appears to involve interaction between at least four subunits, while citrate, AMP, and fructose 6-sulfate interact minimally with two subunits.  相似文献   

9.
Human glutamate dehydrogenase (GDH), an enzyme central to the metabolism of glutamate, is known to exist in housekeeping and nerve tissue-specific isoforms encoded by the GLUD1 and GLUD2 genes, respectively. As there is evidence that GDH function in vivo is regulated, and that regulatory mutations of human GDH are associated with metabolic abnormalities, we sought here to characterize further the functional properties of the two human isoenzymes. Each was obtained in recombinant form by expressing the corresponding cDNAs in Sf9 cells and studied with respect to its regulation by endogenous allosteric effectors, such as purine nucleotides and branched chain amino acids. Results showed that L-leucine, at 1.0 mM:, enhanced the activity of the nerve tissue-specific (GLUD2-derived) enzyme by approximately 1,600% and that of the GLUD1-derived GDH by approximately 75%. Concentrations of L-leucine similar to those present in human tissues ( approximately 0.1 mM:) had little effect on either isoenzyme. However, the presence of ADP (10-50 microM:) sensitized the two isoenzymes to L-leucine, permitting substantial enzyme activation at physiologically relevant concentrations of this amino acid. Nonactivated GLUD1 GDH was markedly inhibited by GTP (IC(50) = 0.20 microM:), whereas nonactivated GLUD2 GDH was totally insensitive to this compound (IC(50) > 5,000 microM:). In contrast, GLUD2 GDH activated by ADP and/or L-leucine was amenable to this inhibition, although at substantially higher GTP concentrations than the GLUD1 enzyme. ADP and L-leucine, acting synergistically, modified the cooperativity curves of the two isoenzymes. Kinetic studies revealed significant differences in the K:(m) values obtained for alpha-ketoglutarate and glutamate for the GLUD1- and the GLUD2-derived GDH, with the allosteric activators differentially altering these values. Hence, the activity of the two human GDH is regulated by distinct allosteric mechanisms, and these findings may have implications for the biologic functions of these isoenzymes.  相似文献   

10.
Inherited deficiency of delta-aminolevulinic acid dehydratase.   总被引:3,自引:0,他引:3       下载免费PDF全文
Delta-aminolevulinic acid dehydratase (ALA-D) is the second enzyme in the porphyrin-heme pathway and converts delta-aminolevulinc acid (ALA) to porphobilinogen (PBG). A family is reported with an inherited deficiency of red cell ALA-D activity occurring over three generations in an autosomal dominant pattern. Intial experiments support the hypothesis that the mutation in this family may affect a regulatory gene, but enzyme purification and further study are required. Although no clinical manifestations of deficient ALA-D activity have been found in affected persons, families such as this may be at increased risk for the serious consequences of lead poisoning, which produces marked inhibition of ALA-D activity.  相似文献   

11.
Karsten WE  Pais JE  Rao GS  Harris BG  Cook PF 《Biochemistry》2003,42(32):9712-9721
The kinetic mechanism of activation of the mitochondrial NAD-malic enzyme from the parasitic roundworm Ascaris suum has been studied using a steady-state kinetic approach. The following conclusions are suggested. First, malate and fumarate increase the activity of the enzyme in both reaction directions as a result of binding to separate allosteric sites, i.e., sites that exist in addition to the active site. The binding of malate and fumarate is synergistic with the K(act) decreasing by >or=10-fold at saturating concentrations of the other activator. Second, the presence of the activators decreases the K(m) for pyruvate 3-4-fold, and the K(i) (Mn) >or=20-fold in the direction of reductive carboxylation; similar effects are obtained with fumarate in the direction of oxidative decarboxylation. The greatest effect of the activators is thus expressed at low reactant concentrations, i.e., physiologic concentrations of reactant, where activation of >or=15-fold is observed. A recent crystallographic structure of the human mitochondrial NAD malic enzyme [13] shows fumarate bound to an allosteric site. Site-directed mutagenesis was used to change R105, homologous to R91 in the fumarate activator site of the human enzyme, to alanine. The R105A mutant enzyme exhibits the same maximum rate and V/K(NAD) as does the wild-type enzyme, but 7-8-fold decrease in both V/K(malate) and V/K(Mg), indicating the importance of this residue in the activator site. In addition, neither fumarate nor malate activates the enzyme in either reaction direction. Finally, a change in K143 (a residue in a positive pocket adjacent to that which contains R105), to alanine results in an increase in the K(act) for malate by about an order of magnitude such that it is now of the same magnitude as the K(m) for malate. The K143A mutant enzyme also exhibits an increase in the K(act) for fumarate (in the absence of malate) from 200 microM to about 25 mM.  相似文献   

12.
Human δ-aminolevulinic acid dehydratase (ALA-D) was purified 9 000-fold by salt precipitation, ion-exchange chromatography and gel filtration. These methods resulted into an electrophoretically and immunologically pure protein.The optimum pH of the enzyme is 6.6 and its Km with ALA : 4.8 × 10?4 M. The enzymatic activity was increased by thiol-containing substances, such as dithiothreitol (DTT), which protect the -SH groups of the protein. Zinc, a portion of the enzyme molecule, was partly lost during the purification procedure; its addition enhances the enzymatic activity.Determination of molecular weights and electron microscopy study are in favor of an octameric structure.  相似文献   

13.
Backgrounds and aims: skin lesions in cutaneous porphyrias appear to be determined by the structural properties of the porphyrins accumulated. To better understand the relationship between the structure and physicochemical properties of porphyrins and their specific effect on protein configuration, the action of a whole range of 8 to 2 carboxylic porphyrins has been studied. Materials and methods: δ-aminolevulinic acid dehydratase (ALA-D) and porphobilinogen deaminase (PBG-D) partially purified from bovine liver, were exposed to 10 μM uroporphyrin (Uro), phyriaporphyrin (Phyria), hexaporphyrin (Hexa), pentaporphyrin (Penta), coproporphyrin (Copro) or protoporphyrin (Proto), either in the dark or under UV light. All experiments were performed in the enzyme solutions after removing the porphyrins. Results: under both illuminating conditions, all porphyrins inactivated the enzymes (20–70% under control values), indicating photodynamic action mediated by oxidative reactions and conformational changes due to direct binding of porphyrins to the protein. Total thiol content in ALA-D was not significantly changed by most porphyrins under UV light, while all porphyrins increase total sulfhydryl groups in PBG-D (23–52% over the control values) indicating changes in the redox status of SH residues. Free amino groups were reduced by all porphyrins in ALA-D (23–56% under controls), instead they were enhanced in PBG-D (23–51% over controls), suggesting protein fragmentation. The formation of molecular aggregates would be the consequence of cross-links between oxidation products, while fragmentation can be attributed to either rupture of disulphur bridges and/or enhancement of free amino groups on the protein enzyme. Conclusions: the effect of the porphyrins on enzyme activity, total SH groups and free amino groups content, was different for ALA-D and PBG-D, even under the same illuminating conditions. On the basis of these results, no correlation between enzyme alterations and the physico-chemical properties of porphyrins could be established.  相似文献   

14.
The allosteric properties of AMP deaminase [EC 3.5.4.6] from chicken erythrocytes have been qualitatively and quantitatively accounted for by the concerted transition theory of Monod et al., on the assumption that this enzyme has different numbers of binding sites for each ligand. Theoretical curves yield a satisfactory fit for all experimental saturation functions with respect to activation by alkali metals and inhibition by Pi, assuming that the numbers of binding sites for AMP, alkali metals, and Pi are 4, 2, and 4, respectively. The enzyme was inhibited by concentrations of ATP and GTP below 0.1 and 0.25 mM, respectively, whereas activation of the enzyme was observed at ATP and GTP concentrations above 0.4 and 1.5 mM, respectively. These unusual kinetics with respect to ATP and GTP could be also accounted for by assuming 2 inhibitory and 4 activating sites for each ligand.  相似文献   

15.
The kinetics of inhibition of the esterase and lipase activities of bovine milk lipoprotein lipase (LPL) were compared. The esterase LPL activity against emulsified tributyrylglycerol was not affected by the enzyme activator apolipoprotein C-II (C-II) and amounted to about 15% of the "plus activator" lipase enzyme activity. Heparin at concentrations of 20 micrograms/ml inhibited 25% of the esterase activity. The reaction followed Henri-Michaelis-Menten kinetics and the inhibition by heparin followed a linear, intersecting, noncompetitive kinetic model. On the other hand, the basal lipase activity of LPL against emulsified trioleoylglycerol (TG) was very sensitive to inhibition by heparin: 1 microgram/ml inhibited about 80% of the reaction and 3 micrograms/ml drove the reaction to zero. The velocity curve for the uninhibited basal LPL activity was sigmoidal with an apparent nH(TG) of 2.94. Heparin inhibited the lipase activity competitively: heparin decreased nH(TG) and increased[TG]0.5 6.4-fold, while TG decreased the nH(Heparin) from 2.14 to 0.95 and caused a 3-fold increase in [Heparin]0.5. C-II, at concentrations lower than 2.5 X 10(-8) M (i.e., lower than KA), countered the inhibitory effects of heparin: at constant inhibitor concentrations, C-II increased nH(TG) from 1.78 to 2.52 and decreased [TG]0.5 about 10-fold; it also increased the apparent Vmax. At the lower C-II concentrations, nH(C-II) was approximately equal to 1.0 and increasing the TG concentrations decreased [C-II]0.5 from 3.8 X 10(-8) to 8.5 X 10(-9) M, with no effect on the nH(C-II). At the higher C-II concentrations, nH(C-II) was 2.5 and TG decreased [C-II]0.5 about 2-fold with no effect on the nH(C-II). In the absence of heparin, C-II had no effect on nH(TG) nor on [TG]0.5, but it increased the apparent Vmax. On the other hand, TG had no effect on nH(C-II) nor on [C-II]0.5, but at any given C-II concentration, the reaction velocity increased with increasing TG concentrations. It is concluded that TG and heparin as well as C-II and heparin are mutually exclusive and that lipoprotein lipase is a multisite enzyme, possibly a tetramer, with three high-affinity catalytic sites, and an equal number of sites for C-II and heparin per oligomer. However, LPL differs from classical allosteric enzymes in that its activator has no effect on substrate cooperativity nor on [S]0.5; its only effect is to increase Vmax by increasing the catalytic rate constant kp by inducing conformational changes in the enzyme.  相似文献   

16.
We determined changes in prolyl endopeptidase activity in developing rat brain. A new and highly sensitive fluorogenic substrate, 7-(succinyl-Gly-Pro)-4-methylcoumarinamide, was used for determination of the enzyme activity. The enzyme activity per brain increased until 2 weeks of age, and then decreased during maturation. The enzyme was purified about 7800-fold from the brain of the rat at 2 or 3 weeks of age. The enzyme has a pH optimum of 5.8 to 6.5, and an approximate molecular weight of 70,000. The enzyme activity was completely inhibited by low concentrations of diisopropylfluorophosphate and partially inhibited by high concentrations of phenylmethanesulphonylfluoride, which are potent serine protease inhibitors. Moreover, thiolblocking agents and some heavy metals also have a strong effect on the activity. Bacitracin was found to be a potent inhibitor, with an IC50 value of 2.5 x 10(-6) M at 0.5 mM of the substrate. The enzyme was proved to hydrolyze the NH2-terminal tetrapeptide. Arg1-Pro2-Lys3-Pro4, from substance P to produce the heptapeptide, Gln5-Gln6-Phe7-Phe8-Gly9-Leu10-Met11-CONH2. The Km value of the hydrolysis of substance P was 1.0 mM. This enzyme may be related to the regulation of substance P in the brain, and to the development of neurones by forming the tetrapeptide because the tetrapeptide has almost the same effect as substance P on the neurite extension of neuroblastoma.  相似文献   

17.
Evande R  Blom H  Boers GH  Banerjee R 《Biochemistry》2002,41(39):11832-11837
Human cystathionine beta-synthase is a heme protein that catalyzes the condensation of serine and homocysteine to form cystathionine in a pyridoxal phosphate-dependent reaction. Mutations in this enzyme are the leading cause of hereditary hyperhomocysteinemia with attendant cardiovascular and other complications. The enzyme is activated approximately 2-fold by the allosteric regulator S-adenosylmethionine (AdoMet), which is presumed to bind to the C-terminal regulatory domain. The regulatory domain exerts an inhibitory effect on the enzyme, and its deletion is correlated with a 2-fold increase in catalytic activity and loss of responsiveness to AdoMet. A mutation in the C-terminal regulatory domain, D444N, displays high levels of enzyme activity, yet is pathogenic. In this study, we have characterized the biochemical penalties associated with this mutation and demonstrate that it is associated with a 4-fold lower steady-state level of cystathionine beta-synthase in a fibroblast cell line that is homozygous for the D444N mutation. The activity of the recombinant D444N enzyme mimics the activity of the wild-type enzyme seen in the presence of AdoMet and can be further activated approximately 2-fold in the presence of supraphysiolgical concentrations of the allosteric regulator. The mutation increases the K(act) for AdoMet from 7.4 +/- 0.2 to 460 +/- 130 microM, thus rendering the enzyme functionally unresponsive to AdoMet under physiological concentrations. These results indicate that the D444N mutation partially abrogates the intrasteric inhibition imposed by the C-terminal domain. We propose a model that takes into account the three kinetically distinguishable states that are observed with human cystathionine beta-synthase: "basal" (i.e., wild-type enzyme as isolated), "activated" (wild-type enzyme + AdoMet or the D444N mutant as isolated), and superactivated (D444N mutant + AdoMet or wild-type enzyme lacking the C-terminal regulatory domain).  相似文献   

18.
Interaction of phosphorylase with 8-anilino-1-naphthalene-sulfonate (ANS) results in the formation of an ANS-protein complex. The microenvironment of the protein-bound dye changes depending on pH. Using fluorimetric titration, the dissociation constants for the complex (Kd = 23 and 57 microM for pH 6.2 and 6.8, respectively) were determined. The mode of the enzyme inhibition by ANS also changes depending on pH. At pH 6.8, ANS competitively inhibits the enzyme with respect to AMP, but does not compete with the nucleotide at pH 6.2; the corresponding Ki values are equal to 160 and 26 microM. The protective effect of ligands from the inhibiting effect of ANS was studied. It was shown that at pH 6.2, the enzyme is protected from the inhibition only by the substrate, glucose-1-phosphate, whereas at pH 6.8--by the allosteric inhibitor, glucose-6-phosphate. These findings suggest that at pH 6.2 the conformation of the enzyme molecule is induced by the substrate, while at pH 6.8--by the allosteric inhibitor. ANS binding in the vicinity of the active or allosteric centers is due to the pH-dependent conformational transition. The data obtained suggest that the pH changes within the range of 6.2-6.8 are essential for the regulation of enzyme activity.  相似文献   

19.
Ribulose 1,5-diphosphate carboxylase (RuDPCase, EC 4.1.1.39) isolated from spinach leaves is metabolically regulated at 10 mm Mg(2+) and low CO(2) concentrations by its substrates (RuDP and CO(2)) and by effectors which include 6-phosphogluconate (6-PGluA), NADPH, and fructose 1,6-diphosphate (FDP), but not fructose 6-phosphate. Physiological concentrations of RuDP severely inhibit the enzyme activity when the enzyme has not been preincubated with HCO(3) (-) and Mg(2-), and this inactivity persists for 20 minutes or longer after 1 mm HCO(3) (-) and 10 mm Mg(2+) are added. Maximum activity requires that the preincubation mixture also include either 0.01 mm 6-PGluA or 0.5 mm NADPH.When the enzyme, following preincubation with HCO(3) (-) and Mg(2+), is presented with RuDP plus either 6-PGluA or FDP, competitive inhibition is observed with respect to RuDP. The Ki value for 6-PGluA is 0.02 mm and the Ki value for FDP is 190 mum. NADPH or 3-phosphoglycerate (PGA) at physiological concentrations does not have any effect when presented simultaneously with RuDP. Other studies on the order of addition of substrates and effectors, concentration effects, and kinetics provide additional information that serves as a basis for a proposed model of allosteric regulation combined with competitive inhibition.In this model, there are catalytic sites at which the substrates and 6-PGluA and FDP can bind, and at least four allosteric regulatory sites, which we designate I, A(1), A(2), and A(3). RuDP binds very tightly to site I (in the absence of Mg(2+) or HCO(3) (-)), causing a conformational change in the protein to an inactive form which persists for as long as 20 minutes in the subsequent presence of Mg(2+) and 1 mm HCO(3) (-). Mg(2+) and HCO(3) (-) (or CO(2)) bind to site A(3) (in the absence of RuDP), holding the enzyme in an active form which has a much lower affinity for RuDP at site I, so that when physiological levels of RuDP are then added, only part of the enzyme activity is lost. This active form of the enzyme can bind 6-PGluA or FDP at site A(1) and NADPH at site A(2) during preincubation with Mg(2+) and HCO(3) (-). With optimal levels of bound effectors, 6-PGluA or NADPH, enzyme activity is fully maintained, even when RuDP is subsequently added. Without one of these effectors present, addition of RuDP following preincubation reduces enzyme activity to about 40% at the levels of substrates and effectors studied. FDP is a much poorer effector, and this is ascribed to a possible binding of FDP at site I, as well as at site A(1).The physiological role of this regulation is discussed, particularly with respect to protection of "C-3" plants against oxidation of RuDP to phosphoglycolate.  相似文献   

20.
Citrate synthase from Escherichia coli enhances the fluorescence of its allosteric inhibitor, NADH, and shifts the peak of emission of the coenzyme from 457 to 428 nm. These effects have been used to measure the binding of NADH to this enzyme under various conditions. The dissociation constant for the NADH-citrate synthase complex is about 0.28 muM at pH 6.2, but increases toward alkaline pH as if binding depends on protonation of a group with a pKa of about 7.05. Over the pH range 6.2-8.7, the number of binding sites decreases from about 0.65 to about 0.25 per citrate synthase subunit. The midpoint of this transition is at about pH 7.7, and it may be one reflection of the partial depolymerization of the enzyme which is known to occur in this pH range. A gel filtration method has been used to verify that the fluorescence enhancement technique accurately reveals all of the NADH molecules bound to the enzyme in the concentration range of interest. NAD+ and NADP+ were weak competitive inhibitors of NADH binding at pH 7.8 (Ki values greater than 1 mM), but stronger inhibition was shown by 5'-AMP and 3'-AMP, with Ki values of 83 +/- 5 and 65 +/- 4 muM, respectively. Acetyl-CoA, one of the substrates, and KCl, an activator, also inhibit the binding in a weakly cooperative manner. All of these effects are consistent with kinetic observations on this system. We interpret our results in terms of two types of binding site for nucleotides on citrate synthase: an active site which binds acetyl-CoA, the substrate, or its analogue 3'-AMP; and an allosteric site which binds NADH or its analogue 5'-AMP and has a lesser affinity for other nicotinamide adenine dinucloetides. When the active site is occupied, we propose that NADH cannot bind to the allosteric site, but 5'-AMP can; conversely, when NADH is the in the allosteric site, the active site cannot be occupied. In addition to these two classes of sites, there must be points for interaction with KCl and other salts. Oxaloacetate, the second substrate, and alpha-ketoglutarate, an inhibitor whose mode of action is believed to be allosteric, have no effect on NADH binding to citrate synthase at pH 7.8. When NADH is bound to citrate synthase, it quenches the intrinsic tryptophan fluorescence of the enzyme. The amount of quenching is proportional to the amount of NADH bound, at least up to a binding ratio of 0.50 NADH per enzyme subunit. This amount of binding leads to the quenching of 53 +/- 5% of the enzyme fluorescence, which means that one NADH molecule can quench all the intrinsic fluorescence of the subunit to which it binds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号