首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arg-120 is located near the mouth of the hydrophobic channel that forms the cyclooxygenase active site of prostaglandin endoperoxide H synthases (PGHSs)-1 and -2. Replacement of Arg-120 of ovine PGHS-1 with a glutamine increases the apparent Km of PGHS-1 for arachidonate by 1,000-fold (Bhattacharyya, D. K., Lecomte, M., Rieke, C. J., Garavito, R. M., and Smith, W. L. (1996) J. Biol. Chem. 271, 2179-2184). This and other evidence indicate that the guanido group of Arg-120 forms an ionic bond with the carboxylate group of arachidonate and that this interaction is an important contributor to the overall strength of arachidonate binding to PGHS-1. In contrast, we report here that R120Q human PGHS-2 (hPGHS-2) and native hPGHS-2 have very similar kinetic properties, but R120L hPGHS-2 catalyzes the oxygenation of arachidonate inefficiently. Our data indicate that the guanido group of Arg-120 of hPGHS-2 interacts with arachidonate through a hydrogen bond rather than an ionic bond and that this interaction is much less important for arachidonate binding to PGHS-2 than to PGHS-1. The Km values of PGHS-1 and -2 for arachidonate are the same, and all but one of the core residues of the active sites of the two isozymes are identical. Thus, the results of our studies of Arg-120 of PGHS-1 and -2 imply that interactions involved in the binding of arachidonate to PGHS-1 and -2 are quite different and that residues within the hydrophobic cyclooxygenase channel must contribute more significantly to arachidonate binding to PGHS-2 than to PGHS-1. As observed previously with R120Q PGHS-1, flurbiprofen was an ineffective inhibitor of R120Q hPGHS-2. PGHS-2-specific inhibitors including NS398, DuP-697, and SC58125 had IC50 values for the R120Q mutant that were up to 1,000-fold less than those observed for native hPGHS-2; thus, the positively charged guanido group of Arg-120 interferes with the binding of these compounds. NS398 did not cause time-dependent inhibition of R120Q hPGHS-2, whereas DuP-697 and SC58125 were time-dependent inhibitors. Thus, Arg-120 is important for the time-dependent inhibition of hPGHS-2 by NS398 but not by DuP-697 or SC58125.  相似文献   

2.
Polymorphism and inheritance of seed storage protein in sunflower   总被引:1,自引:0,他引:1  
The data on polymorphism and inheritance of the seed storage protein helianthinin are presented. The results of hybrid analysis indicate that in the annual sunflower Helianthus annuus, helianthinin synthesis is controlled by at least three loci: HelA, HelB, HelB, and HelC. Codominant alleles controlling different electrophoretic variants of polypeptides were identified at each of the loci. The HelA locus was inherited independently of HelB and HelC in a series of dihybrid crosses. The frequencies of recombination between loci HelB and HelC estimated in F2 and BC of two crossing combinations were respectively 21.8 and 19.0%. Segregation of the Hel-C-controlled variants in the progenies from the crosses of cultured sunflower with annual wild species and forms corresponded to that theoretically expected for Mendelian inheritance. The maternal type of helianthinin inheritance was observed in the progenies from the crosses of inbred H. annuus lines with perennial diploid and polyploid Helianthus species. Altered expression of the HelC locus was detected in some hybrid combinations. These alterations appeared in early (F1, F2) hybrid generations and were similar in different hybrid combinations. They did not depend on the perennial paternal species being more influenced by the maternal genotype and by the mode of obtaining hybrids (in an embryo culture or in the field). These results are explained by "genomic shock" generated by hybridization of genetically incompatible species.  相似文献   

3.
Prostaglandin H synthase isoforms 1 and -2 (PGHS-1 and -2) react with peroxide to form a radical on Tyr385 that initiates the cyclooxygenase catalysis. The tyrosyl radical EPR signals of PGHS-1 and -2 change over time and are altered by cyclooxygenase inhibitor binding. We characterized the tyrosyl radical dynamics using wild type human PGHS-1 (hPGHS-1) and its Y504F, Y385F, and Y385F/Y504F mutants to determine whether the radical EPR signal changes involve Tyr504 radical formation, Tyr385 radical phenyl ring rotation, or both. Reaction of hPGHS-1 with peroxide produced a wide singlet, whereas its Y504F mutant produced only a wide doublet signal, assigned to the Tyr385 radical. The cyclooxygenase specific activity and KM value for arachidonate of hPGHS-1 were not affected by the Y504F mutation, but the peroxidase specific activity and the KM value for peroxide were increased. The Y385F and Y385F/Y504F mutants retained only a small fraction of the peroxidase activity; the former had a much-reduced yield of peroxide-induced radical and the latter essentially none. After binding of indomethacin, a cyclooxygenase inhibitor, hPGHS-1 produced a narrow singlet but the Y504F mutant did not form a tyrosyl radical. These results indicate that peroxide-induced radicals form on Tyr385 and Tyr504 of hPGHS-1, with radical primarily on Tyr504 in the wild type protein; indomethacin binding prevented radical formation on Tyr385 but allowed radical formation on Tyr504. Thus, hPGHS-1 and -2 have different distributions of peroxide-derived radical between Tyr385 and Tyr504. Y504F mutants in both hPGHS-1 and -2 significantly decreased the cyclooxygenase activation efficiency, indicating that formation of the Tyr504 radical is functionally important for both isoforms.  相似文献   

4.
Prostaglandin H2 synthases (PGHS-1 and -2) are monotopic peripheral membrane proteins that catalyse the synthesis of prostaglandins in the arachidonate cascade. Picot et al. (1994) proposed that the enzyme is anchored to one leaflet of the bilayer by a membrane anchoring domain consisting of a right-handed spiral of amphipathic helices (residues 73–116) forming a planar motif. Two different computational approaches are used to examine the association of the PGHS-1 membrane anchoring domain with a membrane via the proposed mechanism. The electrostatic contribution to the free energy of solvation is obtained by solving numerically the finite-difference Poisson equation for the protein attached to a membrane represented as a planar slab of low dielectric. The nonpolar cavity formation and van der Waals contributions to the solvation free energy are assumed to be proportional to the water accessible surface area. Based on the optimum position determined from the continuum solvent model, two atomic models of the PGHS-1 anchoring domain associated with an explicit dimyristoylphosphatidylcholine (DMPC) bilayer differing by the thickness of the membrane bilayer were constructed. A total of 2 ns molecular dynamics simulation were performed to study the details of lipid- protein interactions at the microscopic level. In the simulations the lipid hydrocarbon chains interacting with the anchoring domain assume various shapes, suggesting that the plasticity of the membrane is significant. The hydrophobic residues in the membrane side of the helices interact with the hydrophobic membrane core, while the positively charged residues interact with the lipid polar headgroups to stabilize the anchoring of the membrane domain to the upper half of the bilayer. The phosphate headgroup of one DMPC molecule disposed at the center of the spiral formed by helices A, B, C and D interacts strongly with Arg120, a residue on helix D that has previously been identified as being important in the activity of PGHS-1. In the full enzyme structure, this position corresponds to the entrance of a long hydrophobic channel leading to the cyclooxygenase active site. These observations provide insights into the association of the arachidonic acid substrate to the cyclooxygenase active site of PGHS-1. Received: 20 December 1999 / Revised version: 26 March 2000 / Accepted: 26 March 2000  相似文献   

5.
Prostaglandin endoperoxide H synthases (PGHSs)-1 and -2 have a cyclooxygenase (COX) activity involved in forming prostaglandin G2 (PGG2) from arachidonic acid and an associated peroxidase (POX) activity that reduces PGG2 to PGH2. Suicide inactivation processes are observed for both POX and COX reactions. Here we report COX reaction conditions for PGHS-1 under which complete COX inactivation occurs but with > or = 60% retention of POX activity. The rates of POX inactivation were compared for native oPGHS-1 versus Y385F oPGHS-1, a mutant that cannot form the Tyr385 radical of COX Intermediate II; the rates were the same for both native and Y385F oPGHS-1. Our data indicate that a COX Intermediate II/acyl or product complex is the precursor in COX inactivation. However, another species, probably an Intermediate II-like species but with a radical centered on a tyrosine other than Tyr385, is the immediate precursor for POX inactivation.  相似文献   

6.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a monotopic membrane protein anchored to the membrane by an N-terminal in-plane amphipathic alpha-helix. This membrane anchor is essential for the assembly of a functional viral replication complex. Although amino acid sequences differ considerably, putative membrane anchors with amphipathic features were predicted in NS5A from related Flaviviridae family members, in particular bovine viral diarrhea virus (BVDV), the prototype representative of the genus Pestivirus. We report here the NMR structure of the membrane anchor 1-28 of NS5A from BVDV in the presence of different membrane mimetic media. This anchor includes a long amphipathic alpha-helix of 21 residues interacting in-plane with the membrane interface and including a putative flexible region. Molecular dynamic simulation at a water-dodecane interface used to mimic the surface separating a lipid bilayer and an aqueous medium demonstrated the stability of the helix orientation and the location at the hydrophobic-hydrophilic interface. The flexible region of the helix appears to be required to allow the most favorable interaction of hydrophobic and hydrophilic side chain residues with their respective environment at the membrane interface. Despite the lack of amino acid sequence similarity, this amphipathic helix shares common structural features with that of the HCV counterpart, including a stable, hydrophobic N-terminal segment separated from the more hydrophilic C-terminal segment by a local, flexible region. These structural conservations point toward conserved roles of the N-terminal in-plane membrane anchors of NS5A in replication complex formation of HCV, BVDV, and other related viruses.  相似文献   

7.
Prostaglandin endoperoxide H synthases-1 and -2 (PGHS-1 and -2) convert arachidonic acid to prostaglandin H(2) (PGH(2)), the committed step in prostaglandin and thromboxane formation. Interaction of peroxides with the heme sites in PGHSs generates a tyrosyl radical that catalyzes subsequent cyclooxygenase chemistry. To study the peroxidase reaction of ovine oPGHS-1, we combined spectroscopic and directed mutagenesis data with X-ray crystallographic refinement of the heme site. Optical and Raman spectroscopy of oxidized oPGHS-1 indicate that its heme iron (Fe(3+)) exists exclusively as a high-spin, six-coordinate species in the holoenzyme and in heme-reconstituted apoenzyme. The sixth ligand is most likely water. The cyanide complex of oxidized oPGHS-1 has a six-coordinate, low-spin ferric iron with a v[Fe-CN] frequency at 445 cm(-)(1); a monotonic sensitivity to cyanide isotopomers that indicates the Fe-CN adduct has a linear geometry. The ferrous iron in reduced oPGHS-1 adopts a high-spin, five-coordinate state that is converted to a six-coordinate, low-spin geometry by CO. The low-frequency Raman spectrum of reduced oPGHS-1 reveals two v[Fe-His] frequencies at 206 and 222 cm(-)(1). These vibrations, which disappear upon addition of CO, are consistent with a neutral histidine (His388) as the proximal heme ligand. The refined crystal structure shows that there is a water molecule located between His388 and Tyr504 that can hydrogen bond to both residues. However, substitution of Tyr504 with alanine yields a mutant having 46% of the peroxidase activity of native oPGHS-1, establishing that bonding of Tyr504 to this water is not critical for catalysis. Collectively, our results show that the proximal histidine ligand in oPGHS-1 is electrostatically neutral. Thus, in contrast to most other peroxidases, a strongly basic proximal ligand is not necessary for peroxidase catalysis by oPGHS-1.  相似文献   

8.
Prostaglandin-endoperoxide H synthases (PGHSs) have a cyclooxygenase that forms prostaglandin (PG) G2 from arachidonic acid (AA) plus oxygen and a peroxidase that reduces the PGG2 to PGH2. The peroxidase activates the cyclooxygenase. This involves an initial oxidation of the peroxidase heme group by hydroperoxide, followed by oxidation of Tyr385 to a tyrosyl radical within the cyclooxygenase site. His386 of PGHS-1 is not formally part of either active site, but lies in an extended helix between Tyr385, which protrudes into the cyclooxygenase site, and His388, the proximal ligand of the peroxidase heme. When His386 was substituted with alanine in PGHS-1, the mutant retained <2.5% of the native peroxidase activity, but >20% of the native cyclooxygenase activity. However, peroxidase activity could be restored (10-30%) by treating H386A PGHS-1 with cyclooxygenase inhibitors or AA, but not with linoleic acid; in contrast, mere occupancy of the cyclooxygenase site of native PGHS-1 had no effect on peroxidase activity. Heme titrations indicated that H386A PGHS-1 binds heme less tightly than does native PGHS-1. The low peroxidase activity and decreased affinity for heme of H386A PGHS-1 imply that His386 helps optimize heme binding. Molecular dynamic simulations suggest that this is accomplished in part by a hydrogen bond between the heme D-ring propionate and the N-delta of Asn382 of the extended helix. The structure of the extended helix is, in turn, strongly supported by stable hydrogen bonding between the N-delta of His386 and the backbone carbonyl oxygens of Asn382 and Gln383. We speculate that the binding of cyclooxygenase inhibitors or AA to the cyclooxygenase site of ovine H386A PGHS-1 reopens the constriction in the cyclooxygenase site between the extended helix and a helix containing Gly526 and Ser530 and restores native-like structure to the extended helix. Being less bulky than AA, linoleic acid is apparently unable to reopen this constriction.  相似文献   

9.
Prostaglandin H synthase-1 and -2 (PGHS-1 and PGHS-2, EC 1.14.99.1) are membrane associated glycoproteins that catalyze the first two steps in prostaglandin synthesis. As the enzymes play an important regulatory role in several physiological and pathophysiological processes, recombinant PGHS isoforms are widely used in biomedical research. In the present study, we expressed human PGHS-2 (hPGHS-2) with and without a six histidine sequence tag (His(6) tag) near the amino- or carboxy-terminus of the protein in the Pichia pastoris (P. pastoris) expression system using native or yeast signal sequences. The recombinant His(6) tagged hPGHS-2 was purified using Ni-affinity and anion exchange chromatography, whereas the purification of the C-terminally His(6) tagged hPGHS-2 was more efficient. K(m), k(cat) and IC(50) values were determined to characterize the protein. The data obtained indicate that both the N- and C-terminally His(6) tagged hPGHS-2 are functional and the catalytic properties of the recombinant protein and the enzyme produced in other expression systems are comparable. As the yeast culture is easy to handle, the P. pastoris system could serve as an alternative to the most commonly used baculovirus-insect cell expression system for the production of the recombinant PGHS-2.  相似文献   

10.
Kinetic studies and analysis of the products formed by native and mutant forms of ovine prostaglandin endoperoxide H synthase-1 (oPGHS-1) have suggested that arachidonic acid (AA) can exist in the cyclooxygenase active site of the enzyme in three different, catalytically competent conformations that lead to prostaglandin G2 (PGG2), 11R-hydroperoxyeicosatetraenoic acid (HPETE), and 15R,S-HPETE, respectively. We have identified an oPGHS-1 mutant (V349A/W387F) that forms predominantly 11R-HPETE. Thus, the preferred catalytically competent arrangement of AA in the cyclooxygenase site of this double mutant must be one that leads to 11-HPETE. The crystal structure of Co3+-protoporphyrin IX V349A/W387F oPGHS-1 in a complex with AA was determined to 3.1 A. Significant differences are observed in the positions of atoms C-3, C-4, C-5, C-6, C-10, C-11, and C-12 of bound AA between native and V349A/W387F oPGHS-1; in comparison, the positions of the side chains of cyclooxygenase active site residues are unchanged. The structure of the double mutant presented here provides structural insight as to how Val349 and Trp387 help position C-9 and C-11 of AA so that the incipient 11-peroxyl radical intermediate is able to add to C-9 to form the 9,11 endoperoxide group of PGG2. In the V349A/W387F oPGHS-1.AA complex the locations of C-9 and C-11 of AA with respect to one another make it difficult to form the endoperoxide group from the 11-hydroperoxyl radical. Therefore, the reaction apparently aborts yielding 11R-HPETE instead of PGG2. In addition, the observed differences in the positions of carbon atoms of AA bound to this mutant provides indirect support for the concept that the conformer of AA shown previously to be bound within the cyclooxygenase active site of native oPGHS-1 is the one that leads to PGG2.  相似文献   

11.
Arachidonic acid is converted to prostaglandin G(2) (PGG(2)) by the cyclooxygenase activities of prostaglandin endoperoxide H synthases (PGHSs) 1 and 2. The initial, rate-limiting step is abstraction of the 13-proS hydrogen from arachidonate which, for PGG(2) formation, is followed by insertion of O(2) at C-11, cyclization, and a second O( 2) insertion at C-15. As an accompaniment to ongoing structural studies designed to determine the orientation of arachidonate in the cyclooxygenase site, we analyzed the products formed from arachidonate by (a) solubilized, partially purified ovine (o) PGHS-1; (b) membrane-associated, recombinant oPGHS-1; and (c) a membrane-associated, recombinant active site mutant (V349L oPGHS-1) and determined kinetic values for formation of each product. Native forms of oPGHS-1 produced primarily PGG(2) but also several monohydroxy acids, which, in order of abundance, were 11R-hydroxy-5Z, 8Z,12E,14Z-eicosatetraenoic acid (11R-HETE), 15S-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid (15S-HETE), and 15R-HETE. V349L oPGHS-1 formed primarily PGG(2), 15S-HETE, and 15R-HETE but only trace amounts of 11R-HETE. With native enzyme, the K(m) values for PGG(2), 11-HETE, and 15-HETE formation were each different (5.5, 12.1, and 19.4 microM, respectively); similarly, the K(m) values for PGG(2) and 15-HETE formation by V349L oPGHS-1 were different (11 and 5 microM, respectively). These results establish that arachidonate can assume at least three catalytically productive arrangements within the cyclooxygenase site of oPGHS-1 leading to PGG(2), 11R-HETE, and 15S-HETE and/or 15R-HETE, respectively. IC(50) values for inhibition of formation of the individual products by the competitive inhibitor, ibuprofen, were determined and found to be the same for a given enzyme form (i.e. 175 microM for oPGHS-1 and 15 microM for V349L oPGHS-1). These latter results are most simply rationalized by a kinetic model in which arachidonate forms various catalytically competent arrangements only after entering the cyclooxygenase active site.  相似文献   

12.
Cytochrome P450scc (CYP11A1) is a protein attached to the inner surface of the inner mitochondrial membrane that uses cholesterol from the membrane phase as its substrate for the first step in steroid hormone synthesis. We investigated the mechanism by which CYP11A1 interacts with the membrane. Hydrophobicity profiles of CYP11A1 and two other mitochondrial cytochromes P450, plus a model structure of CYP11A1 using CYP2C5 as template, suggest that CYP11A1 has a monotopic association with the membrane which may involve the A' helix and the F-G loop. Deletion of the A' helix reduced the proportion of expressed CYP11A1 associated with the bacterial membrane fraction, indicating a role for the A' helix in membrane binding. However, introduction of a cysteine residue in this helix at position 24 (L24C) and subsequent labelling with the fluorescent probe N'-(7-nitrobenz-2-oxal,3-diazol-4-yl)ethylenediamine (NBD) failed to show a membrane localisation. Cysteine mutagenesis and fluorescent labelling of other residues appearing on the distal surface of the CYP11A1 model revealed that V212C and L219C have enhanced fluorescence and a blue shift following association of the mutant CYP11A1 with phospholipid vesicles. This indicates that these residues, which are located in the F-G loop, become localised to a more hydrophobic environment following membrane binding. Analysis of the quenching of tryptophan residues in CYP11A1 by acrylamide indicates that at least one and probably two tryptophans are involved in membrane binding. We conclude that CYP11A1 has a monotopic association with the membrane that is mediated, at least in part, by the F-G loop region.  相似文献   

13.
Stress-induced endogenous and ectopically expressed GADD34 proteins were present both in the cytoplasm and in membranes, with their membrane association showing similar biochemical properties. Deletion of N-terminal sequences in GADD34-GFP proteins highlighted an amphipathic helix, whose hydrophobic surface, specifically valine 25 and leucine 29, mediated endoplasmic reticulum (ER) localization. Substitution of leucines for three arginines on the polar surface indicated that the same helix also mediated the association of GADD34 with mitochondria. Fluorescence protease protection and chemical modification of cysteines substituted in the membrane-binding domain pointed to a monotopic insertion of GADD34 into the outer layer of the ER membrane. Fluorescence recovery after photobleaching showed that ER association retards the mobility of GADD34 in living cells. Both WT GADD34 and the mutant, V25R, effectively scaffolded the α-isoform of protein phosphatase-1 (PP1α) and enabled eIF2α dephosphorylation. However, the largely cytosolic V25R protein displayed a reduced rate of proteasomal degradation, and unlike WT GADD34, whose ectopic expression resulted in a dilated or distended ER, V25R did not modify ER morphology. These studies suggested that the association of with ER modulates intracellular trafficking and proteasomal degradation of GADD34, and in turn, its ability to modify ER morphology.  相似文献   

14.
The epsilon isoform of diacylglycerol kinase (DGKepsilon) is unique among mammalian DGKs in having a segment of hydrophobic amino acids comprising approximately residues 20 to 41. Several algorithms predict this segment to be a transmembrane (TM) helix. Using PepLook, we have performed an in silico analysis of the conformational preference of the segment in a hydrophobic environment comprising residues 18 to 42 of DGKepsilon. We find that there are two distinct groups of stable conformations, one corresponding to a straight helix that would traverse the membrane and the second corresponding to a bent helix that would enter and leave the same side of the membrane. Furthermore, the calculations predict that substituting the Pro32 residue in the hydrophobic segment with an Ala will cause the hydrophobic segment to favor a TM orientation. We have expressed the P32A mutant of DGKepsilon, with a FLAG tag (an N-terminal 3xFLAG epitope tag) at the amino terminus, in COS-7 cells. We find that this mutation causes a large reduction in both k(cat) and K(m) while maintaining k(cat)/K(m) constant. Specificity of the P32A mutant for substrates with polyunsaturated acyl chains is retained. The P32A mutant also has higher affinity for membranes since it is more difficult to extract from the membrane with high salt concentration or high pH compared with the wild-type DGKepsilon. We also evaluated the topology of the proteins with confocal immunofluorescence microscopy using NIH 3T3 cells. We find that the FLAG tag at the amino terminus of the wild-type enzyme is not reactive with antibodies unless the cell membrane is permeabilized with detergent. We also demonstrate that at least a fraction of the wild-type DGKepsilon is present in the plasma membrane and that comparable amounts of the wild-type and P32A mutant proteins are in the plasma membrane fraction. This indicates that in these cells the hydrophobic segment of the wild-type DGKepsilon is not TM but takes up a bent conformation. In contrast, the FLAG tag at the amino terminus of the P32A mutant is exposed to antibody both before and after membrane permeabilization. This modeling approach thus provides an explanation, not provided by simple predictive algorithms, for the observed topology of this protein in cell membranes. The work also demonstrates that the wild-type DGKepsilon is a monotopic protein.  相似文献   

15.
MinD binds to phospholipid vesicles in the presence of ATP and is released by MinE, which stimulates the MinD ATPase. Membrane binding requires a short conserved C-terminal region, which has the potential to form an amphipathic helix. This finding has led to a model in which the binding of ATP regulates the formation or accessibility of this helix, which then embeds in the membrane bilayer. To test this model, we replaced each of the four hydrophobic residues within this potential helix with tryptophan or a charged residue. Introduction of a negatively charged amino acid decreased membrane binding of MinD and its ability to activate MinC. In contrast, mutants with tryptophan substitutions retained the ability to bind to the membrane and activate MinC. Fluorescence emission spectroscopy analysis of the tryptophan mutants F263W, L264W, and L267W confirmed that these tryptophan residues did insert into the hydrophobic interior of the bilayer. We conclude that membrane binding by MinD involves penetration of the hydrophobic residues within the C-terminal amphipathic helix into the hydrophobic interior of the bilayer.  相似文献   

16.
The membrane-bound closed state of the colicin E1 channel domain was investigated by site-directed fluorescence labeling using a bimane fluorophore attached to each single cysteine residue within helix 2 of each mutant protein. The fluorescence properties of the bimane fluorophore were measured for the membrane-associated form of the closed channel and included fluorescence emission maximum, fluorescence anisotropy, apparent polarity, surface accessibility, and membrane bilayer penetration depth. The fluorescence data show that helix 2 is an amphipathic alpha-helix that is situated parallel to the membrane surface, but it is less deeply embedded within the bilayer interfacial region than is helix 1 in the closed channel. A least squares fit of the various data sets to a harmonic wave function indicated that the periodicity and angular frequency for helix 2 in the membrane-bound state are typical for an amphipathic alpha-helix (3.8 +/- 0.1 residues per turn and 94 +/- 4 degrees, respectively) that is located at an interfacial region of a membrane bilayer. Dual quencher analysis also revealed that helix 2 is peripherally membrane associated, with one face of the helix dipping into the interfacial region of the lipid bilayer and the other face projecting outwardly into the aqueous solvent. Finally, our data show that helices 1 and 2 remain independent helices upon membrane association with a short connector link (Tyr(363)-Gly(364)) and that short amphipathic alpha-helices participate in the formation of a lipid-dependent, toroidal pore for this colicin.  相似文献   

17.
Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) can oxygenate 18-22 carbon polyunsaturated fatty acids, albeit with varying efficiencies. Here we report the crystal structures of eicosapentaenoic acid (EPA, 20:5 n-3) and linoleic acid (LA, 18:2 n-6) bound in the cyclooxygenase active site of Co(3+) protoporphyrin IX-reconstituted ovine PGHS-1 (Co(3+)-oPGHS-1) and compare the effects of active site substitutions on the rates of oxygenation of EPA, LA, and arachidonic acid (AA). Both EPA and LA bind in the active site with orientations similar to those seen previously with AA and dihomo-gamma-linolenic acid (DHLA). For EPA, the presence of an additional double bond (C-17/C-18) causes this substrate to bind in a "strained" conformation in which C-13 is misaligned with respect to Tyr-385, the residue that abstracts hydrogen from substrate fatty acids. Presumably, this misalignment is responsible for the low rate of EPA oxygenation. For LA, the carboxyl half binds in a more extended configuration than AA, which results in positioning C-11 next to Tyr-385. Val-349 and Ser-530, recently identified as important determinants for efficient oxygenation of DHLA by PGHS-1, play similar roles in the oxygenation of EPA and LA. Approximately 750- and 175-fold reductions in the oxygenation efficiency of EPA and LA were observed with V349A oPGHS-1, compared with a 2-fold change for AA. Val-349 contacts C-2 and C-3 of EPA and C-4 of LA orienting the carboxyl halves of these substrates so that the omega-ends are aligned properly for hydrogen abstraction. An S530T substitution decreases the V(max)/K(m) of EPA and LA by 375- and 140-fold. Ser-530 makes six contacts with EPA and four with LA involving C-8 through C-16; these interactions influence the alignment of the substrate for hydrogen abstraction. Interestingly, replacement of Phe-205 increases the volume of the cyclooxygenase site allowing EPA to be oxygenated more efficiently than with native oPGHS-1.  相似文献   

18.
Rogge CE  Liu W  Wu G  Wang LH  Kulmacz RJ  Tsai AL 《Biochemistry》2004,43(6):1560-1568
Hydroperoxides induce formation of a tyrosyl radical on Tyr385 in prostaglandin H synthase (PGHS). The Tyr385 radical initiates hydrogen abstraction from arachidonic acid, thereby mechanistically connecting the peroxidase and cyclooxygenase activities. In both PGHS isoforms the tyrosyl radical undergoes a time-dependent transition from a wide doublet to a wide singlet species; pretreatment with cyclooxygenase inhibitors results in a third type of signal, a narrow singlet [Tsai, A.-L.; Kulmacz, R. J. (2000) Prost. Lipid Med. 62, 231-254]. These transitions have been interpreted as resulting from Tyr385 ring rotation, but could also be due to radical migration from Tyr385 to another tyrosine residue. PATHWAYS analysis of PGHS crystal structures identified four tyrosine residues with favorable predicted electronic coupling: residues 148, 348, 404, and 504 (ovine PGHS-1 numbering). We expressed recombinant PGHS-2 proteins containing single Tyr --> Phe mutations at the target residues, a quadruple mutant with all four tyrosines mutated, and a quintuple mutant, which also contains a Y385F mutation. All mutants bind heme and display appreciable peroxidase activity, and with the exception of the quintuple mutant, all retain cyclooxygenase activity, indicating that neither of the active sites is significantly perturbed. Reaction of the Y148F, Y348F, and Y404F mutants with EtOOH generates a wide singlet EPR signal similar to that of native PGHS-2. However, reaction of the Y504F and the quadruple mutants with peroxide yields persistent wide doublets, and the quintuple mutant is EPR silent. Nimesulide pretreatment of Y504F and the quadruple mutant results in an abnormally small amount of wide doublet signal, with no narrow singlet being formed. Therefore, the formation of an alternative tyrosine radical on Tyr504 probably accounts for the transition from a wide doublet to a wide singlet in native PGHS-2 and for formation of a narrow singlet in complexes of PGHS-2 with cyclooxygenase inhibitors.  相似文献   

19.
The interaction of the Arf1-directed GTPase-activating protein ArfGAP1 with the Golgi apparatus depends on motifs in its noncatalytic part that are unstructured in solution but are capable of folding into amphipathic helices in vitro upon interaction with poorly packed lipids. In previous studies a few hydrophobic residues that are critical for lipid binding and Golgi localization were identified, but the precise topology of the amphipathic motifs has not been determined. Here we present a detailed analysis of the Golgi targeting and in vitro folding features of the region encompassing the amphipathic motifs (residues 199-294). Point mutation analysis revealed that most hydrophobic residues within this region contribute to Golgi localization, whereas analysis by proline replacements and alanine insertions revealed that Golgi interaction depends on folding into two amphipathic helices with a short interrupting sequence. Analysis of splice isoforms containing 10-residue in-frame insertions within their first amphipathic motifs revealed that the insertion causes a truncation of the amphipathic helix that does not extend beyond the insertion sequence. Lastly, a lysine replacement mutant recently reported to bind to negatively charged liposomes in a curvature-independent manner showed normal cellular distribution, suggesting that Golgi targeting of Arf-GAP1 may involve factors other than sensing lipid packing.  相似文献   

20.
Prostaglandin H synthase isoforms 1 and 2 (PGHS-1 and -2) each have a peroxidase activity and also a cyclooxygenase activity that requires initiation by hydroperoxide. The hydroperoxide initiator requirement for PGHS-2 cyclooxygenase is about 10-fold lower than for PGHS-1 cyclooxygenase, and this difference may contribute to the distinct control of cellular prostanoid synthesis by the two isoforms. We compared the kinetics of the initial peroxidase steps in PGHS-1 and -2 to quantify mechanistic differences between the isoforms that might contribute to the difference in cyclooxygenase initiation efficiency. The kinetics of formation of Intermediate I (an Fe(IV) species with a porphyrin free radical) and Intermediate II (an Fe(IV) species with a tyrosyl free radical, thought to be the crucial oxidant in cyclooxygenase catalysis) were monitored at 4 degrees c by stopped flow spectrophotometry with several hydroperoxides as substrate. With 15-hydroperoxyeicosatetraenoic acid, the rate constant for Intermediate I formation (k1) was 2.3 x 10(7) M-1 s-1 for PGHS-1 and 2.5 x 10(7) M-1 s-1 for PGHS-2, indicating that the isoforms have similar initial reactivity with this lipid hydroperoxide. For PGHS-1, the rate of conversion of Intermediate I to Intermediate II (k2) became the limiting factor when the hydroperoxide level was increased, indicating a rate constant of 10(2)-10(3) s-1 for the generation of the active cyclooxygenase species. For PGHS-2, however, the transition between Intermediates I and II was not rate-limiting even at the highest hydroperoxide concentrations tested, indicating that the k2 value for PGHS-2 was much greater than that for PGHS-1. Computer modelling predicted that faster formation of the active cyclooxygenase species (Intermediate II) or increased stability of the active species increases the resistance of the cyclooxygenase to inhibition by the intracellular hydroperoxide scavenger, glutathione peroxidase. Kinetic differences between the PGHS isoforms in forming or stabilizing the active cyclooxygenase species can thus contribute to the difference in the regulation of their cellular activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号