首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Shigella type III secretion machinery is responsible for delivering to host cells the set of effectors required for invasion. The type III secretion complex comprises a needle composed of MxiH and MxiI and a basal body made up of MxiD, MxiG, and MxiJ. In S. flexneri, the needle length has a narrow range, with a mean of approximately 45 nm, suggesting that it is strictly regulated. Here we show that Spa32, encoded by one of the spa genes, is an essential protein translocated via the type III secretion system and is involved in the control of needle length as well as type III secretion activity. When the spa32 gene was mutated, the type III secretion complexes possessed needles of various lengths, ranging from 40 to 1,150 nm. Upon introduction of a cloned spa32 into the spa32 mutant, the bacteria produced needles of wild-type length. The spa32 mutant overexpressing MxiH produced extremely long (>5 microm) needles. Spa32 was secreted into the medium via the type III secretion system, but secretion did not depend on activation of the system. The spa32 mutant and the mutant overexpressing MxiH did not secrete effectors such as Ipa proteins into the medium or invade HeLa cells. Upon introduction of Salmonella invJ, encoding InvJ, which has 15.4% amino acid identity with Spa32, into the spa32 mutant, the bacteria produced type III needles of wild-type length and efficiently entered HeLa cells. These findings suggest that Spa32 is an essential secreted protein for a functional type III secretion system in Shigella spp. and is involved in the control of needle length. Furthermore, its function is interchangeable with that of Salmonella InvJ.  相似文献   

2.
Gram-negative bacteria commonly interact with eukaryotic host cells by using type III secretion systems (TTSSs or secretons). TTSSs serve to transfer bacterial proteins into host cells. Two translocators, IpaB and IpaC, are first inserted with the aid of IpaD by Shigella into the host cell membrane. Then at least two supplementary effectors of cell invasion, IpaA and IpgD, are transferred into the host cytoplasm. How TTSSs are induced to secrete is unknown, but their activation appears to require direct contact of the external distal tip of the apparatus with the host cell. The extracellular domain of the TTSS is a hollow needle protruding 60 nm beyond the bacterial surface. The monomeric unit of the Shigella flexneri needle, MxiH, forms a superhelical assembly. To probe the role of the needle in the activation of the TTSS for secretion, we examined the structure-function relationship of MxiH by mutagenesis. Most point mutations led to normal needle assembly, but some led to polymerization or possible length control defects. In other mutants, secretion was constitutively turned "on." In a further set, it was "constitutively on" but experimentally "uninducible." Finally, upon induction of secretion, some mutants released only the translocators and not the effectors. Most types of mutants were defective in interactions with host cells. Together, these data indicate that the needle directly controls the activity of the TTSS and suggest that it may be used to "sense" host cells.  相似文献   

3.
The type III secretion (TTS) pathway is used by numerous Gram-negative pathogens to inject virulence factors into eukaryotic cells. The Shigella flexneri TTS apparatus (TTSA) spans the bacterial envelope and its assembly requires the products of approximately 20 mxi and spa genes. We present a functional analysis of the mxiK, mxiN and mxiL genes. Inactivation of mxiK and mxiN, but not mxiL, resulted in the assembly of a non-functional TTSA that lacked the outer needle. The amounts of needle components MxiH and MxiI were drastically reduced in mxiK and mxiN mutants and in the secretion defective spa47 mutant, indicating that MxiH and MxiI are degraded if they do not transit through the TTSA. Remarkably, expression of MxiH-His in the mxiN mutant and MxiI-His in the mxiK mutant restored assembly of a functional TTSA, as shown by the ability of these strains to enter into epithelial cells and to secrete Ipa proteins in response to activation by Congo red. Using a two-hybrid screen in yeast and immunoprecipitation assays from S. flexneri extracts, we identified interactions between MxiK and Spa33 and Spa47 and between MxiN and Spa33 and Spa47. These results suggest that transit of the needle components MxiH and MxiI through the TTSA involves the concerted action of the cytoplasmic proteins Spa47, Spa33, MxiK and MxiN. They also show that neither MxiK nor MxiN are absolutely required for secretion of Ipa proteins, provided that the TTSA is correctly assembled.  相似文献   

4.
Type III secretion systems (TTSSs or secretons), essential virulence determinants of many Gram-negative bacteria, serve to translocate proteins directly from the bacteria into the host cytoplasm. Electron microscopy (EM) indicates that the TTSSs of Shigella flexneri are composed of: (1) an external needle; (2) a transmembrane domain; and (3) a cytoplasmic bulb. EM analysis of purified and negatively stained parts 1, 2 and a portion of 3 of the TTSS, together termed the "needle complex" (NC), produced an average image at 17 A resolution in which a base, an outer ring and a needle, inserted through the ring into the base, could be discerned. This analysis and cryoEM images of NCs indicated that the needle and base contain a central 2-3 nm canal. Five major NC components, MxiD, MxiG, MxiJ, MxiH and MxiI, were identified by N-terminal sequencing. MxiG and MxiJ are predicted to be inner membrane proteins and presumably form the base. MxiD is predicted to be an outer membrane protein and to form the outer ring. MxiH and MxiI are small hydrophilic proteins. Mutants lacking either of these proteins formed needleless secretons and were unable to secrete Ipa proteins. As MxiH was present in NCs in large molar excess, we propose that it is the major needle component. MxiI may cap at the external needle tip.  相似文献   

5.
Gram-negative bacteria commonly interact with eukaryotic host cells using type III secretion systems (TTSSs or secretons), which comprise cytoplasmic, transmembrane and extracellular domains. The extracellular domain is a hollow needle-like structure protruding 60 nm beyond the bacterial surface. The TTSS is activated to transfer bacterial proteins directly into a host cell only upon physical contact with the target cell. We showed previously that the monomer of the Shigella flexneri needle, MxiH, assembles into a helical structure with parameters similar to those defining the architecture of the extracellular components of bacterial flagella. By analogy with flagella, which are known to exist in different helical states, we proposed that changes in the helical packing of the needle might be used to sense host cell contact. Here, we show that, on the contrary, mutations within MxiH that lock the TTSS into altered secretion states do not detectably alter the helical packing of needles. This implies that either: (1) host cell contact is signalled through the TTSS via helical changes in the needle that are significantly smaller than those linked to structural changes in the flagellar filament and therefore too small to be detected by our analysis methods or (2) that signal transduction in this system occurs via a novel molecular mechanism.  相似文献   

6.
7.
We investigated the supramolecular structure of the SHIGELLA: type III secretion machinery including its major components. Our results indicated that the machinery was composed of needle and basal parts with respective lengths of 45.4 +/- 3.3 and 31.6 +/- 0.3 nm, and contained MxiD, MxiG, MxiJ and MxiH. spa47, encoding a putative F(1)-type ATPase, was required for the secretion of effector proteins via the type III system and was involved in the formation of the needle. The spa47 mutant produced a defective, needle-less type III structure, which contained MxiD, MxiG and MxiJ but not MxiH. The mxiH mutant produced a defective type III structure lacking the needle and failed to secrete effector proteins. Upon overexpression of MxiH in the mxiH mutant, the bacteria produced type III structures with protruding dramatically long needles, and showed a remarkable increase in invasiveness. Our results suggest that MxiH is the major needle component of the type III machinery and is essential for delivery of the effector proteins, and that the level of MxiH affects the length of the needle.  相似文献   

8.
Shigella, the Gram-negative enteroinvasive bacterium that causes shigellosis, relies on its type III secretion system (TTSS) and injected effectors to modulate host cell functions. However, consequences of the interaction between Shigella and lymphocytes have not been investigated. We show that Shigella invades activated human CD4(+) T lymphocytes. Invasion requires a functional TTSS and results in inhibition of chemokine-induced T cell migration, an effect mediated by the TTSS effector IpgD, a phosphoinositide 4-phosphatase. Remarkably, IpgD injection into bystander T cells can occur in the absence of cell invasion. Upon IpgD-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)), the pool of PIP(2) at the plasma membrane is reduced, leading to dephosphorylation of the ERM proteins and their inability to relocalize at one T cell pole upon chemokine stimulus, likely affecting the formation of the polarized edge required for cell migration. These results reveal a bacterial TTSS effector-mediated strategy to impair T cell function.  相似文献   

9.
Virulent bacteria of the genera Yersinia, Shigella and Salmonella secrete a number of virulence determinants, Yops, Ipas and Sips respectively, by a type III secretion pathway. The IpaB protein of Shigella flexneri was expressed in Yersinia pseudotuberculosis and found to be secreted under the same conditions required for Yop secretion. Likewise, YopE was secreted by the wild-type strain LT2 of Salmonella typhimurium, but YopE was not secreted by the isogenic invA mutant. Secretion of both IpaB and YopE required their respective chaperones, IpgC and YerA. In addition, yopE-containing S. typhimurium expressed a YopE-mediated cytotoxicity on cultured HeLa cells. YopE was detected in the cytosol of the infected HeLa cells and the amount of translocated YopE correlated with the degree of cytotoxicity. Both translocation and cytotoxicity were prevented by the addition of gentamicin. Treatment of HeLa cells with cytochalasin D prior to infection prevented internalization of bacteria, but translocation of YopE was still observed. These results favour the hypothesis that YopE is translocated through the plasma membrane by surface-located bacteria. We propose that virulent Salmonella and Shigella deliver virulence effector molecules into the target cell through the utilization of a functionally conserved secretion/translocation machinery similar to that shown for Yersinia.  相似文献   

10.
Shigella possess 220 kb plasmid, and the major virulence determinants, called effectors, and the type III secretion system (TTSS) are exclusively encoded by the plasmid. The genome sequences of S. flexneri strains indicate that several ipaH family genes are located on both the plasmid and the chromosome, but whether their chromosomal IpaH cognates can be secreted from Shigella remains unknown. Here we report that S. flexneri strain, YSH6000 encodes seven ipaH cognate genes on the chromosome and that the IpaH proteins are secreted via the TTSS. The secretion kinetics of IpaH proteins by bacteria, however, showed delay compared with those of IpaB, IpaC and IpaD. Expression of the each mRNA of ipaH in Shigella was increased after bacterial entry into epithelial cells, and the IpaH proteins were secreted by intracellular bacteria. Although individual chromosomal ipaH deletion mutants showed no appreciable changes in the pathogenesis in a mouse pulmonary infection model, the DeltaipaH-null mutant, whose chromosome lacks all ipaH genes, was attenuated to mice lethality. Indeed, the histological examination for mouse lungs infected with the DeltaipaH-null showed a greater inflammatory response than induced by wild-type Shigella, suggesting that the chromosomal IpaH proteins act synergistically as effectors to modulate the host inflammatory responses.  相似文献   

11.
12.
Shigella deliver a subset of effector proteins such as IpaA, IpaB and IpaC via the type III secretion system (TTSS) into host cells during the infection of colonic epithelial cells. Many bacterial effectors including some from Shigella require specific chaperones for protection from degradation and targeting to the TTSS. In this study, we have investigated the role of the icsB gene located upstream of the ipaBCDA operon in Shigella infection because the role of IcsB as a virulence factor remains unknown. Here, we found that the IcsB protein is secreted via the TTSS of Shigella in vitro and in vivo. We show that IpgA protein encoded by ipgA, the gene immediately downstream of icsB, serves as the chaperone required for the stabilization and secretion of IcsB. We have shown that IcsB binds to IpgA in bacterial cytosol and the binding site is in the middle of the IcsB protein. Intriguingly, although its significance in Shigella pathogenicity is as yet unclear, the icsB gene can be read-through into the ipgA gene to create a translational fusion protein. Furthermore, the contribution of IcsB to the pathogenicity of Shigella was demonstrated by plaque-forming assay and the Sereny test. The ability of the icsB mutant to form plaques was greatly reduced compared with that of the wild type in MDCK cell monolayers. Furthermore, when guinea pig eyes were infected with a non-polar icsB mutant, the bacteria failed to provoke keratoconjunctivitis. These results suggest that IcsB is secreted via the TTSS, chaperoned by IpgA, and required at the post-invasion stage of Shigella pathogenicity  相似文献   

13.
Genes required for entry of Shigella flexneri into epithelial cells in vitro are clustered in two adjacent loci, one of which encodes secretory proteins, the IpaA–D proteins, and the other their dedicated secretion apparatus, the Mxi–Spa translocon. Ipa secretion, which is induced upon contact of bacteria with epithelial cells, is prevented during growth in vitro. Here, we show that ipaB and ipaD mutations lead to enhanced secretion of a set of about 15 proteins. These extracellular proteins and some Ipas associate in organized structures consisting of extended sheets. Growth of the wild-type strain in the presence of Congo red is shown to induce protein secretion through the Mxi–Spa translocon. Cultures grown to stationary phase in the presence of Congo red contain extracellular filaments whose composition and morphology are similar to those produced by the hyper-secreting ipaB and ipaD mutants.  相似文献   

14.
15.
Shigella and Salmonella use similar type III secretion systems for delivering effector proteins into host cells. This secretion system consists of a base anchored in both bacterial membranes and an extracellular "needle" that forms a rod-like structure exposed on the pathogen surface. The needle is composed of multiple subunits of a single protein and makes direct contact with host cells to facilitate protein delivery. The proteins that make up the needle of Shigella and Salmonella are MxiH and PrgI, respectively. These proteins are attractive vaccine candidates because of their essential role in virulence and surface exposure. We therefore isolated, purified, and characterized the monomeric forms of MxiH and PrgI. Their far-UV circular dichroism spectra show structural similarities with hints of subtle differences in their secondary structure. Both proteins are highly helical and thermally unstable, with PrgI having a midpoint of thermal unfolding (Tm) near 37 degrees C and MxiH having a value near 42 degrees C. The two proteins also have comparable intrinsic stabilities as measured by chemically induced (urea) unfolding. MxiH, however, with a free energy of unfolding (DeltaG degrees 0,un) of 1.6 kcal/mol, is slightly more stable than PrgI (1.2 kcal/mol). The relatively low m-values obtained for the urea-induced unfolding of the proteins suggest that they undergo only a small change in solvent-accessible surface area. This argues that when MxiH and PrgI are incorporated into the needle complex, they obtain a more stable structural state through the introduction of protein-protein interactions.  相似文献   

16.
The pathogenesis of Shigella flexneri requires a functional type III secretion apparatus to serve as a conduit for injecting host-altering effector proteins into the membrane and cytoplasm of the targeted cell. The type III secretion apparatus is composed of a basal body and an exposed needle that is an extended polymer of MxiH with a 2.0-nm inner channel. Invasion plasmid antigen D (IpaD) resides at the tip of the needle to control type III secretion. The atomic structures of MxiH and IpaD have been solved. MxiH (8.3 kDa) is a helix-turn-helix, whereas IpaD (36.6 kDa) has a dumbbell shape with two globular domains flanking a central coiled-coil that stabilizes the protein. These structures alone, however, have not been sufficient to produce a workable in silico model by which IpaD docks at the needle tip. Thus, the work presented here provides an initial step in understanding this important protein-protein interaction. We have identified key MxiH residues located in its PSNP loop and the contiguous surface that uniquely contribute to the formation of the IpaD-needle interface as determined by NMR chemical shift mapping. Mutation of Asn-43, Leu-47, and Tyr-50 residues severely affects the stable maintenance of IpaD at the Shigella surface and thus compromises the invasive phenotype of S. flexneri. Other residues could be mutated to give rise to intermediate phenotypes, suggesting they have a role in tip complex stabilization while not being essential for tip complex formation. Initial in vitro fluorescence polarization studies confirmed that specific amino acid changes adversely affect the MxiH-IpaD interaction. Meanwhile, none of the mutations appeared to have a negative effect on the MxiH-MxiH interactions required for efficient needle assembly.  相似文献   

17.
Bacteria of Shigella spp. are the causative agents of shigellosis. The virulence traits of these pathogens include their ability to enter into epithelial cells and induce apoptosis in macrophages. Expression of these functions requires the Mxi-Spa type III secretion apparatus and the secreted IpaA-D proteins, all of which are encoded by a virulence plasmid. In wild-type strains, the activity of the secretion apparatus is tightly regulated and induced upon contact of bacteria with epithelial cells. To investigate the repertoire of proteins secreted by Shigella flexneri in conditions of active secretion, we determined the N-terminal sequence of 14 proteins that are secreted by a mutant in which secretion was deregulated. Sequencing of the virulence plasmid pWR100 of the S. flexneri strain M90T (serotype 5) has allowed us to identify the genes encoding these secreted proteins and suggests that approximately 25 proteins are secreted by the type III secretion apparatus. Analysis of the G+C content and the relative positions of genes and open reading frames carried by the plasmid, together with information concerning the localization and function of encoded proteins, suggests that pWR100 contains blocks of genes of various origins, some of which were initially carried by four different plasmids.  相似文献   

18.
Sharma K  Rishi P  Grewal JS  Ram S  Tiwari RP 《Microbios》2001,106(413):31-38
Haemolytic strains of Shigella dysenteriae type 1, Shigella flexneri, Shigella boydii and Shigella sonnei cultured on Congo red agar produced pigmented colonies (Pcr+) whereas nonhaemolytic strains produced white colonies and did not bind Congo red (Pcr-). S. flexneri-1 haemolysin negative mutant (lacking plasmid) of haemolysin positive prototroph also did not bind Congo red and produced nonpigmented colonies. Among the twelve strains of Shigella included in this study, the characteristics of Congo red binding, plasmid profile and haemolytic activity appeared to be correlated. Congo red binding occurred comparatively more by haemolysin-producing strains. Congo red binding can be used as a quick and reliable method for virulence traits of pathogens, including haemolysin activity.  相似文献   

19.
Invasion of epithelial cells by Shigella flexneri involves entry and intercellular dissemination. Entry of bacteria into non-phagocytic cells requires the IpaA-D proteins that are secreted by the Mxi-Spa type III secretion machinery. Type III secretion systems are found in several Gram-negative pathogens and serve to inject bacterial effector proteins directly into the cytoplasm of host cells. In this study, we have analysed the IpgD protein of S. flexneri, the gene of which is located on the virulence plasmid at the 5' end of the mxi-spa locus. We have shown that IpgD (i) is stored in the bacterial cytoplasm in association with a specific chaperone, IpgE; (ii) is secreted by the Mxi-Spa type III secretion system in amounts similar to those of the IpaA-D proteins; (iii) is associated with IpaA in the extracellular medium; and (iv) is involved in the modulation of the host cell response after contact of the bacterium with epithelial cells. This suggests that IpgD is an effector that might be injected into host cells to manipulate cellular processes during infection.  相似文献   

20.
The virulence factor IpgD, delivered into nonphagocytic cells by the type III secretion system of the pathogen Shigella flexneri, is a phosphoinositide 4-phosphatase generating phosphatidylinositol 5 monophosphate (PtdIns5P). We show that PtdIns5P is rapidly produced and concentrated at the entry foci of the bacteria, where it colocalises with phosphorylated Akt during the first steps of infection. Moreover, S. flexneri-induced phosphorylation of host cell Akt and its targets specifically requires IpgD. Ectopic expression of IpgD in various cell types, but not of its inactive mutant, or addition of short-chain penetrating PtdIns5P is sufficient to induce Akt phosphorylation. Conversely, sequestration of PtdIns5P or reduction of its level strongly decreases Akt phosphorylation in infected cells or in IpgD-expressing cells. Accordingly, IpgD and PtdIns5P production specifically activates a class IA PI 3-kinase via a mechanism involving tyrosine phosphorylations. Thus, S. flexneri parasitism is shedding light onto a new mechanism of PI 3-kinase/Akt activation via PtdIns5P production that plays an important role in host cell responses such as survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号